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One Dynamic Boundary Control

D. Mercier, S. Nicaise, M. A. Sammoury and A. Wehbe

abstract: In [21], Wehbe considered the Rayleigh beam equation with two dy-
namical boundary controls and established the optimal polynomial energy decay

rate of type
1

t
. The proof exploits in an explicit way the presence of two boundary

controls, hence the case of the Rayleigh beam damped by only one dynamical bound-
ary control remained open. In this paper, we fill this gap by considering a clamped
Rayleigh beam equation subject to only one dynamical boundary feedback. First,
we consider the Rayleigh beam equation subject to only one dynamical boundary

control moment. In that case, we prove a polynomial decay in
1

t
of the energy by

using an observability inequality. For that purpose, we give the asymptotic expan-
sion of eigenvalues and eigenfunctions of the undamped underling system. Moreover,
using the real part of the asymptotic expansion of eigenvalues of the damped sys-
tem, we prove that the obtained energy decay rate is optimal. Next, we consider
the Rayleigh beam equation subject to only one dynamical boundary control force.
Here we use a Riesz basis approach. As before, we start by giving the asymptotic
expansion of the eigenvalues and the eigenfunctions of the damped and undamped
systems. We next show that the system of eigenvectors of the damped problem form
a Riesz basis. Finally, we deduce the optimal energy decay rate of polynomial type

in
1
√

t

.
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1. Introduction

In [21], Wehbe considered a Rayleigh beam clamped at one end and subjected to
two dynamical boundary controls at the other end, namely

ytt − γyxxtt + yxxxx = 0, 0 < x < 1, t > 0, (1.1)

y(0, t) = yx(0, t) = 0, t > 0, (1.2)

yxx(1, t) + aη(t) = 0, t > 0, (1.3)

yxxx(1, t)− γyxtt(1, t)− bξ(t) = 0, t > 0, (1.4)

where γ > 0 is the coefficient of moment of inertia, a > 0 and b > 0 are positive
constants, η and ξ denote respectively the dynamical boundary control moment
and force. The damping of the system is made via the indirect damping mecha-
nism at the right extremity of the beam that involves the following two first order
differential equations:

ηt(t)− yxt(1, t) + αη(t) = 0, t > 0, (1.5)

ξt(t)− yt(1, t) + βξ(t) = 0, t > 0, (1.6)

where α > 0 and β > 0. The notion of indirect damping mechanisms has been
introduced by Russell in [18] and since that time, it retains the attention of many
authors. In [21], Wehbe considered the Rayleigh beam equation with two dynamical
boundary controls moment and force, i.e., under the conditions a > 0 and b > 0.
The lack of uniform stability was proved by a compact perturbation argument of
Gibson and a polynomial energy decay rate of type 1

t is obtained by a multiplier
method usually used for nonlinear problems. Finally, using a spectral method,
he proved that the obtained energy decay is optimal in the sense that for any

ε > 0, we cannot expect a decay rate of type
1

t1+ε
. But in [21] the effect of each

control separately on the stability of the Rayleigh beam equation is not investigated.
Indeed, the multiplier method exploits in an explicit way the presence of the two
boundary controls. Furthermore, the lack of one of this two controls yield this
method ineffective. Then, the important and interesting case when the Rayleigh
beam equation is damped by only one dynamical boundary control (a = 0 and
b > 0 or a > 0 and b = 0) remained open. The aim of this paper is to fill this gap
by considering a clamped Rayleigh beam equation subject to only one dynamical
boundary feedback.

First, we consider the Rayleigh beam equation (1.1)-(1.4) with only one dynam-
ical boundary control moment η, i.e., when a = 1, b = 0 and η solution of (1.5).
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Using an explicit approximation of the characteristic equation, we give the asymp-
totic behavior of eigenvalues and eigenfunctions of the associated undamped system
with the help of Rouché’s theorem. Then to prove the polynomial energy decay,
we apply a methodology introduced in [2]. This requires, on one hand, to establish
an observability inequality of solution of the undamped system and on the other
hand, to verify the boundedness property of the transfer function. This attend to

establish a polynomial energy decay rate of type
1

t
for smooth initial data. Finally,

using a frequency domain approach, we prove that the obtained energy decay rate is

optimal in the sense that for any ε > 0, we cannot expect a decay rate of type
1

t1+ε
.

Next, we consider the Rayleigh beam equation (1.1)-(1.4) with only one dynam-
ical boundary control force, i.e., when a = 0, b = 1 and ξ solution of (1.6). Here
we prefer to use a Riesz basis approach. First, as before we give the asymptotic
expansion of the eigenvalues and the eigenfunctions of the damped and undamped
systems. Next, we show that the system of eigenvectors of high frequencies of the
damped problem is quadratically closed to the system of eigenvectors of high fre-
quencies of the undamped problem. This yields, from [9, Theorem 6.3] and [1,
Theorem 1.2.10] that the system of generalized eigenvectors of the damped prob-
lem forms a Riesz basis of the energy space. Finally, using [14, Theorem 2.1]) we

establish the optimal energy decay rate of polynomial type
1√
t
.

The stabilization of the Rayleigh beam equation retains the attention of many
authors. In this regard, different types of dampings have been introduced to the
Rayleigh beam equation and several uniform and polynomial stability results have
been obtained. Rao [16] studied the stabilization of Rayleigh beam equation sub-
ject to a positive internal viscous damping. Using a constructive approximation,
he established the optimal exponential energy decay rate. In [12], Lagnese studied
the stabilization of system (1.1)-(1.4) with two static boundary controls (the case
a > 0, b > 0, η(t) = yxt(1, t) and ξ(t) = yt(1, t)). He proved that the energy decays
exponentially to zero for all initial data. Rao in [16] extended the results of [12]
to the case of one boundary feedback (the case a > 0, b = 0 and η(t) = yxt(1, t)
or a = 0, b > 0 and ξ(t) = yt(1, t)). In the case of one control moment (the case
a > 0, b = 0 and η(t) = yxt(1, t)), using a compact perturbation theory due to
Gibson [8], he established an exponential stability of system (1.1)-(1.4). Moreover,
in the case of one control force (a = 0, b > 0 and ξ(t) = yt(1, t)), he first proved
the lack of exponential stability of the system (1.1)-(1.4). Next, he proved that the
Rayleigh beam equation can be strongly stabilized by only one control force if and
only if the inertia coefficient γ is large enough but he did not studied the decay
rate of the energy of the system. In [3], Bassam and al. studied the decay rate
of energy of system (1.1)-(1.4) with a = 0, b > 0 and ξ(t) = yt(1, t). First, using
an explicit approximation, they gave the asymptotic expansion of eigenvalues and
eigenfunctions of the undamped system corresponding to (1.1)-(1.4), then they es-
tablished the optimal polynomial energy decay rate via an observability inequality
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of solution of the undamped system and the boundedness of the transfer function
associated with the undamped problem.

Let us briefly outline the content of this paper. Section 2 considers the Rayleigh
beam equation with only one dynamical boundary control moment and is divided
into four subsections. In subsection 2.1, we formulate the system into an evo-
lution equation and we recall the well-posedness property of the problem by the
semi-group approach (see [15], [16] and [21]). In subsection 2.2, we propose an
explicit approximation of the characteristic equation determining the eigenvalues
of the corresponding undamped system. Then, we give an asymptotic expansion
of eigenvalues and eigenfunctions of the corresponding operator. In subsection 2.3,
we establish a polynomial energy decay rate for smooth initial data. In subsection
2.4, we prove that the obtained energy decay rate is optimal. Section 3 considers
the Rayleigh beam equation with only one dynamical boundary control force and
is divided into 2 subsections. As before our system can be transformed into an
evolution equation and we deduce the well-posedness property of the problem by
the semi-group approach. We recall the condition to reach the strong stability of
our system (see [16]). In subsection 3.1, we proposed also an explicit approxi-
mation of the characteristic equation determining the eigenvalues of the damped
and undamped system. Then, we give an asymptotic expansion of eigenvalues and
eigenfunctions of the corresponding operators. In subsection 3.2, we show that the
system of eigenvectors of the damped problem forms a Riesz basis and we establish

the optimal polynomial energy decay rate of type
1√
t
.

2. Rayleigh beam equation with only one dynamical control moment

In this section, we consider the Rayleigh beam equation with only one dynamical
boundary control moment:





ytt − γyxxtt + yxxxx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = 0, t > 0,
yxx(1, t) + η(t) = 0, t > 0,

yxxx(1, t)− γyxtt(1, t) = 0, t > 0,
ηt(t)− yxt(1, t) + αη(t) = 0, t > 0.

(2.1)

Let y and η be smooth solutions of system (2.1), we define their associated energy
by:

E(t) =
1

2

(∫ 1

0

(|yt|2 + γ|yxt|2 + |yxx|2)dx + |η(t)|2
)
. (2.2)

A direct computation gives

d

dt
E(t) = −α|η(t)|2 ≤ 0. (2.3)

Thus the system (2.1) is dissipative in the sense that the energy E(t) is a nonin-
creasing function of the time variable t.
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2.1. Well-posedness and strong stability of the problem

In this subsection, we will study the existence, uniqueness and the asymptotic
behavior of the solution of system (2.1). We start our study by formulating the
problem in an appropriate Hilbert space. We first introduce the following spaces:

V =
{
y ∈ H1(0, 1); y(0) = 0

}
, ‖y‖2V =

∫ 1

0

(|y|2 + γ|yx|2)dx, (2.4)

W =
{
y ∈ H2(0, 1); y(0) = yx(0) = 0

}
, ‖y‖2W =

∫ 1

0

|yxx|2dx, (2.5)

and the energy space
H = W × V × C (2.6)

endowed with the usual inner product

((y1, z1, η1), (y2, z2, η2))H = (y1, y2)W + (z1, z2)V + η1η2,

∀(y1, z1, η1), (y2, z2, η2) ∈ H.

Identify L2(0, 1) with its dual so that we have the following continuous embedding

W ⊂ V ⊂ L2(0, 1) ⊂ V ′ ⊂ W ′. (2.7)

Let y and η be smooth solutions of system (2.1). Then, multiplying the first
equation of the system (2.1) by Φ ∈ W and integrating by parts yields

∫ 1

0

(yttΦ + γyxttΦx)dx+

∫ 1

0

yxxΦxxdx+ ηΦx(1) = 0. (2.8)

Now we define the following linear operators A ∈ L(W,W ′), B ∈ L(C,W ′) and
C ∈ L(V, V ′) by:

< Ay,Φ >W ′×W= (y,Φ)W , ∀y,Φ ∈ W, (2.9)

< Bη,Φ >W ′×W= ηΦx(1), ∀η ∈ C, ∀Φ ∈ W (2.10)

and
< Cy,Φ >V ′×V = (y,Φ)V , ∀y,Φ ∈ V. (2.11)

Then, by means of Lax-Milgram theorem (see [6]), we see that A (resp C) is the
canonical isomorphism from W into W ′ (resp from V into V ′). On the other
hand, using the usual trace theorems and Poincaré inequality, we easily check that
the operator B is continuous for the corresponding topology. Therefore, using
the operators A, B and C and the continuous embedding (2.7), we formulate the
variational equation (2.8) as:

Cytt +Ay +Bη = 0 in W ′.
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Assume that Ay +Bη ∈ V ′, then we obtain:

ytt + C−1(Ay +Bη) = 0 in V. (2.12)

Next we introduce the linear unbounded operator A0 by

D(A0) = {(y, z, η) ∈ H; z ∈ W and Ay +Bη ∈ V ′} , (2.13)

A0u =




−z

C−1(Ay +Bη)
−zx(1)


 , ∀u = (y, z, η) ∈ D(A0) (2.14)

and the linear bounded operator B as follows

Bu =



0
0
η


 , ∀u = (y, z, η) ∈ H. (2.15)

Then, denoting u = (y, yt, η) the state of system (2.1) and define Aα = A0 + αB

with D(Aα) = D(A0), we can formulate the system (2.1) into a first-order evolution
equation {

ut(t) +Aαu(t) = 0,
u(0) = u0 ∈ H.

