

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 35** 2 (2017): 209–221. ISSN-00378712 in press doi:10.5269/bspm.v35i2.29290

Spectrum and fine spectrum of the Zweier matrix over the sequence space cs

Rituparna Das

ABSTRACT: In this article we have determined the spectrum and fine spectrum of the Zweier matrix Z_s on the sequence space cs. In a further development, we have also determined the approximate point spectrum, the defect spectrum and the compression spectrum of the operator Z_s on the sequence space cs.

Key Words: Spectrum of an operator; matrix mapping; sequence space.

Contents

	sequence space cs	21 4
3	Spectrum and fine spectrum of the operator Z_s over the	
2	Preliminaries and Background	210
1	Introduction	209

1. Introduction

By w, we denote the space of all real or complex valued sequences. Throughout the paper c, c_0 , bv, cs, bs, ℓ_1 , ℓ_∞ represent the spaces of all convergent, null, bounded variation, convergent series, bounded series, absolutely summable and bounded sequences respectively. Also bv_0 denotes the sequence space $bv \cap c_0$.

Fine spectra of various matrix operators on different sequence spaces have been examined by several authors. Fine spectrum of the operator $\Delta_{a,b}$ on the sequence space c was determined by Akhmedov and El-Shabrawy [1]. The fine spectra of the Cesàro operator C_1 over the sequence space bv_p , $(1 \leq p < \infty)$ was determined by Akhmedov and Başar [2]. Altay and Başar [3,4] determined the fine spectrum of the difference operator Δ and the generalized difference operator B(r,s) on the sequence spaces c_0 and c. The spectrum and fine spectrum of the Zweier Matrix on the sequence spaces ℓ_1 and bv were studied by Altay and Karakuş [5]. Altun [6,7] determined the fine spectra of triangular Toeplitz operators and tridiagonal symmetric matrices over some sequence spaces. Furkan, Bilgiç and Kayaduman [14] have determined the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces ℓ_1 and ℓ_2 and ℓ_3 and generalized difference operator ℓ_3 over the sequence spaces ℓ_4 and ℓ_3 and generalized difference operator ℓ_4 over the sequence spaces ℓ_4 and ℓ_4 and generalized difference operator ℓ_4 over the sequence spaces ℓ_4 and ℓ_4 and generalized difference operator ℓ_4 over the sequence spaces ℓ_4 and ℓ_4 and ℓ_4 and ℓ_4 and generalized difference operator ℓ_4 over the sequence spaces ℓ_4 and ℓ_4 and

 $2000\ Mathematics\ Subject\ Classification:\ 47A10,\ 47B37.$

was investigated by Srivastava and Kumar [28]. Panigrahi and Srivastava [24,25] studied the spectrum and fine spectrum of the second order difference operator Δ^2_{uv} on the sequence space c_0 and generalized second order forward difference operator Δ^2_{uvw} on the sequence space ℓ_1 . Fine spectra of upper triangular double-band matrix U(r,s) over the sequence spaces c_0 and c were studied by Karakaya and Altun [20]. Karaisa and Başar [19] have determined the spectrum and fine spectrum of the upper traingular matrix A(r,s,t) over the sequence space ℓ_p , (0 . In a further development, they have also determined the approximate point spectrum, defect spectrum and compression spectrum of the operator <math>A(r,s,t) on the sequence space ℓ_p , (0 .

In this paper, we shall determine the spectrum and fine spectrum of the lower triangular matrix Z_s on the sequence space cs. Also,we determine the approximate point spectrum, the defect spectrum and the compression spectrum of the operator Z_s on the sequence space cs. Clearly, $cs = \{x = (x_n) \in w : \lim_{n \to \infty} \sum_{i=0}^n x_i \quad exists\}$ is a Banach space with respect to the norm $||x||_{cs} = \sup_{n} |\sum_{i=0}^n x_i|$.