(2.16)

It is easy to show that −A0 is m-dissipative and −B is dissipative in the energy
space H. Therefore the operator −Aα generates a C0-semigroup (e−tAα)t≥0 of
contractions in the energy space H following Hille-Yosida’s theorem (see [15]).
Hence, we have the following results concerning the existence and uniqueness of
the solution of the problem (2.16):

Theorem 2.1. For any initial data u0 ∈ H, the problem (2.16) has a unique
weak solution u(t) = e−tAαu0 such that u ∈ C0 ([0,∞[,H). Moreover, if u0 ∈
D(A0), then the problem (2.16) has a strong solution u(t) = e−tAαu0 such that
u ∈ C1 ([0,∞[,H) ∩ C0 ([0,∞[, D(A0)). ✷

Moreover, we characterize the space D(A0) by the following proposition.

Proposition 2.2. Let u = (y, z, η) ∈ H. Then u ∈ D(A0) if and only if the
following conditions hold: 



y ∈ W ∩H3(0, 1),

z ∈ W,

yxx(1) + η = 0.
(2.17)

In particular, the resolvent (I +A0)
−1 of −A0 is compact on the energy space H

and the solution of the system (2.1) satisfies

y(t) ∈ C0([0,∞[, H3(0, 1) ∩W ) ∩ C1([0,∞[,W ) ∩ C2([0,∞[, V ). (2.18)

✷
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The proof is same as in Rao [16, Proposition 2.3] (see also Wehbe [21]) so we omit
the details here.
Now we investigate the strong stability of the problem (2.16) by the following
theorem:

Theorem 2.3. For any γ > 0, the semigroup of contractions e−tAα is strongly
asymptotically stable on the energy space H, i.e. for any u0 ∈ H, we have

lim
t→+∞

‖e−tAαu0‖2H = 0. (2.19)

Proof: The proof is same as in Rao [16, Theorem 3.1], it is based on the spectral
decomposition theory of Sz-Nagy-Foias [19], Foguel [7] and Benchimol [4]. In order
to prove (2.19), it is sufficient to show that there is no spectrum in imaginary axis.
We omit the details here. ✷

Further, since A0 is skew adjoint operator and B is compact, then using a com-
pact perturbation method of Russel [17], we deduce that the system (2.16) is not
uniformly stable (see Rao [16], and Wehbe [21]).

2.2. Polynomial Stability for smooth initial data

Our main result in this subsection is the following polynomial-type decay estimate:

Theorem 2.4. (Polynomial energy decay rate)
Let γ > 0. For all initial U0 ∈ D(A0), there exists a constant c > 0 independent of
U0, such that the solution of the problem (2.16) satisfies the following estimate:

E(t) ≤ c

1 + t
‖U0‖2D(A0)

, ∀t > 0. (2.20)

✷

For this aim, we need first to analyze the spectrum of the operator A0. Next, We
will apply a method introduced by Ammari and Tucsnak in [2], where the polyno-
mial stability for the damped problem is reduced to an observability inequality of
the corresponding undamped problem (via the spectral analysis), combined with
the boundedness property of the transfer function of the associated undamped
system.

2.2.1. Spectral analysis of the operator A0.
Since A0 is closed with a compact resolvent, its spectrum σ(A0) consists entirely
of isolated eigenvalues with finite multiplicities (see [11]). Moreover, as the coeffi-
cients of A0 are real then the eigenvalues appear by conjugate pairs. Further, the
eigenvalues of A0 are on the imaginary axis.

Proposition 2.5. Let λ be an eigenvalue of A0 and let U = (y, z, η) ∈ D(A0), U 6=
0, an associated eigenvector. Then λ is simple and we have η 6= 0.
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Proof: First, a straightforward computation shows that 0 ∈ σ(A0) and is simple.

An associated eigenvector being (−x2

2
, 0, 1), thus its last component η = 1 does

not vanish.
Next, let λ = iµ ∈ σ(A0), µ ∈ R∗ and U = (y, z, η) an associated eigenvector.
Assume that η = 0. Using equation (2.15), we get that BU = 0. Thus, we obtain

AαU = (A0 + αB)U = A0U = iµU. (2.21)

Therefore λ = iµ is also an eigenvalue of Aα and it is a contradiction with Theorem
2.3 since γ > 0.
Later, assume that there exists λ ∈ σ(A0) such that λ is not simple. As A0 is a skew-
adjoint operator we deduce that there correspond at least two independent eigenvec-
tors U1 = (y1, z1, η1) and U2 = (y2, z2, η2). Then, U3 = η2U1 − η1U2 = (y3, z3, η3)
is also an eigenvector associated with λ with η3 = 0, hence the contradiction with
the first part of the proof. ✷

Now, in order to get a better knowledge of the spectrum we compute the character-
istic equation. Thus let λ = iµ, µ ∈ R∗, be an eigenvalue of A0 and U = (y, z, η) ∈
D(A0) be an associated eigenfunction. Then we have





z = −iµy,

Ay +Bη = iµCz,

zx(1) = −iµη.

(2.22)

Then, using (2.9)-(2.11) we interpret (2.22) as the following variational equation

∫ 1

0

yxxΦxxdx− µ2

∫ 1

0

(
yΦ+ γyxΦx

)
dx+ yx(1)Φx(1) = 0, ∀Φ ∈ W.

Equivalently, the function y is determined by the following system:





yxxxx + γµ2yxx − µ2y = 0,
y(0) = yx(0) = 0,
yxx(1) + yx(1) = 0,

yxxx(1) + γµ2yx(1) = 0.

(2.23)

We have found that λ = iµ 6= 0 is an eigenvalue of A0 if and only if there is a
non trivial solution of (2.23). The general solution of the first equation of (2.23)
is given by

y(x) =

4∑

i=1

cie
ri(µ)x, (2.24)

where

r1(µ) =

√
−γµ2 + µ

√
γ2µ2 + 4

2
, r2(µ) = −r1(µ), (2.25)
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r3(µ) =

√
−γµ2 − µ

√
γ2µ2 + 4

2
, r4(µ) = −r3(µ).

Here and below, for simplicity we denote ri(µ) by ri. Thus the boundary conditions
in (2.23) may be written as the following system:

M(µ)C(µ) =




1 1 1 1
r1 r2 r3 r4

g1(µ) g2(µ) g3(µ) g4(µ)
h1(µ) h2(µ) h3(µ) h4(µ)







c1
c2
c3
c4


 = 0, (2.26)

where gi(µ) = ri
(
r2i + γµ2

)
eri and hi(µ) = ri (ri + 1) eri . Consequently (2.23)

admits a non-trivial solution if and only if f(µ) := detM(µ) = 0. Finally, we have
found that λ = iµ is an eigenvalue of A0 if and only if µ satisfies the characteristic
equation f(µ) = 0.

Proposition 2.6. (Spectrum of A0)
There exists k0 ∈ N∗, sufficiently large, such that the spectrum σ(A0) of A0 is given
by:

σ(A0) = σ0 ∪ σ1, (2.27)

where

σ0 =
{
iκ0

j

}
j∈J0

, σ1 =
{
λ0
k = iµk

}
k∈Z

|k|≥k0

, σ0 ∩ σ1 = ∅, (2.28)

J0 is a finite set and κ0
j , µk ∈ R. Moreover, µk satisfies the following asymptotic

behavior:

µk = αk −
F1

F0

1

kπ
+O(

1

k2
), |k| → ∞ (2.29)

where

αk =
kπ√
γ
+

π

2
√
γ
, (2.30)

F0 = 2γ
3
2 cosh(

1√
γ
) and F1 = (1− 2γ) cosh(

1√
γ
) + 2

√
γ sinh(

1√
γ
). (2.31)

Proof: The proof is decomposed into two steps.
Step 1. First, we start by the expansion of r1 and r3 when |µ| → ∞. After some
computations we find

r1 =
1√
γ
+O(

1

µ2
) (2.32)

and

r3 = i
√
γµ+ i

1

2γ
3
2µ

+O(
1

µ3
). (2.33)
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This gives

r21e
r1 =

e
1√
γ

√
γ

+O(
1

µ2
), (2.34)

r22e
r2 =

e
− 1√

γ

√
γ

+O(
1

µ2
), (2.35)

r23e
r3 = −γei

√
γµµ2 +O(1) (2.36)

and

r24e
r4 = −γe−i

√
γµµ2 +O(1). (2.37)

Next, using (2.32)-(2.37), we find the asymptotic behavior of

g1(µ) =
√
γe

1√
γ µ2 +O(1), (2.38)

g2(µ) = −√
γe

− 1√
γ µ2 +O(1), (2.39)

g3(µ) = − iei
√
γµµ√
γ

+O(
1

µ
) (2.40)

and

g4(µ) =
ie−i

√
γµµ√
γ

+O(
1

µ
). (2.41)

Similarly, we get

h1(µ) =

(
1√
γ
+ 1

)
e

1√
γ

√
γ

+O(
1

µ
), (2.42)

h2(µ) =

(
1√
γ
− 1

)
e
− 1√

γ

√
γ

+O(
1

µ
), (2.43)

h3(µ) =

(
−γµ2 + i(

√
γ − 1

2
√
γ
)µ

)
ei

√
γµ +O(1) (2.44)

and

h4(µ) =

(
−γµ2 + i(

1

2
√
γ
−√

γ)µ

)
e−i

√
γµ +O(1). (2.45)
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Now, using (2.26) and (2.32)-(2.45), we can write M(µ) as follows

M(µ)=




1 1 1 1

1√
γ
+O(

1

µ2
) − 1√

γ
+O(

1

µ2
) P1+O(

1

µ2
) P2+O(

1

µ3
)

√
γe

1√
γ µ2+O(1) −√

γe
− 1√

γ µ2+O(1) − iei
√

γµµ√
γ

+O(
1

µ
)

ie−i
√

γµµ√
γ

+O(
1

µ
)

P3e
1√
γ +O(

1

µ
) P4e

− 1√
γ +O(

1

µ
) P5e

i
√

γµ+O(1) P6e
−i

√
γµ+O(µ)




,

(2.46)

where

P1 = i
√
γµ+ i

1

2γ
3
2µ

, P2 = −i
√
γµ− i

1

2γ
3
2µ

, P3 =
1

γ
+

1√
γ
, P4 =

1

γ
− 1√

γ
,

P5 = −γµ2 + i(
√
γ − 1

2
√
γ
)µ and P6 = −γµ2 + i(

1

2
√
γ
−√

γ)µ.

Again after some computations, we find the following asymptotic development of
f(µ) = det(M(µ))

f(µ) = µ5f0(µ) + µ4f1(µ) +O(µ3),

where

f0(µ) = −2iF0
√
γ cos(

√
γµ), and f1(µ) = 2i

√
γF1 sin(

√
γµ). (2.47)

For convenience we set

S(µ) =
f(µ)

µ5
= f0(µ) +

f1(µ)

µ
+O(

1

µ2
), (2.48)

that has the same root as f , except 0. Step 2. We look at the roots of S. Is is
easy to see that the roots of f0 are given by:

αk =
kπ√
γ
+

π

2
√
γ
, k ∈ Z.

Then, with the help of Rouché’s theorem, there exists k0 ∈ N∗ large enough, such
that for all |k| ≥ k0 the large roots of S (denoted by µk) are close to αk. More
precisely, there exists k0 ∈ N∗ large enough, such that the splitting of σ(A0) given
in (2.27)-(2.28) holds and we have

µk = αk + o(1) =
kπ√
γ
+

π

2
√
γ
+ o(1), |k| → ∞. (2.49)

Equivalently we can write

µk =
kπ√
γ
+

π

2
√
γ
+ lk, lim

|k|→∞
lk = 0. (2.50)
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It follows that

cos(
√
γµk) = −(−1)k sin(

√
γlk) = −(−1)k

√
γlk + o(l2k) (2.51)

and

sin(
√
γµk) = (−1)k cos(

√
γlk) = (−1)k(1−

√
γl2k
2

) + o(l2k). (2.52)

Using (2.50), (2.51) and (2.52) then from (2.48) we have

0 = S(µk) = 2i
√
γ(−1)k(F0

√
γlk +

F1

kπ
) + o(l2k) +O(

1

k2
),

which implies

lk = −F1

F0

1

kπ
+O(

1

k2
). (2.53)

Inserting the previous identity in (2.50) we directly get (2.29). ✷

Eigenvectors of A0. According the decomposition of the spectrum σ(A0) of A0,
a set of eigenvectors associated with σ(A0) is given as follows:

{
Φj = (yj , zj, ηj) ∈ D(A0)

}
j∈J0

⋃
{Uk = (yk, zk, ηk) ∈ D(A0)} k∈Z

|k|≥k0

, (2.54)

where

Φj =




yj
−iκ0

jyj
yj,x(1)


 and Uk =




yk
−iµkyk
yk,x(1)


 . (2.55)

Now, for |k| ≥ k0 and µ = µk, we give a solution up to a factor of problem (2.23)
and some appropriated asymptotic behavior.

Proposition 2.7. Let |k| ≥ k0. Then, a solution yk of the undamped initial value
problem (2.23) with µ = µk satisfies the following estimations:

yk,x(1) = −(−1)kkπ +O(1) 6= 0, ‖yk‖W ∼ |k|2 and ‖yk‖V ∼ |k|, |k| → ∞.

(2.56)
Moreover we deduce

‖Uk‖H ∼ |k|2, |k| → ∞. (2.57)

Proof: For µ = µk, |k| ≥ k0, solving (2.23) amounts to find a solution C(µk) 6= 0
of the system (2.26) of rank three. For clarity, we divide the proof into two steps.
Step 1. Estimate of yk,x(1). For simplicity of notation we write C(µk) =
(c1, c2, c3, c4). Since we search C(µk) up to a factor we choose c3 = 1, the possibility
of this choice will be justify later. Therefore (2.26) becomes





c1 + c2 + c4 = −1
r1c1 + r2c2 + r4c4 = −r3

r1(r1 + 1)er1c1 + r2(r2 + 1)er2c2 + r4(r4 + 1)er4c4 = −r3(r3 + 1)er3.
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Next, using Cramer’s rule, we obtain

c1 =
α1

α3
, c2 =

α2

α3
, c4 =

α4

α3
, (2.58)

where

α1 = 2r1r3(1 − r1)e
−r1 + r3(r

2
3 − r1)(e

r3 + e−r3) + r23(1− r1)(e
r3 − e−r3), (2.59)

α2 = 2r1r3(1 + r1)e
r1 − r3(r

2
3 + r1)(e

r3 + e−r3)− r23(1 + r1)(e
r3 − e−r3), (2.60)

α3 = 2r1r3(1 − r3)e
−r3 + r1(r

2
1 − r3)(e

r1 + e−r1) + r21(1− r3)(e
r1 − e−r1), (2.61)

and

α4 = 2r1r3(1 + r3)e
r3 − r1(r

2
1 + r3)(e

r1 + e−r1)− r21(1 + r3)(e
r1 − e−r1). (2.62)

First we study the behavior of α1. Inserting (2.32) and (2.33) (with µ = µk) in
(2.59) we find after some computations

α1 = −2iγ3/2 cos(
√
γµk)µ

3
k + i(1 + 2

√
γ + 2γ) sin(

√
γµk)µ

2
k +O(µk). (2.63)

Now inserting (2.53) in (2.51) and (2.52) we have

cos(
√
γµk) = (−1)k

F1
√
γ

F0kπ
+O(

1

k2
) and sin(

√
γµk) = (−1)k +O(

1

k2
). (2.64)

Inserting (2.29) and (2.64) in (2.63) we find again after some computations

α1 = −i(−1)k
(
2F1γ

3/2 + F0

(
−1− 2

√
γ + 2γ

))
π2

F0γ
k2 +O(k) (2.65)

= −2i(−1)k
π2
(
tanh

(
1√
γ

)
− 1
)

√
γ

k2 +O(k).

Similarly long computations left to the reader yields

α2 = 2i(−1)k
π2
(
tanh

(
1√
γ

)
+ 1
)

√
γ

k2 +O(k), (2.66)

α3 = −2i(−1)k
π2

√
γ
k2 +O(k) (2.67)

and

α4 = −2i(−1)k
π2

√
γ
k2 +O(k). (2.68)
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Remark that α3 6= 0 provided we have chosen k0 large enough; for this reason our
choice c3 = 1 is valid. Substituting (2.65)-(2.68) into (2.58), we obtain

c1 = tanh(
1√
γ
)− 1+O(

1

k
), c2 = − tanh(

1√
γ
)− 1+O(

1

k
), c3 = 1, c4 = 1+O(

1

k
).

(2.69)
Finally we have found that a solution (2.26) has the form:

C(µk) = C0 +O(
1

|µk|
), (2.70)

where

C0 = (−1 + tanh(
1√
γ
), −1− tanh(

1√
γ
), 1, 1).

Note that the corresponding solution yk of (2.23) is given by (2.24). From equation
(2.24), we have

yk,x(1) = r1c1e
r1 + r2c2e

r2 + r3c3e
r3 + r4c4e

r4 , (2.71)

where we recall that for i = 1, ..., 4, ri = ri(µk) are given by (2.25) and ci, i =
1, ..., 4, satisfy (2.69). Therefore using the series expansion (2.29), (2.32), (2.33)
and (2.69) we easily find

yk,x(1) = −(−1)k2kπ +O(1) 6= 0. (2.72)

Step 2. Estimates of ‖yk‖W and ‖yk‖V . We start with

‖yk‖2W =

∫ 1

0

|yk,xx|2dx =

4∑

i=1

4∑

j=1

cir
2
i

(∫ 1

0

erixerjxdx

)
cjr

2
j = CkGkCk

T
(2.73)

where

Gk =

(∫ 1

0

e(ri+rj)xdx

)

1≤i,j≤4

and Ck = (cir
2
i )i=1,...4.

First, since r2 = −r1 ∈ R (for |k| large enough) and r3 = −r4 ∈ iR, we directly
find

∫ 1

0

e(r1+r2)xdx =

∫ 1

0

e(r2+r1)xdx =

∫ 1

0

e(r3+r3)xdx =

∫ 1

0

e(r4+r4)x = 1. (2.74)

In addition using the identity
∫ 1

0
erxdx =

er

r
− 1

r
for r 6= 0 and the asymptotic

behavior (2.32)-(2.33) we find that

Gk = G0 +O(
1

k
), (2.75)
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where

G0 =




√
γ

2
(e

2√
γ − 1) 1 0 0

1

√
γ

2
(1− e

− 2√
γ ) 0 0

0 0 1 0
0 0 0 1




, (2.76)

and O(
1

k
) is a matrix where all the entries are of order

1

k
. Next, using (2.32),

(2.33) and (2.69), we obtain

Ck = (0, 0,−γµ2
k,−γµ2

k) +O(1). (2.77)

Finally inserting (2.75) and (2.77) in (2.73) we deduce that

‖yk‖2W = γ2|µk|4 +O(|µk|3) ∼ |k|4, |k| → ∞. (2.78)

Similarly, we easily prove that
∫ 1

0

|yk|2dx ∼ 1,

∫ 1

0

|yk,x|2dx ∼ |µk|2 ∼ |k|2, |k| → ∞.

Therefore, we deduce that

‖yk‖V ∼ |k|, |k| → ∞. (2.79)

Moreover, using the estimations (2.72), (2.78) and (2.79) then from (2.55) we de-
duce

‖Uk‖H ∼ |k|2, |k| → ∞.

This completes the proof. ✷

2.2.2. Observability inequality and boundedness of the transfer func-

tion.

First, since B is a self-ajdoint operator and BB∗ = B, we rewrite the problem
(2.16) as follows

{
Ut(t) + (A0 + αBB∗)U(t) = 0,

U(0) = U0 ∈ H.
(2.80)

We will establish an observability inequality for the undamped problem correspond-
ing to (2.80) in following Lemma:

Lemma 2.8. Let γ > 0. There exist T > 0 and CT > 0 such that the solution U

of the problem {
Ut(t) +A0U(t) = 0,

U(0) = U0
(2.81)

satisfies the following observability inequality
∫ T

0

‖B∗U(t)‖2Hdt ≥ CT ‖U0‖2(D(A0))
′ (2.82)

where (D(A0))
′
is the dual of D(A0) with respect to the scalar product in H.
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Proof: Let U0 ∈ D(A0), then we can write

U0 =
∑

j∈J0

U
j
0 Φ̃j +

∑

|k|≥k0

Uk
0 Ũk (2.83)

where
{
Φ̃j

}
j∈J0

⋃{
Ũk

}
k∈Z

|k|≥K0

denotes the set of normalized eigenvectors of A0

such that

Φ̃j = (ỹj, z̃j , η̃j) =
1

‖Φj‖H
Φj , ∀j ∈ J0 (2.84)

and

Ũk = (ỹk, z̃k, η̃k) =
1

‖Uk‖H
Uk, ∀|k| ≥ k0. (2.85)

From (2.83) we obtain

U(t) =
∑

j∈J0

U
j
0e

iκjtΦ̃j +
∑

|k|≥k0

Uk
0 e

iµktŨk. (2.86)

Consequently, we have

η(t) = yx(1, t) = −
∑

j∈J0

U
j
0e

iκjtỹj,x(1)−
∑

|k|≥k0

Uk
0 e

iµktỹk,x(1), ∀t > 0.

The spectral gap is satisfied by the eigenvalues of A0 because they are simple and
for k large enough, we have µk+1 − µk ≥ π

4
√
γ , in other words, there exists d > 0,

such that
min

λ,λ
′∈σ(A0)

λ6=λ
′

|λ− λ
′ | ≥ d > 0.