2. Preliminaries and Background

Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. By R(T), we denote the range of T, i.e.

$$R(T) = \{ y \in Y : y = Tx, x \in X \}.$$

By B(X), we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^* of T is a bounded linear operator on the dual X^* of X defined by $(T^*f)(x) = f(Tx)$, for all $f \in X^*$ and $x \in X$. Let $X \neq \{\theta\}$ be a complex normed linear space, where θ is the zero element and $T: D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator

$$T_{\lambda} = T - \lambda I$$
,

where λ is a complex number and I is the identity operator on D(T). If T_{λ} has an inverse which is linear, we denote it by T_{λ}^{-1} , that is

$$T_{\lambda}^{-1} = (T - \lambda I)^{-1},$$

and call it the *resolvent* operator of T.

A regular value λ of T is a complex number such that

- (R1) T_{λ}^{-1} exists,
- (R2) T_{λ}^{-1} is bounded
- (R3) T_{λ}^{-1} is defined on a set which is dense in X i.e. $\overline{R(T_{\lambda})} = X$.

The resolvent set of T, denoted by $\rho(T,X)$, is the set of all regular values λ of T. Its complement $\sigma(T,X) = \mathbb{C} - \rho(T,X)$ in the complex plane \mathbb{C} is called the *spectrum* of T. Furthermore, the spectrum $\sigma(T,X)$ is partitioned into three disjoint sets as follows:

The point(discrete) spectrum $\sigma_p(T,X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_p(T,X)$ is called an eigenvalue of T.

The continuous spectrum $\sigma_c(T,X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_λ^{-1} exists and satisfies (R3), but not (R2), that is, T_λ^{-1} is unbounded.

The residual spectrum $\sigma_r(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists (and may be bounded or not), but does not satisfy (R3), that is, the domain of T_{λ}^{-1} is not dense in X.

From Goldberg [17], if X is a Banach space and $T \in B(X)$, then there are three possibilities for R(T) and T^{-1} :

- (I) R(T) = X,
- (II) $R(T) \neq \overline{R(T)} = X$
- (III) $\overline{R(T)} \neq X$

and

- (1) T^{-1} exists and is continuous,
- (2) T^{-1} exists but is discontinuous,
- (3) T^{-1} does not exist.

If these possibilities are combined in all possible ways, nine different states are created which may be shown as in the Table 1.

	I	II	III
1	$\rho(T,X)$		$\sigma_r(T,X)$
2	$\sigma_c(T,X)$	$\sigma_c(T,X)$	$\sigma_r(T,X)$
3	$\sigma_p(T,X)$	$\sigma_p(T,X)$	$\sigma_p(T,X)$

Table 1: Subdivisions of spectrum of a linear operator

These are labeled by: I_1 , I_2 , I_3 , II_1 , II_2 , II_3 , III_1 , III_2 and III_3 . If λ is a complex number such that $T_{\lambda} \in I_1$ or $T_{\lambda} \in I_2$, then λ is in the resolvent set $\rho(T,X)$ of T. The further classification gives rise to the fine spectrum of T. If an operator is in state II_2 , then $R(T_{\lambda}) \neq \overline{R(T_{\lambda})} = X$ and T_{λ}^{-1} exists but is discontinuous and we write $\lambda \in II_2\sigma(T,X)$. The state II_1 is impossible as if T_{λ} is injective, then from Kreyszig [[22], Problem 6, p.290] T_{λ}^{-1} is bounded and hence continuous if and only if $R(T_{\lambda})$ is closed.

Again, following Appell et al. [8], we define the three more subdivisions of the spectrum called as the approximate point spectrum, defect spectrum and compression spectrum.

Given a bounded linear operator T in a Banach space X, we call a sequence (x_k) in X as a Weyl sequence for T if $||x_k|| = 1$ and $||Tx_k|| \to 0$ as $k \to \infty$.

The approximate point spectrum of T , denoted by $\sigma_{ap}(T,X)$, is defined as the set

$$\sigma_{ap}(T,X) = \{\lambda \in \mathbb{C} : there \ exists \ a \ Weyl \ sequence \ for \ T - \lambda I \}$$
 (2.1)

The defect spectrum of T, denoted by $\sigma_{\delta}(T,X)$, is defined as the set

$$\sigma_{\delta}(T, X) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not surjective} \}$$
 (2.2)