Thus, using Ingham’s inequality (see [10]), we deduce that there exist T > 0 and
cT > 0 such that

∫ T

0

‖B∗U(t)‖2Hdt =

∫ T

0

|η(t)|2dt (2.87)

=

∫ T

0

|yx(1, t)|2dt

≥ cT


∑

j∈J0

|U j
0 |2|ỹj,x(1)|2 +

∑

|k|≥k0

|Uk
0 |2|ỹk,x(1)|2


 .

On the other hand, using (2.56)-(2.57) and (2.85) we get

∑

|k|≥k0

|Uk
0 |2|ỹk,x(1)|2 ∼

∑

|k|≥k0

|Uk
0 |2

|k|2 . (2.88)
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Therefore, we deduce from (2.87), Proposition 2.5 and (2.29) that:

∫ T

0

‖B∗U(t)‖2Hdt ≥ cT


∑

j∈J0

|U j
0 |2|ỹj,x(1)|2 +

∑

|k|≥k0

|Uk
0 |2|

1

|k|2


 ∼ cT ‖U0‖2D(A0)

′ .

The proof of lemma is completed. ✷

Next, we introduce the transfer function H :

H : C+ = {λ ∈ C; ℜ (λ) > 0} −→ L(C) : λ −→ H(λ) = −αB∗(λ +A0)
−1

B.

(2.89)
Let ω > 0, we define the set Cω = {λ ∈ C; ℜ (λ) = ω}.

Lemma 2.9. (Boundedness of H on Cω)
The transfer function H defined in (2.89) is bounded on Cω.

Proof: First, since A0 generate a C0-semigroup of contractions, we deduce (see
Corollary I.3.6 of [15]):

∃cω > 0, such that ‖(λ+A0)
−1‖H ≤ cω, ∀λ ∈ Cω .

Next, combining this estimate with the boundedness of the operators B and B∗,
we deduce the boundedness of the function H on Cω . ✷

Proof of the Theorem 2.4. The polynomial energy estimate (2.20) is obtained
by application of Theorem 2.4 in [2] on the first order problem with Y1 = D(A0),

X1 = (D(A0))
′
and θ =

1

2
.

2.3. Optimal polynomial decay rate

The aim of this subsection is to prove the following optimality result.

Theorem 2.10. (Optimal decay rate)
The energy decay rate (2.20) is optimal in the sense that for any ǫ > 0, we can not

expect the decay rate
1

t1+ǫ
for all initial data U0 ∈ D(A0).

✷

To prove this theorem, we need the asymptotic behavior of the eigenvalues of the
operator Aα. Let λ 6= α be an eigenvalue of Aα and U = (y, z, η) be an associated
eigenfunction, then we obtain AαU = λU . Equivalently, we have the following
system: 




yxxxx − γλ2yxx + λ2y = 0,
y(0) = yx(0) = 0,

yxxx(1)− γλ2yx(1) = 0,

yxx(1) +
λ

λ− α
yx(1) = 0.

(2.90)
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The general solution of the first equation of (2.90) is given by

y(x) =

4∑

i=1

c̃ie
Ri(λ)x, (2.91)

where

R1(λ) =

√
γλ2 − λ

√
γ2λ2 − 4

2
, R2(λ) = −R1(λ), (2.92)

R3(λ) =

√
γλ2 + λ

√
γ2λ2 − 4

2
, R4(λ) = −R3(λ).

Here and below, for simplicity we denote Ri(λ) by Ri. Thus the boundary condi-
tions in (2.90) may be written as the following system:

N(λ)C̃(λ) =




1 1 1 1
R1 R2 R3 R4

g̃1(λ) g̃2(λ) g̃3(λ) g̃4(λ)

h̃1(λ) h̃2(λ) h̃3(λ) h̃4(λ)







c̃1
c̃2
c̃3
c̃4


 = 0, (2.93)

where we have set g̃i(λ) = Ri

(
R2

i − γλ2
)
eRi and h̃i(λ) = Ri

(
Ri +

λ

λ− α

)
eRi ,

i = 1, .., 4. Since Aα is closed with a compact resolvent, its spectrum consists
entirely of isolated eigenvalues with finite multiplicities. Further as the coefficients
of Aα are real, the eigenvalues appear by conjugate pairs.

Proposition 2.11. There exists a positive constant c such that any eigenvalue λ

of Aα satisfies
0 < ℜ(λ) ≤ c.

Proof: Obviously, we already know that the real part of any eigenvalue of Aα is
positive, so we only have to prove that it is upper bounded.
Let λ 6= α be an eigenvalue of Aα and U = (y,−λy, yx(1)) an associated eigenvector
such that ‖U‖H = 1. Multiplying the first equation of the system (2.90) by y and
integrating by parts yields

‖y‖2W + λ2‖y‖2V +
λ

λ− α
|yx(1)|2 = 0. (2.94)

Next, set λ = u+ iv, u ∈ R
∗
+ and v ∈ R. A straightforward computation gives

λ

λ− α
=

u(u− α) + v2

(u − α)2 + v2
+ i

αv

(u− α)2 + v2
, (2.95)

then the imaginary part of the equation (2.94) gives

(
2u‖y‖2V − α

(u − α)2 + v2
|yx(1)|2

)
v = 0. (2.96)
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Assume that v 6= 0 then

|λ|2‖y‖2V = (u2 + v2)‖y‖2V =
α

2u

u2 + v2

(u− α)2 + v2
|yx(1)|2.

If u = ℜ(λ) is not bounded and since |yx(1)|2 ≤ ‖U‖2
H

= 1, it follows from the
previous identity that for u large

|λ|2‖y‖2V = O(
1

u
).

Consequently (2.94) implies

‖y‖2W + |yx(1)|2 = O(
1

u
),

then

‖U‖2H = ‖y‖2W + |λ|2‖y‖2V + |yx(1)|2 = O(
1

u
),

which is not possible. Therefore, for u large enough, we deduce from (2.96) that
ℑ(λ) = v = 0. Finally, taking the real part of the equation (2.92) with v = 0, we
obtain

‖y‖2W + u2‖y‖2V +
u

u− α
|yx(1)|2 = 0.

Hence the contradiction with ‖U‖2
H

= 1 if u is large enough. ✷

In the following proposition we study the spectrum of Aα:

Proposition 2.12. (Spectrum of Aα)
There exists k1 ∈ N∗ sufficiently large such that the spectrum σ(Aα) of Aα is given
by:

σ(Aα) = σ̃0 ∪ σ̃1, (2.97)

where

σ̃0 = {κj}j∈J , σ̃1 = {λk} k∈Z

|k|≥k0

, σ̃0 ∩ σ̃1 = ∅ (2.98)

and J is a finite set. Moreover, λk is simple and satisfies the following asymptotic
behavior

λk = i

(
kπ√
γ
+

π

2
√
γ
+

D

k
+

E

k2

)
+

α

π2k2
+ o(

1

k2
), (2.99)

where

D =
2γ − 1− 2

√
γ tanh(γ− 1

2 )

2γ
3
2 π

(2.100)

and

E =
2(−1)k

γ
3
2 cosh(γ− 1

2 )π2
+

4γ − 2−√
γ tanh(γ− 1

2 )

2γ
3
2 π

. (2.101)
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Proof: The proof is divided into three steps. Step 1 furnishes an asymptotic de-
velopment of the characteristic equation for large λ. Step 2 uses Rouché’s theorem
to localize high frequency eigenvalues. In step 3, we perform a limited development
stopped when a non zero real part appear.
Step 1. First, We start by the expansion of R1 and R3 when |λ| → ∞

R1 =
1√
γ
+

1

2γ
5
2λ2

+O(
1

λ4 ) (2.102)

and

R3 = λ
√
γ − 1

2λγ
3
2

+O(
1

λ3 ). (2.103)

Next, using (2.102) and (2.103), we find the asymptotic behavior of

g̃1(λ) =

(
−√

γλ2 − 1

2γ2
+

1

2γ
3
2

)
e

1√
γ +O(

1

λ
), (2.104)

g̃2(λ) =

(√
γλ2 − 1

2γ2
− 1

2γ
3
2

)
e
− 1√

γ +O(
1

λ
), (2.105)

g̃3(λ) =

(
− λ√

γ
+

1

2γ2

)
e
√
γλ +O(

1

λ
) (2.106)

and

g̃4(λ) =

(
λ√
γ
+

1

2γ2

)
e−

√
γλ +O(

1

λ
). (2.107)

Similarly, we get

h̃1(λ) =
1√
γ

(
1 +

1√
γ
+

α

λ

)
e

1√
γ +O(

1

λ2 ), (2.108)

h̃2(λ) =
1√
γ

(
−1 +

1√
γ
− α

λ

)
e
− 1√

γ +O(
1

λ2 ), (2.109)

h̃3(λ) =

(
γλ2 + (− 1

2
√
γ
+

√
γ)λ+

1− 12γ + 8γ2√γα

8γ2

)
e
√
γλ +O(

1

λ
) (2.110)

and

h̃4(λ) =

(
γλ2 + (

1

2
√
γ
−√

γ)λ+
1− 12γ − 8γ2√γα

8γ2

)
e−

√
γλ +O(

1

λ
). (2.111)

Combining (2.102)-(2.111) and (2.93), we can write the system (2.93) as follow:

N(λ)C̃(λ) = 0,
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where N(λ) is given by

N(λ)=




1 1 1 1

P̃1+O(
1

λ2 ) P̃2+O(
1

λ2 ) P̃3+O(
1

λ4 ) P̃4+O(
1

λ4 )

e
1√
γ P̃5+O(

1

λ
) e

− 1√
γ P̃6+O(

1

λ
) e

√
γλP̃7+O(

1

λ2
) e−

√
γλP̃8+O(

1

λ2
)

e
1√
γ P̃9+O(

1

λ
) e

− 1√
γ P̃10+O(

1

λ
) e

√
γλP̃11+O(

1

λ2
) e−

√
γλP̃12+O(

1

λ2
)




,

where

P̃1 =
1√
γ
+

1

2γ
5
2λ2

, P̃2 = − 1√
γ
− 1

2γ
5
2λ2

, P̃3 = λ
√
γ − 1

2λγ
3
2

,

P̃4 = −λ
√
γ +

1

2λγ
3
2

, P̃5 = −√
γλ2 − 1

2γ2
+

1

2γ
3
2

P̃6 =
√
γλ2 − 1

2γ2
− 1

2γ
3
2

,

P̃7 = − λ√
γ
+

1

2γ2
, P̃8 =

λ√
γ
+

1

2γ2
, P̃9 =

1√
γ

(
1 +

1√
γ
+

α

λ

)
,

P̃10 =
1√
γ

(
−1 +

1√
γ
− α

λ

)

P̃11 = γλ2 +

(
− 1

2
√
γ
+
√
γ

)
λ+

1

8γ2
− 3

2γ
+
√
γα

and

P̃12 = γλ2 +

(
1

2
√
γ
−√

γ

)
λ+

1

8γ2
− 3

2γ
−√

γα.