The two subspectra given by equations (2.1) and (2.2) form a (not necessarily disjoint) subdivisions

$$\sigma(T, X) = \sigma_{ap}(T, X) \cup \sigma_{\delta}(T, X) \tag{2.3}$$

of the spectrum. There is another subspectrum

$$\sigma_{co}(T, X) = \{ \lambda \in \mathbb{C} : \overline{R(T - \lambda I)} \neq X \}$$

which is often called the *compression spectrum* of T. The compression spectrum gives rise to another (not necessarily disjoint) decomposition

$$\sigma(T, X) = \sigma_{ap}(T, X) \cup \sigma_{co}(T, X) \tag{2.4}$$

Clearly, $\sigma_p(T,X) \subseteq \sigma_{ap}(T,X)$ and $\sigma_{co}(T,X) \subseteq \sigma_{\delta}(T,X)$. Moreover, it is easy to verify that $\sigma_r(T,X) = \sigma_{co}(T,X) \setminus \sigma_p(T,X)$ and $\sigma_c(T,X) = \sigma(T,X) \setminus [\sigma_p(T,X) \cup \sigma_{co}(T,X)]$.

By the definitions given above, we can illustrate the subdivisions of spectrum of a bounded linear operator in the Table 2.

		1	2	3
		T_{λ}^{-1} exists	T_{λ}^{-1} exists and	T_{λ}^{-1} does not
		and is bounded	is not bounded	exist
I	$R(T - \lambda I) = X$	$\lambda \in \rho(T, X)$		$\lambda \in \sigma_p(T, X)$
				$\lambda \in \sigma_{ap}(T,X)$
			$\lambda \in \sigma_c(T, X)$	$\lambda \in \sigma_p(T, X)$
II	$\overline{R(T - \lambda I)} = X$	$\lambda \in \rho(T, X)$	$\lambda \in \sigma_{ap}(T,X)$	$\lambda \in \sigma_{ap}(T,X)$
			$\lambda \in \sigma_{\delta}(T, X)$	$\lambda \in \sigma_{\delta}(T, X)$
		$\lambda \in \sigma_r(T, X)$	$\lambda \in \sigma_r(T, X)$	$\lambda \in \sigma_p(T, X)$
III	$\overline{R(T-\lambda I)} \neq X$	$\lambda \in \sigma_{\delta}(T, X)$	$\lambda \in \sigma_{ap}(T,X)$	$\lambda \in \sigma_{ap}(T,X)$
		$\lambda \in \sigma_{co}(T, X)$	$\lambda \in \sigma_{\delta}(T, X)$	$\lambda \in \sigma_{\delta}(T, X)$
			$\lambda \in \sigma_{co}(T, X)$	$\lambda \in \sigma_{co}(T,X)$

Table 2: Subdivisions of spectrum of a linear operator

Proposition 2.1. [Appell et al. [8], Proposition 1.3, p. 28] Spectra and subspectra of an operator $T \in B(X)$ and its adjoint $T^* \in B(X^*)$ are related by the following relations:

- (a) $\sigma(T^*, X^*) = \sigma(T, X)$.
- (b) $\sigma_c(T^*, X^*) \subseteq \sigma_{ap}(T, X)$.
- (c) $\sigma_{ap}(T^*, X^*) = \sigma_{\delta}(T, X)$.
- (d) $\sigma_{\delta}(T^*, X^*) = \sigma_{ap}(T, X)$.
- (e) $\sigma_n(T^*, X^*) = \sigma_{co}(T, X)$.
- (f) $\sigma_{co}(T^*, X^*) \supseteq \sigma_{v}(T, X)$.

$$(g) \ \sigma(T,X) = \sigma_{ap}(T,X) \cup \sigma_p(T^*,X^*) = \sigma_p(T,X) \cup \sigma_{ap}(T^*,X^*).$$

The relations (c)-(f) show that the approximate point spectrum is in a certain sense dual to defect spectrum, and the point spectrum dual to the compression spectrum. The equality (g) implies, in particular, that $\sigma(T, X) = \sigma_{ap}(T, X)$ if X is a Hilbert space and T is normal. Roughly speaking, this shows that normal (in particular, self-adjoint) operators on Hilbert spaces are most similar to matrices in finite dimensional spaces (Appell et al. [8]).