Then, after some computations, we find the following asymptotic development of
f̃(λ) = detN(λ)

f̃(λ) = λ5f̃0(λ) + λ4f̃1(λ) + λ3f̃2(λ) +O(λ2), (2.112)

where

f̃0(λ) = −4γ2 cosh(
1√
γ
) cosh(

√
γλ), (2.113)

f̃1(λ) = l1(γ) sinh(
√
γλ), (2.114)

where

l1(γ) = 2
√
γ

(
(1− 2γ) cosh(

1√
γ
) + 2

√
γ sinh(

1√
γ
)

)
(2.115)



152 D. Mercier, S. Nicaise, M. A. Sammoury and A. Wehbe

and

f̃2(λ) = 8− 4αγ
3
2 cosh(

1√
γ
) cosh(

√
γλ) + l2(γ) sinh(

√
γλ), (2.116)

where

l2(γ) = (10− 1

2γ
) cosh(

1√
γ
) + (4

√
γ − 4√

γ
) sinh(

1√
γ
). (2.117)

As the real part of λ is bounded, then the functions f̃i are bounded for i ∈ {0, 1, 2}.
For convenience we set

S̃(λ) =
f̃(λ)

λ5 = f̃0(λ) +
f̃1(λ)

λ
+

f̃2(λ)

λ2 +O(
1

λ3 ). (2.118)

Step 2. We look at the roots of S̃. It is easy to see that the roots of f̃0 are simple
and given by:

zk = iαk, k ∈ Z (2.119)

where αk is defined in (2.30). Then, with the help of Rouché’s theorem there exists
k1 large enough such that for all |k| ≥ k1 the large eigenvalues of σ(Aα) (denoted
by λk) are simple and close to zk. More precisely, there exists k1 ∈ N∗ large enough,
such that the splitting of σ(Aα) given in (2.97)-(2.98) holds and we have

λk = iαk + o(1), |k| → ∞. (2.120)

Equivalently, we can write

λk = iαk + ǫk, lim
|k|→∞

ǫk = 0. (2.121)

Step 3. Determination of ǫk. First, using (2.118) and the identities (2.113)-
(2.116) we have

0 = S̃(λk) = −4γ2 cosh(
1√
γ
) cosh(

√
γλk) +

l1(γ) sinh(
√
γλk)

λk
+

8

λ2
k

(2.122)

−
4αγ

3
2 cosh( 1√

γ ) cosh(
√
γλk)

λ2
k

+
l2(γ) sinh(

√
γλk)

λ2
k

+O(
1

λ3
k

).

On the other hand, using (2.121) we find

cosh(
√
γλk) = i(−1)k

√
γǫk +O(ǫ3k) (2.123)

and

sinh(
√
γλk) = i(−1)k +O(ǫ2k). (2.124)
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Then, substituting (2.123) into (2.113) and (2.124) into (2.114) yields

f̃0(λk) = −4iγ
5
2 (−1)k cosh(

1√
γ
)ǫk +O(ǫ3k) (2.125)

and

f̃1(λk) = i(−1)kl1(γ) +O(ǫ2k). (2.126)

Similarly, we get

f̃2(λk) = 8− 4iαγ
3
2 cosh(

1√
γ
) +

√
γi(−1)kl2(γ)ǫk +O(ǫ3k). (2.127)

Now, using (2.121), (2.126) and (2.127) we get

f̃1(λk)

λk
=

(−1)kl1(γ)

αk
+O(

ǫk

k
) (2.128)

and

f̃2(λk)

λ2
k

= − 8

α2
k

+

4αiγ
3
2 cosh(

1√
γ
)(−1)k

α2
k

+O(
ǫk

k
). (2.129)

Next, substituting (2.125), (2.128) and (2.129) into (2.122) yields

0 = −4iγ
5
2 (−1)k cosh(

1√
γ
)ǫk +

(−1)kl1(γ)

αk
− 8

α2
k

(2.130)

+

4αiγ
3
2 cosh(

1√
γ
)(−1)k

α2
k

+O(
ǫk

k
).

Therefore

ǫk = −
8
α2

k

− (−1)kl1(γ)
αk

4iγ
5
2 (−1)k cosh( 1√

γ )
+

α

γα2
k

+O(
ǫk

k
). (2.131)

Moreover, substituting (2.30) and (2.115) into (2.131) then a long computation
gives

ǫk = i

(
D

k
+

E

k2

)
+

α

π2k2
+ o(

1

k2
) (2.132)

where D and E are given in (2.100)-(2.101). Finally, substituting (2.132) into
(2.121), we directly get (2.99). ✷

Numerical validation. The asymptotic behavior of λk in (2.99) can be numeri-
cally validated. For instance, with α = 1 and γ = 2 then from (2.99) we have

lim
k→+∞

k2ℜ(λk) =
1

π2
(≈ 0.101321).
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The table below confirms this behavior.

k 100 150 200 250 300 350 400 450 500

k2ℜ(λk)0.1003120.1006470.1008160.1009170.1009840.1010320.1010680.1010960.101119

Figure 1: Eigenvalues of A1 with γ = 2

In addition, figure 1 represents some eigenvalues in this case. Note that for a scale
reason three eigenvalues (with a small imaginary part) do not appear in the previous
figure. Their approximated value are

0.13825 ± i1.30223, and 0.54640.

Proof of Theorem 2.10. Let ǫ > 0 and set l =
ǫ

1 + ǫ
. First, for |k| ≥ k1, let λk be an

eigenvalue of the operator Aα and Uk ∈ D(A0) the associated normalized eigenfunction.
Moreover, we introduce the following sequence

βk = −ℑ(λk), |k| ≥ k1.

Next, using (2.99), we have

(iIβk + Aα)Uk = (iIβk + λk)Uk

(
α

π2k2
+ o(

1

k2
)

)
Uk, ∀|k| ≥ k0.

Therefore

β
2−2l
k ‖(iβkI +Aα)Uk‖H ∼ α

π2
× 1

k
2ǫ

1+ǫ

, ∀|k| ≥ k0.
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Thus, we deduce
lim

k→+∞
β
2−2l
k ‖(iβkI +Aα)Uk‖H = 0.

Finally, thanks to Theorem 2.4 in [5], we deduce that the trajectory etAαU0 decays slower

that
1

t
1

2−2l

on the time t → +∞. Then we cannot expect the energy decay rate
1

t1+ǫ
.

✷

3. Rayleigh beam equation with only one dynamical boundary control

force

In this section, we consider the Rayleigh beam equation with only one dynamical boundary
control force:





ytt − γyxxtt + yxxxx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = 0, t > 0,

yxx(1, t) = 0, t > 0,
yxxx(1, t)− γyxtt(1, t)− ξ(t) = 0, t > 0,

ξt(t)− yt(1, t) + βξ(t) = 0, t > 0.

(3.1)

First, let y and ξ be smooth solutions of system (3.1). We define its associated energy by:

E(t) =
1

2

(∫ 1

0

(|yt|2 + γ|yxt|2 + |yxx|2)dx+ |ξ(t)|2
)
. (3.2)

A direct computation gives
d

dt
E(t) = −β|ξ(t)|2 ≤ 0,

Then the system (3.1) is dissipative in the sense that its energy E(t) is a nonincreasing
function of the time variable t. Let Φ ∈ W . Integrating by parts, we transform (3.1) into
a variational equation:

∫ 1

0

(yttΦ+ γyxttΦx)dx+

∫ 1

0

yxxΦxxdx+ ξΦ(1) = 0. (3.3)

According, we define the continuous operator B̃ as follows:

B̃ ∈ L(C, V ′), < B̃ξ, Φ >
V

′×V
= ξΦ(1), ∀ξ ∈ C, ∀Φ ∈ V. (3.4)

Assume that Ay ∈ V
′
, then we can formulate the variational equation (3.4) as:

ytt + C
−1

Ay +C
−1

B̃ξ = 0, (3.5)

where the operators A and C are defined in (2.9) and (2.11). Now define the energy space
H = W × V × C endowed with the usual inner product and where W and V are given
in (2.4) and (2.5). Next, we introduce the linear unbounded operator Ã0 and the linear

bounded operator B̃ as follows:

D(Ã0) =
{
(y, z, ξ) ∈ H; z ∈ W and Ay ∈ V

′}
, (3.6)

Ã0U =




−z

C−1Ay + C−1B̃ξ

−z(1)


 , U = (y, z, ξ) ∈ D(Ã0), (3.7)
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and

B̃U =



0
0
ξ


 , U = (y, z, ξ) ∈ H. (3.8)

Then, denoting by U = (y, yt, ξ) the state of the system (3.1) and define Ãβ = Ã0 + βB̃

with D(Ãβ) = D(Ã0), we can formulate the system into an evolution equation
{
Ut(t) + ÃβU(t) = 0,

U(0) = U0 ∈ H.
(3.9)

It is easy to prove that −Ãβ is a maximal dissipative operator in the energy space H,

therefore it generates a C0-semigroup (e−tÃβ )t≥0 of contractions in the energy space H

using Hille-Yosida’s theorem (see Pazy [15]). In addition, it is easy to show that an
element U = (y, z, ξ) ∈ D(Aβ) if and only if y ∈ H3(0, 1) ∩ W, z ∈ W and yxx(1) =
0. In particular, the resolvent (I + Aβ)

−1 of −Aβ is compact in the energy space H.

Consequently, the spectrum of Aβ (respectively A0) consists entirely of isolated eigenvalues
with finite multiplicities. Moreover, since the coefficients of Aβ (respectively A0 ) are real,
their eigenvalues appear by conjugate pairs.

Theorem 4.2 of [16] shows that the semi-group of contractions (e−tA)t≥0 is strongly
asymptotically stable in the energy space H, i.e. for any u0 ∈ H, we have lim

t→+∞
‖e−tA

u0‖2H =

0 if γ ≥ γ0 where
√
γ0 sinh

−1(
√
γ0π). Using a numerical program we find

γ0 ≃ 0.45001246517627713.

Moreover, from Theorem 4.3 of [16] there exists a infinite numbers of 0 < γ < γ0 such that
the operator Aβ has eigenvalues on the imaginary axis and therefore for which problem
(3.1) is not stable. Further, we know that the Rayleigh beam is not uniformly expo-
nentially stable neither with one boundary direct control force (see [16]) nor with two
dynamical boundary control (see [21]). Then, we look for a optimal polynomial energy
decay rate for smooth initial data.

3.1. Analysis of eigenvalues and eigenvectors of the operator Ãβ for β ≥ 0

In this subsection, we study the eigenvalues and the eigenvectors of the operator Ãβ for

β ≥ 0. First, let λ 6= β be an eigenvalue of the operator Ãβ and U = (y, z, ξ) be

an associated eigenfunction, then we have ÃβU = λU . Equivalently, λ and y verify the
following system: 





yxxxx − γλ2yxx + λ2y = 0,

yxxx(1)− γλ2yx(1)− λ

λ− β
y(1) = 0,

y(0) = yx(0) = yxx(1) = 0.

(3.10)

The general solution of the system (3.10) is

y =
4∑

i=1

ci(λ)e
Ri(λ)x, (3.11)

where Ri(λ), i = 1, .., 4 are given in (2.92). Next, using the boundary conditions, we may
write the system (3.10) as follows:

Mβ(λ) · C(λ) = 0, (3.12)



Optimal Energy Decay Rate of the Rayleigh Beam Equation 157

where

Mβ(λ) =




1 1 1 1
R1(λ) R2(λ) R3(λ) R4(λ)

R2
1(λ)e

R1(λ) R2
2(λ)e

R2(λ) R2
3(λ)e

R3(λ) R2
4(λ)e

R4(λ)

T1,β(λ) T2,β(λ) T3,β(λ) T4,β(λ)


 , (3.13)

C(λ) =




c1(λ)
c2(λ)
c3(λ)
c4(λ)




and where

Ti,β(λ) =

(
Ri(λ)

3 − γλ
2
Ri(λ)− λ

λ− β

)
e
Ri(λ).

Remark 3.1. First, like we did in Proposition 2.11, we find that the real part of any
eigenvalue λ of Ãβ is bounded, i.e.

∃c > 0, ∀λ ∈ σ(Ãβ), 0 < ℜ(λ) ≤ c.

Next, let λ0 be an eigenvalue of Ã0 and U0 = (y0, z0, ξ0) ∈ D(Ã0) an associated eigen-
vector. Then, like we did in Proposition 2.5, we can easily prove that λ0 is simple and
ξ0 6= 0.

✷

Next, we study the asymptotic behavior of the eigenvalues of the operators Ãβ in the
following proposition:

Proposition 3.2. (Spectrum of Ãβ)
Let β ≥ 0. Then there exists kβ ∈ N

∗ sufficiently large such that the spectrum σ(Aβ) of
Aβ is given by

σ(Aβ) = σβ,0 ∪ σβ,1, (3.14)

where

σβ,0 = {κβ,j}j∈Jβ
, σβ,1 = {λβ,k} k∈Z

|k|≥kβ

, σβ,0 ∩ σβ,1 = ∅, (3.15)

where Jβ is a finite set and λβ,k is simple and satisfies the following asymptotic behavior:

λβ,k = i


αk −

( 1
2
√

γ
+ tanh( 1√

γ
))

γ
3
2αk

+
2(−1)k

γ
5
2 cosh( 1√

γ
)α2

k

+
E

α3
k

+
F

α4
k


 (3.16)

+
β

π4 cosh( 1√
γ
)
× 1

k4
+ o(

1

k4
),
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with

αk =
kπ√
γ
+

π

2
√
γ
, (3.17)

E =
1

3γ
7
2

tanh(
1√
γ
)3 − 1

γ2

(
1 +

1

γ
+

1

2γ2

)
tanh(

1√
γ
)2 (3.18)

+
1

γ
7
2

tanh(
1√
γ
) +

1

γ2
+

1

γ4
,

F =
(−1)k

γ3 cosh( 1√
γ
)

[
(2 +

6

γ
+

1

γ2
) tanh(

1√
γ
)− (3.19)

1

γ
3
2

(1 + tanh(
1√
γ
)2)

]
.

Proof:

The proof uses the same strategy than the one from Proposition 2.12. For the sake
of completeness, we give the details. For simplicity, we denote Ri(λ) by Ri.
Step 1. First, using the expansions (2.102) and (2.103), we find the following asymptotic
behavior:

R
2
1e

R1 =

(
1

γ
+ (

1

2γ
7
2

+
1

γ3
)
1

λ2

)
e

1√
γ +O(

1

λ4 ), (3.20)

R
2
1e

R1 =

(
1

γ
+ (

1

2γ
7
2

+
1

γ3
)
1

λ2

)
e

1√
γ +O(

1

λ4
), (3.21)

R
2
3e

R3 =

(
γλ

2 − λ

2
√
γ
+

1

8γ2
− 1

γ
− (

1

8γ
5
2

+
1

48γ
7
2

)
1

λ

)
e
√
γλ +O(

1

λ2 ) (3.22)

and

R
2
4e

R4 =

(
γλ

2 +
λ

2
√
γ
+

1

8γ2
− 1

γ
+ (

1

8γ
5
2

+
1

48γ
7
2

)
1

λ

)
e
−√

γλ +O(
1

λ2
). (3.23)

Similarly, we get

Tβ,1(λ) =

(
−√

γλ
2 − 1

2γ2
+

1

2γ
3
2

− 1− β

λ

)
e

1√
γ +O(

1

λ2 ), (3.24)

Tβ,2(λ) =

(
√
γλ

2 − 1

2γ2
− 1

2γ
3
2

− 1− β

λ

)
e
− 1√

γ +O(
1

λ2 ), (3.25)

Tβ,3(λ) =

[
− λ√

γ
+

1

2γ2
− 1 +

(
1

2γ
3
2

− 1

2γ
5
2

− 1

8γ
7
2

− β

)
1

λ
(3.26)

+

(
−β

2 +
β

2γ
3
2

− 1

8γ3
+

7

8γ4
+

1

48γ5

)
1

λ2

]
e
√

γλ +O(
1

λ3 )
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and

Tβ,4(λ) =

[
λ√
γ
+

1

2γ2
− 1 +

(
− 1

2γ
3
2

+
1

2γ
5
2

+
1

8γ
7
2

− β

)
1

λ
(3.27)

+

(
−β

2 − β

2γ
3
2

− 1

8γ3
+

7

8γ4
+

1

48γ5

)
1

λ2

]
e
−√

γλ +O(
1

λ3 ).

Combining (2.102)-(2.103), (3.20)-(3.27) and (3.13), we can write

Mβ(λ)=




1 1 1 1

q1+O(
1

λ4 ) q2+O(
1

λ4 ) q3+O(
1

λ2 ) q4+O(
1

λ2 )

q5e
1√
γ +O(

1

λ4
) q6e

− 1√
γ +O(

1

λ4
) q7e

√
γλ+O(

1

λ2
) q8e

−√
γλ+O(

1

λ2
)

q9e
1√
γ +O(

1

λ2
) q10e

− 1√
γ +O(

1

λ2
) q11e

√
γλ+O(

1

λ3
) q12e

−√
γλ+O(

1

λ3
)




,

where

q1 =
1√
γ
+

1

2γ
5
2 λ

, q2 = − 1√
γ
− 1

2γ
5
2λ2

, q3 = λ
√
γ− 1

2λγ
3
2

, q4 = −λ
√
γ+

1

2λγ
3
2

,

q5 =
1

γ
+ (

1

2γ
7
2

+
1

γ3
)
1

λ2 , q6 =
1

γ
+ (− 1

2γ
7
2

+
1

γ3
)
1

λ2 ,

q7 = γλ2 − λ

2
√
γ
+

1

8γ2
− 1

γ
− (

1

8γ
5
2

+
1

48γ
7
2

)
1

λ
, q8 = γλ2 +

λ

2
√
γ
+

1

8γ2
− 1

γ
+

(
1

8γ
5
2

+
1

48γ
7
2

)
1

λ
,

q9 = −√
γλ2 − 1

2γ2
+

1

2γ
3
2

− 1− β

λ
, q10 =

√
γλ2 − 1

2γ2
− 1

2γ
3
2

− 1− β

λ
,

q11 = − λ√
γ
+

1

2γ2
− 1 +

(
1

2γ
3
2

− 1

2γ
5
2

− 1

8γ
7
2

− β

)
1

λ

+

(
−β2 +

β

2γ
3
2

− 1

8γ3
+

7

8γ4
+

1

48γ5

)
1

λ2

and

q12 =
λ√
γ
+

1

2γ2
− 1 +

(
− 1

2γ
3
2

+
1

2γ
5
2

+
1

8γ
7
2

− β

)
1

λ

+

(
−β2 +

β

2γ
3
2

− 1

8γ3
+

7

8γ4
+

1

48γ5

)
1

λ2 .
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Then, after long computations, we find the following asymptotic development of
fβ(λ) = det(Mβ(λ)):

fβ(λ) = λ5f0(λ) + λ4f1(λ) + λ3f2(λ) + λ2fβ,3(λ) + λfβ,4(λ) +O(1), (3.28)

where

f0(λ) = L0(γ) cosh(
√
γλ), L0(γ) = 4γ2 cosh(

1√
γ
), (3.29)

f1(λ) = L1(γ) sinh(
√
γλ), L1(γ) = −2

√
γ

(
cosh(

1√
γ
) + 2

√
γ sinh(

1√
γ
)

)
, (3.30)

f2(γ) = −8 + L2(γ) cosh(
√
γλ), (3.31)

L2(γ) =

(
1

2γ
− 8

)
cosh(

1√
γ
) +

(
4√
γ
+ 4γ

√
γ

)
sinh(

1√
γ
),

fβ,3(λ) = Lβ,3c(γ) cosh(
√
γλ) + L3s(γ) sinh(

√
γλ), (3.32)

Lβ,3c(γ) = 4βγ
3
2 sinh(

1√
γ
),

L3s(γ) = −
(
2 +

3

2γ2

)
sinh(

1√
γ
)−

(
1

12γ
5
2

+
1

2γ
√
γ
+ 4

√
γ

)
cosh(

1√
γ
), (3.33)

and
fβ,4(λ) = L4c(γ) cosh(

√
γλ) + Lβ,4s(γ) sinh(

√
γλ), (3.34)

L4c(γ) =

(
1

3γ
7
2

− 1

2γ
5
2

+
1

2γ
3
2

− 10√
γ

)
sinh(

1√
γ
) (3.35)

+

(
2

γ
+

13

2γ2
+

1

2γ3

)
cosh(

1√
γ
),

Lβ,4s(γ) = −4
√
γβ

(
cosh(

1√
γ
) +

1√
γ
sinh(

1√
γ
)

)
. (3.36)

Since the real part of λ is bounded, the functions fi, i ∈ {0, 1, 2, 3, 4} are bounded.
For convenience we set

Sβ(λ) =
fβ(λ)

λ5 = f0(λ) +
f1(λ)

λ
+

f2(λ)

λ2 +
fβ,3(λ)

λ3 +
fβ,4(λ)

λ4 +O(
1

λ5 ). (3.37)

Step 2. We look at the roots of Sβ . It is easy to see that the roots of f0 are simple
and given by:

zk = iαk = i

(
kπ√
γ
+

π

2
√
γ

)
.

Then, with the help of Rouché’s theorem, there exists kβ ∈ N∗ large enough, such
that ∀|k| ≥ kβ the large eigenvalues of Aβ (denoted by λβ,k) are simple and close
to zk, i.e.

λβ,k = iαk + oβ(1), |k| → ∞. (3.38)
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Equivalently we can write

λβ,k = iαk + ζβ,k, lim
|k|→∞

ζβ,k = 0. (3.39)

Step 3. Determination of ζβ,k. First, using (3.37) and the identities (3.29)-
(3.36) we have

0 = Sβ(λβ,k) =L0(γ) cosh(
√
γλβ,k) +

L1(γ) sinh(
√
γλβ,k)

λβ,k
(3.40)

+
−8 + L2(γ) cosh(

√
γλβ,k)

λ2
β,k

+
Lβ,3c(γ) cosh(

√
γλβ,k)

λ3
β,k

+
L3s(γ) sinh(

√
γλβ,k)

λ3
β,k

+
L4c(γ) cosh(

√
γλβ,k)

λ4
β,k

+
Lβ,4s(γ) sinh(

√
γλβ,k)

λ4
β,k

+O(
1

λ5
β,k

).