Let λ and μ be two sequence spaces and $A=(a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n,k\in\mathbb{N}_0=\{0,1,2,...\}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by $A:\lambda\to\mu$, if for every sequence $x=(x_k)\in\lambda$, the sequence $Ax=\{(Ax)_n\}$, the A-transform of x, is in μ , where

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, \quad n \in \mathbb{N}_0.$$
 (2.5)

By $(\lambda : \mu)$, we denote the class of all matrices such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right hand side of equation (2.5) converges for each $n \in \mathbb{N}_0$ and every $x \in \lambda$ and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}_0} \in \mu$ for all $x \in \lambda$.

The Zweier matrix Z_s is an infinite lower triangular matrix of the form

$$Z_{s} = \begin{pmatrix} s & 0 & 0 & 0 & \cdots \\ 1 - s & s & 0 & 0 & \cdots \\ 0 & 1 - s & s & 0 & \cdots \\ 0 & 0 & 1 - s & s & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where $s \neq 0, 1$.

The following results will be used in order to establish the results of this article.

Lemma 2.1. [Wilansky [35] Example 6B, Page 130] The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(cs)$ from cs to itself if and only if:

- (i) $\sup_{m} \sum_{k} |\sum_{n=1}^{m} (a_{nk} a_{n,k-1})| < \infty.$
- (ii) $\sum_{n} a_{nk}$ is convergent for each k.

Lemma 2.2. [Goldberg [17], Page 59] T has a dense range if and only if T^* is one to one.

Lemma 2.3. [Goldberg [17], Page 60] T has a bounded inverse if and only if T^* is onto.

3. Spectrum and fine spectrum of the operator Z_s over the sequence space cs

Theorem 3.1. $Z_s: cs \to cs$ is a bounded linear operator and

$$||Z_s||_{(cs:cs)} \le |s| + |1-s|.$$

Proof: From Lemma 2.1, it is easy to show that $Z_s: cs \to cs$ is a bounded linear operator. Now,

$$|Z_{s}(x)| = \left| \sum_{i=0}^{n} sx_{i} + \sum_{i=0}^{n-1} (1-s)x_{i} \right|$$

$$\leq |s| \left| \sum_{i=0}^{n} x_{i} \right| + |1-s| \left| \sum_{i=0}^{n-1} x_{i} \right|$$

$$\leq (|s| + |1-s|) \|x\|_{Cs}$$

and hence, $||Z_s||_{(cs:cs)} \leq |s| + |1-s|$. Hence the result.

From Theorem 2.1 in [4], we get the spectrum of the operator B(r,s) on the sequence space c_0 is $\sigma(B(r,s),c_0)=\{\alpha\in\mathbb{C}: |\alpha-r|\leq |s|\}$, where the operator B(r,s) is given by the lower triangular matrix

$$B(r,s) = \begin{pmatrix} r & 0 & 0 & 0 & \cdots \\ s & r & 0 & 0 & \cdots \\ 0 & s & r & 0 & \cdots \\ 0 & 0 & s & r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where $s \neq 0$. The lower triangular matrix Z_s is a special case of B(r, s). Also the sequence space cs is a subspace of c_0 . Therefore we can expect that

$$\sigma(Z_s, cs) \subseteq \{\alpha \in \mathbb{C} : |\alpha - s| < |1 - s|\}.$$

In the following theorem we give an independent proof of our expectation.

Theorem 3.2. The spectrum of the operator Z_s over cs is given by

$$\sigma(Z_s,cs)=\{\alpha\in\mathbb{C}: |\alpha-s|\leq |1-s|\}.$$

Proof: We prove this theorem by showing that $(Z_s - \alpha I)^{-1}$ exists and is in (cs:cs) for $|\alpha - s| > |1 - s|$, and then show that the operator $Z_s - \alpha I$ is not invertible for $|\alpha - s| \le |1 - s|$.