On the other hand, using (3.39) we obtain

cosh(
√
γλβ,k) = i(−1)k sinh(

√
γζβ,k) (3.41)

= i(−1)k


√

γζβ,k +
γ

√
γζ3β,k

9
+ o(ζ4β,k)


 ,

sinh(
√
γζβ,k) = i(−1)k cosh(

√
γζβ,k) (3.42)

= i(−1)k

(
1 +

γζ2β,k

2
+

γ2ζ4β,k

6
+ o(ζ4β,k)

)

and

1

λβ,k
=

1

iαk

(
1− ζβ,k

iαk
+ o(

ζ2β,k

α2
k

)

)
= − i

αk
+

ζβ,k

α2
k

+ o(
ζ2β,k

α2
k

). (3.43)

Similarly we get

1

λ2
β,k

= − 1

α2
k

− 2i
ζ2β,k

α3
k

+ o(
ζ2β,k

α2
k

), (3.44)

1

λ3
β,k

=
i

α3
k

− 3
ζβ,k

α4
k

+ o(
ζ2β,k

α2
k

) (3.45)

and

1

λ4
β,k

=
1

α4
k

+ 4i
ζβ,k

α5
k

+ o(
ζ2β,k

α2
k

). (3.46)
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Then, substituting (3.41)-(3.46) into (3.40) and after some computation yields

iL0(γ)
√
γζβ,k +

iγ
√
γL0(γ)

6
ζ3β,k +

L1(γ)

αk
+

iL1(γ)

α2
k

ζβ,k +
γL1(γ)

2αk
ζ2β,k+ (3.47)

8(−1)k

α2
k

+
16i(−1)k

α3
k

ζβ,k −
iL2(γ)

α2
k

ζβ,k −
√
γLβ,3c(γ)

α3
k

ζβ,k −
L3s(γ)

α3
k

+

iLβ,4s(γ)

α4
k

+ o(ζ4β,k) + o(
ζ2β,k

α2
k

) + o(
1

α4
k

) = 0.

Next, using (3.47) we find the first development of ζk,β given by

ζβ,k =
iL1(γ)√
γL0(γ)αk

+ eβ.1 (3.48)

where eβ,1 = Oβ(
1

α2
k

). Then, inserting (3.48) in (3.47) we obtain

eβ,1 =
8i(−1)k√
γL0(γ)α2

k

+ eβ,2 (3.49)

where eβ,2 = Oβ(
1

α3
k

). Substituting (3.49) into (3.48) yields

ζβ,k =
iL1(γ)√
γL0(γ)αk

+
8i(−1)k√
γL0(γ)α2

k

+ eβ,2. (3.50)

Next, inserting (3.50) in (3.47) we obtain

eβ,2 =
iQ1

α3
k

+ eβ,3 (3.51)

where

Q1 =
1

3γL3
0(γ)

[
−√

γL3
1(γ)− 3L0(γ)L

2
1(γ) + 3

√
γL0(γ)L1(γ)L2(γ) (3.52)

−3
√
γL2

0(γ)L3s(γ)
]

and where eβ,3 = Oβ(
1

α4
k

). Then, substituting (3.51) into (3.50) yields

ζβ,k =
iL1(γ)√
γL0(γ)αk

+
8i(−1)k√
γL0(γ)α2

k

+
iQ1

α3
k

+ e3,β. (3.53)

Later, inserting (3.53) in (3.47) we obtain

eβ,3 =
iQ2

α4
k

+
Qβ,3

α4
k

+ o1(
1

α4
k

), (3.54)
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where

Q2 =
4(−1)k

γL3
0(γ)

[
2
√
γL0(γ)L2(γ)−

√
γL2

1(γ)− 6L0(γ)L1(γ)
]

(3.55)

and

Qβ,3 =
Lβ,3c(γ)L1(γ)− L0(γ)Lβ,4s(γ)√

γL2
0

. (3.56)

Then, substituting (3.54) into (3.53) yields

ζβ,k =
iL1(γ)√
γL0(γ)αk

+
8i(−1)k√
γL0(γ)α2

k

+
iQ1

α3
k

+ i
Q2

α4
k

+
Qβ,3

α4
k

+ o1(
1

k4
). (3.57)

Moreover, using (3.29)-(3.33) and (3.36), then from (3.57) and after long compu-
tations we obtain

ζβ,k = i

(
−
( 1
2
√
γ + tanh( 1√

γ ))

γ
3
2αk

+
2(−1)k

γ
5
2 cosh( 1√

γ )α
2
k

+
E

α3
k

+
F

α4
k

)

+
β

π4 cosh( 1√
γ )

× 1

k4
+ o1(

1

k4
),

where E and F are given in (3.18) and (3.19) respectively. Finally inserting the
previous identity in (3.39) we directly get (3.16). ✷

Graphical Interpretation. Figure 2 represents the eigenvalues of Ã1 and Ã0 for β = 1
and γ = 10.

Note that for a scale reason seven eigenvalues do no appear in the previous figure.
Their approximates values are

0.0152039 ± 5.58917i, 0.0402791 ± 3.3494i, 0.138254 ± 1.30223i and 0.546406.

From Proposition 3.2 we denote that

Φβ,k = (yβ,k,−λβ,kyβ,k, yβ,k(1)) (3.58)

is the eigenvector associated with the eigenvalue λβ,k of high frequency, and by {Φβ,j,l}mβ,j

l=1

the Jordan chain of root vectors associated with the eigenvalue λβ,j of low frequency (Φ0,j,l

are in fact eigenvectors of A0) . Thus we obtain a system of root vectors of β :

{Φβ,k, |k| ≥ kβ} ∪ {Φβ,j,l, 1 ≤ l ≤ mβ,j , j ∈ Jβ} . (3.59)

Now, we solve the problem (3.10) for λ = λβ,k (for β ≥ 0) and we give a solution up to
factor in the following proposition:

Proposition 3.3. For β ≥ 0 and |k| ≥ kβ, a solution yβ,k of the problem (3.10) with
λ = λβ,k satisfies the following estimations:

yβ,k(1) = − 2

cosh( 1√
γ
)
+ o(1) 6= 0, ‖yβ,k‖W ∼ |k|2, ‖yβ,k‖V ∼ |k|, |k| → ∞ (3.60)

and we deduce that
‖Φβ,k‖H ∼ |k|2, |k| → ∞. (3.61)
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Figure 2: Eigenvalues of Ã1 (in blue) and Ã0 (in red) with β = 1 and γ = 10

Proof: For simplicity, in this proof we denote λβ,k by λk and yβ,k by yk. For β ≥ 0,
λ = λk and |k| ≥ kβ , solving (3.10) amounts to find a solution C(λk) 6= 0 of system (3.12)
of rank three. For clarity, we divide the proof to several steps.
Step 1. Determination of yk. Since we search C(λk) up to factor we choose c4(λk) = 1,
the possibility of this choice will be justify later. Therefore (3.12) becomes





c1(λk) + c2(λk) + c3(λk) = −1,
R1(λk)c1(λk) +R2(λk)c2(λk) +R3(λk)c3(λk) = −R4(λk),

R2
1(λk)e

R1(λk)c1(λk)+R2
2(λk)e

R2(λk)c2(λk)+R2
3(λk)e

R3(λk) = −R2
4(λk)e

R4(λk).

Next, using Cramer’s rule, we obtain

c1(λk) =
b1

b4
, c2(λk) =

b2

b4
, c3(λk) =

b3

b4
, (3.62)

where

b1 =2R1(λk)R3(λk)
2 sinh(R3(λk))− 2R3(λk)

3 cosh(R3(λk)) (3.63)

+ 2R1(λk)
2
R3(λk)e

−R1(λk),

b2 =2R1(λk)R3(λk)
2 sinh(R3(λk)) + 2R3(λk)

3) cosh(R3(λk)) (3.64)

− 2R1(λk)
2
R3(λk)e

R1(λk),

b3 =2R1(λk)
2
R3(λk) sinh(R1(λk))− 2R1(λk)

3 cosh(R1(λk)) (3.65)

+R1(λk)R3(λk)
2
e
−R3(λk)
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and

b4 =2R1(λk)
2
R3(λk) sinh(R1(λk)) + 2R1(λk)

3 cosh(R1(λk)) (3.66)

−R1(λk)R3(λk)
2
e
R3(λk)

.

First, we study the behavior of b1. Inserting (2.102) and (2.103) (with λ = λk) in (3.63)
we find after some computations

b1 = −2γ
3
2 λ

3
k cosh(

√
γλk) + (1 + 2

√
γ)λ2

k sinh(
√
γλk). (3.67)

Now, using the asymptotic behavior (3.16) we find





cosh(
√
γλk) =

i(−1)k(1 + 2
√
γ tanh( 1√

γ
))

2γ
3
2 λk

+O(
1

λ2
k

),

sinh(
√
γλk) = i(−1)k +O(

1

λ2
k

).

(3.68)

Then, inserting (3.68) in (3.67) we find again after some computations

b1 = 2
√
γi(−1)k

(
1− tanh(

1√
γ
)

)
λ
2
k +O(λk). (3.69)

Similarly long computations left to the reader yield

b2 = 2i(−1)k
√
γ

(
1 + tanh(

1√
γ
)

)
λ
2
k +O(λk), (3.70)

b3 = −2
√
γi(−1)kλ2

k +O(λk) (3.71)

and

b4 = −2
√
γi(−1)kλ2

k +O(λk). (3.72)

Remark that b4 6= 0 provided we have chosen kβ large enough, for this reason our choice
c4(λk) = 1 is valid. Substituting (3.69)-(3.72) into (3.62), we deduce

c1(λk) = −1 + tanh(
1√
γ
) +O(

1

|λk|
), c2(λk) = −1− tanh(

1√
γ
) +O(

1

|λk|
), (3.73)

c3(λk) = 1 +O(
1

|λk|
) and c4(λk) = 1.

Finally we have found that a solution of (3.12) has the form:

C(λk) = C0 +O(
1

|λk|
), (3.74)

where

C0 = (−1 + tanh(
1√
γ
), −1− tanh(

1√
γ
), 1, 1). (3.75)

Note that the corresponding solution yk of (3.10) is given by:

yk =

4∑

i

ci(λk)e
Ri(λk). (3.76)
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Step 2. Estimate of yk(1). From equation (3.76), we have

yk(1) = c1(λk)e
R1(λk) + c2(λk)e

R2(λk) + c3(λk)e
R3(λk) + c4(λk)e

R4(λk)
,

where we recall that for i ∈ {1, 2, 3, 4} Ri(λk) are given in (2.92) and ci satisfy (3.73).
Therefore using the series expansions (3.16) and (2.102)-(2.103) for λ = λk we easily find

yk(1) = − 2

cosh( 1√
γ
)
+ o(1) 6= 0. (3.77)

Step 3. Estimates of ‖yk‖W and ‖yk‖V . We start with

‖yk‖2W =

∫ 1

0

|yk,xx|2dx (3.78)

=
4∑

i=1

4∑

j=1

ci(λk)Ri(λk)
2

(∫ 1

0

e
Ri(λk)xeRj(λk)xdx

)
cj(λk)Rj(λk)2

= CkGkCk
T

where

Gk =

(∫ 1

0

e
(Ri(λk)+Rj(λk))xdx

)

1≤i,j≤4

and where Ck = (ci(λk)Ri(λk)
2)i=1,..,4.

First, using (3.16), then from (2.102) and (2.103) we can write R1(λk) and R3(λk) as
follows

R1(λk) = q1 + ir1, (3.79)

where

q1 =
1√
γ
+O(

1

λ2
k

), r1 = − γ
7
2 β

cosh( 1√
γ
)λ7

k

+O(
1

λ8
k

)

and
R3(λk) = q3 + ir3, (3.80)

where

q3 =
γ

5
2 β

λ4
k

+O(
1

λ6
k

), r3 =
√
γλk +O(1).

Then, the fact that R2(λk) = −R1(λk) and R4(λk) = −R3(λk) and using the asymptotic
behavior (3.79)-(3.80) we directly find

∫ 1

0

e
(R1(λk)+R2(λk))xdx =

∫ 1

0

e
(R2(λk)+R1(λk))xdx

=

∫ 1

0

e
(R3(λk)+R3(λk))xdx

=

∫ 1

0

e
(R4(λk)+R4(λk))xdx = 1 +O(

1

λ4
k

).

Moreover, using the asymptotic behavior (3.79)- (3.80) we find that Gk is given as follows:

Gk = G0 +O(
1

λk

), (3.81)
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where G0 was defined by (2.76) and O(
1

λk

) is a matrix where all entries are if order
1

λk

.

Next, using (3.73) and (3.79)-(3.80) we obtain

Ck = (0, 0, γλ2
k, γλ

2
k) +O(1). (3.82)

Finally, using (3.81) and (3.82) then from (3.78) we deduce

‖yk‖2W = γ
2|λk|4 +O(|λk|3) ∼ |k|4, |k| → ∞. (3.83)

Similarly, we easily prove that

‖yk‖2L2(0,1) ∼ 1, ‖yk,x‖2L2(0,1) ∼ |k|2, |k| → ∞.

Therefore, we deduce that
‖yk‖V ∼ |k|, |k| → ∞. (3.84)

Finally, using the estimations (3.77), (3.83) and (3.84) then from (3.58) we deduce (3.61).
This completes the proof. ✷

3.2. Riesz basis and polynomial stability with optimal decay rate

Our main result is the following optimal polynomial-type decay estimation.

Theorem 3.4. (Optimal energy decay rate)

Assume that β > 0 and that γ ≥ γ0. Then, for all initial data U0 ∈ D(Ãβ), there exists a
constant c > 0 independent of U0, such that the energy of the problem (3.9) satisfies the
following estimation

E(t) ≤ c√
t
‖U0‖2D(Ãβ)

. (3.85)

Moreover, the energy decay rate (3.85) is optimal.
✷

First, we prove that the set of the generalized eigenvectors associated with Ãβ forms a
Riesz basis in H in the following proposition:

Theorem 3.5. The set of generalized eigenvectors associated with σ(Ãβ) forms a Riesz
basis of H.

Proof: First, since Ã0 is a skew-adjoint operator, its set of normalized eigenvectors form
an orthonormal basis in H. Next, we prove the following property:

+∞∑

k=max{k0,kβ}
‖Φ̃β,k − Φ̃0,k‖H < +∞ (3.86)

where

Φ̃β,k = (ỹβ,k, z̃β,k, ξ̃β,k) =
1

‖Φ0,k‖H
Φβ,k, ∀|k| ≥ kβ , (3.87)

and

Φ̃0,k = (ỹ0,k, z̃0,k, ξ̃0,k) =
1

‖Φ0,k‖H
Φ0,k, ∀|k| ≥ k0. (3.88)
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We first estimate

‖Φ̃β,k − Φ̃0,k‖2H = ‖ỹβ,k − ỹ0,k‖2W + ‖z̃β,k − z̃0,k‖2V + |̃ξβ,k − ξ̃0,k|2. (3.89)

For clarity, we divide the proof into several steps.
Step 1. Estimate of ‖ỹβ,k − ỹ0,k‖2W . First, since ‖Φ0,k‖H ∼ |k|2 then from (3.87) and
(3.88) we obtain

‖ỹβ,k − ỹ0,k‖W ∼ 1

|k|2 ‖yβ,k − y0,k‖W . (3.90)

Next, using (3.76) we obtain

ỹβ,k,xx − ỹ
0
0,k,xx ∼ 1

|k|2
(
R

2
1(λβ,k)c1(λβ,k)e

R1(λβ,k)x −R
2
1(λ0,k)c1(λ0,k)e

R1(λ0,k)x
)

+
1

|k|2
(
R

2
1(λβ,k)c2(λβ,k)e

−R1(λβ,k)x−R
2
1(λ0,k)c2(λ0,k)e

−R1(λ0,k)x
)

+
1

|k|2
(
R

2
3(λβ,k)c3(λβ,k)e

R3(λβ,k)x −R
2
3(λ0,k)c3(λ0,k)e

R3(λ0,k)x
)

+
1

|k|2
(
R

2
3(λβ,k)c4(λβ,k)e

−R3(λβ,k)x−R
2
3(λ0,k)c4(λ0,k)e

−R3(λ0,k)x
)
.

For simplicity we denote ci(λβ,k) by c
β,k
i and ci(λ0,k) by c

0,k
i for i ∈ {1, 2, 3, 4}. Then, a

direct computation gives

‖ỹβ,k − ỹ0,k‖2W . J1 + J2 + J3 + J4 (3.91)

where

J1 =
1

|k|4
∫ 1

0

|R2
1(λβ,k)−R

2
1(λ0,k)|2|cβ,k

1 |2|eR1(λβ,k)x|2dx (3.92)

+
1

|k|4
∫ 1

0

|R2
1(λ0,k)|2|cβ,k

1 − c
0,k
1 |2|eR1(λβ,k)x|2dx

+
1

|k|4
∫ 1

0

|R2
1(λ0,k)|2|c0,k1 |2|eR1(λβ,k)x − e

R1(λ0,k)x|2dx,

J2 =
1

|k|4
∫ 1

0

|R2
1(λβ,k)−R

2
1(λ0,k)|2|cβ,k

2 |2|e−R1(λβ,k)x|2dx (3.93)

+
1

|k|4
∫ 1

0

|R2
1(λ0,k)|2|cβ,k

2 − c
0,k
2 |2|e−R1(λβ,k)x|2dx

+
1

|k|4
∫ 1

0

|R2
1(λ0,k)|2|c0,k2 |2|e−R1(λβ,k)x − e

−R1(λ0,k)x|2dx,

J3 =
1

|k|4
∫ 1

0

|R2
3(λβ,k)−R

2
3(λ0,k)|2|cβ,k

3 |2|eR3(λβ,k)x|2dx (3.94)

+
1

|k|4
∫ 1

0

|R2
3(λ0,k)|2|cβ,k

3 − c
0,k
3 |2|eR3(λβ,k)x|2dx

+
1

|k|4
∫ 1

0

|R2
3(λ0,k)|2|c0,k3 |2|eR3(λβ,k)x − e

R3(λ0,k)x)|2dx,
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and

J4 =
1

|k|4
∫ 1

0

|R2
3(λβ,k)−R

2
3(λ0,k)|2|e−R3(λβ,k)x|2dx (3.95)

+
1

|k|4
∫ 1

0

|R3(λ0,k)|2|cβ,k
4 − c

0,k
4 |2|e−R3(λβ,k)x|2dx

+
1

|k|4
∫ 1

0

|R2
3(λ0,k)|2|e−R3(λβ,k)x − e

−R3(λ0,k)x|2dx.

Now, using (3.16) ,(3.73) and the asymptotic behavior (2.102)-(2.103) for λ = λβ,k and
for λ = λ0,k we find the following equivalences:





R1(λβ,k)
2 −R1(λ0,k)

2 ∼ 1

|k|4 ,

eR1(λβ,k) − eR1(λ0,k) ∼ 1

|k|2 ,

c
β,k
1 − c

0,k
1 ∼ 1

|k|

(3.96)

and 



R3(λβ,k)
2 −R3(λ0,k)

2 ∼ 1

|k|3 ,

eR3(λβ,k)x − eR3(λ0,k)x ∼ 1

|k| ,

c
β,k
3 − c

0,k
3 ∼ 1

|k| .

(3.97)

Since c
β,k
1 ∼ c

0,k
1 ∼ eR1(λβ,k)x ∼ R2

1(λ0,k) ∼ 1 and using (3.96) then from (3.92) we obtain

J1 ∼ 1

|k|4
∫ 1

0

1

|k|8 dx+
1

|k|4
∫ 1

0

1

|k|2 dx+
1

|k|4
∫ 1

0

1

|k|4 dx ∼ 1

|k|6 . (3.98)

Similarly, we get

J2 ∼ 1

|k|8 . (3.99)

In the same way, since c
β,k
3 ∼ c

0,k
3 ∼ eR3(λβ,k) ∼ 1, R1(λβ,k)

2 ∼ |k|2 and using (3.97) then
from (3.94) we obtain

J3 ∼ 1

|k|4
∫ 1

0

1

|k|6 dx+
1

|k|4
∫ 1

0

|k|2dx+
1

|k|4
∫ 1

0

|k|2dx ∼ 1

|k|2 . (3.100)

Similarly, we get

J4 ∼ 1

|k|2 . (3.101)

Finally, using (3.98)-(3.101) then from (3.91) we deduce

‖ỹβ,k − ỹ0,k‖2W .
1

|k|2 . (3.102)

Step 2. Estimates ‖z̃β,k − z̃0,k‖2V and |̃ξβ,k − ξ̃0,k|2. First, since ‖Φ0,k‖H ∼ |k|2 and
using (3.87)-(3.88) we obtain

‖z̃k − z̃
0
k‖2V ∼ 1

|k|4 ‖zk − z
0
k‖2V . (3.103)



170 D. Mercier, S. Nicaise, M. A. Sammoury and A. Wehbe

Then, using (3.58) we obtain

‖z̃β,k − z̃0,k‖2V ∼ 1

|k|4 ‖λβ,kyβ,k − λ0,ky0,k‖2V (3.104)

≤ 1

|k|4 |λβ,k − λ0,k|2‖yβ,k‖2V +
|λ0,k|2
|k|4 ‖yβ,k − y0,k‖2V .

Now, since |λβ,k − λ0,k| ∼
1

|k|4 and ‖yβ,k‖V ∼ |k|2 we get

1

|k|4 |λβ,k − λ0,k|2‖yβ,k‖2V ∼ 1

|k|8 . (3.105)

Next, using the same strategy as in Step 1, we find after long computations that

‖yβ,k − y0,k‖2V ∼ 1. (3.106)

Then inserting (3.105)-(3.106) in (3.104) and the fact that |λ0,k|2 ∼ |k|2 we deduce

‖z̃β,k − z̃0,k‖2V .
1

|k|2 . (3.107)

Similarly, we can easily find that

|̃ξβ,k − ξ̃0,k|2 .
1

|k|10 . (3.108)

Step 3. Finally, inserting the estimations (3.102), (3.107) and (3.108) into (3.89) we
obtain

‖Φ̃β,k − Φ̃0,k‖2H .
1

|k|2 ,

and consequently
∞∑

k=max{k0,kβ}
‖Φ̃β,k − Φ̃0,k‖2H < +∞.

Therefore, using a clarified form of Guo’s Theorem (see [9, Theorem 6.3] and [1, Theorem

1.2.10]) we deduce that the set of generalized eigenvectors associated with σ(Ãβ) forms a
Riesz basis in H. ✷

Proof of Theorem 3.4: First, using (3.16) we have ℜ(λk) ∼ 1

k4
. Next, from Theorem

3.5 we know that the set of generalized eigenvectors associated with σ(Ãβ) form a Riesz
basis in H. Then, applying [14, Theorem 2.1]) (see also [13] and [20]) we deduce the
optimal polynomial energy decay rate (3.85) for smooth initial data.
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