Let α be such that $|\alpha - s| > |1 - s|$. Since $s \neq 1$ we have $\alpha \neq s$ and so $Z_s - \alpha I$ is a triangle, therefore $(Z_s - \alpha I)^{-1}$ exists. Let $y = (y_n) \in cs$. Solving $(Z_s - \alpha I)x = y$ for x in terms of y we get

$$(Z_s - \alpha I)^{-1} = (a_{nk})$$

$$= \begin{pmatrix} \frac{1}{s-\alpha} & 0 & 0 & 0 & \cdots \\ \frac{s-1}{(s-\alpha)^2} & \frac{1}{s-\alpha} & 0 & 0 & \cdots \\ \frac{(s-1)^2}{(s-\alpha)^3} & \frac{s-1}{(s-\alpha)^2} & \frac{1}{s-\alpha} & 0 & \cdots \\ \frac{(s-1)^3}{(s-\alpha)^4} & \frac{(s-1)^2}{(s-\alpha)^3} & \frac{s-1}{(s-\alpha)^2} & \frac{1}{s-\alpha} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

It is easy to show that for all m,

$$\sum_{k} \left| \sum_{n=1}^{m} (a_{nk} - a_{n,k-1}) \right| \leq \frac{1}{|s-\alpha|} + \frac{|s-1|}{|s-\alpha|^2} + \frac{|s-1|^2}{|s-\alpha|^3} + \dots + \frac{|s-1|^m}{|s-\alpha|^{m+1}}$$

and hence, $\sup_{m} \sum_{k} \left| \sum_{n=1}^{m} (a_{nk} - a_{n,k-1}) \right| < \infty$, as $|\alpha - s| > |1 - s|$.

Since $|\alpha - s| > |1 - s|$, so for all k, the series

$$\sum_{n} a_{nk} = \frac{1}{r - \alpha} - \frac{s}{(r - \alpha)^2} + \frac{s^2}{(r - \alpha)^3} - \dots$$
 (3.1)

is also convergent. So, by Lemma 2.1, $(Z_s - \alpha I)^{-1}$ is in (cs:cs).

This shows that $\sigma(Z_s, cs) \subseteq \{\alpha \in \mathbb{C} : |\alpha - s| \le |1 - s|\}.$

Now, let $\alpha \in \mathbb{C}$ be such that $|\alpha - s| \leq |1 - s|$. If $\alpha \neq s$, then $Z_s - \alpha I$ is a triangle and hence, $(Z_s - \alpha I)^{-1}$ exists.

Let $y = (1, 0, 0, 0, \dots)$. Then $y \in cs$. Now, $(Z_s - \alpha I)^{-1}y = x$ gives

$$x_n = \frac{(s-1)^n}{(s-\alpha)^{n+1}}.$$

Since $|\alpha - s| \le |1 - s|$, so the series

$$\sum_{n=0}^{\infty} x_n = \sum_{n=0}^{\infty} \frac{(s-1)^n}{(s-\alpha)^{n+1}} = \frac{1}{s-\alpha} \sum_{n=0}^{\infty} \left(-\frac{s-1}{s-\alpha} \right)^n$$

is not convergent and hence, $x = (x_n) \notin cs$. Therefore, $(Z_s - \alpha I)^{-1}$ is not in (cs:cs) and so $\alpha \in \sigma(Z_s,cs)$.

If $\alpha = s$, then the operator $Z_s - \alpha I$ is represented by the matrix

$$Z_s - sI = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 - s & 0 & 0 & 0 & \cdots \\ 0 & 1 - s & 0 & 0 & \cdots \\ 0 & 0 & 1 - s & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Since, the range of $Z_s - \alpha I$ is not dense, so $\alpha \in \sigma(Z_s, cs)$. Hence,

$$\{\alpha \in \mathbb{C} : |\alpha - s| \le |1 - s|\} \subseteq \sigma(Z_s, cs).$$

This completes the proof.

Theorem 3.3. The point spectrum of the operator Z_s over cs is given by

$$\sigma_p(Z_s, cs) = \phi.$$

Proof: Let α be an eigenvalue of the operator Z_s . Then there exists $x \neq \theta = (0,0,0,...)$ in cs such that $Z_s x = \alpha x$. Then, we have

$$sx_0 = \alpha x_0$$

$$(1-s)x_0 + sx_1 = \alpha x_1$$

$$(1-s)x_1 + sx_2 = \alpha x_2$$

$$\dots$$

$$(1-s)x_n + sx_{n+1} = \alpha x_{n+1}, \quad n \ge 0$$

If x_k is the first non-zero entry of the sequence (x_n) , then $\alpha=s$. Then from the relation

 $(1-s)x_k+sx_{k+1}=\alpha x_{k+1}$, we have $(1-s)x_k=0$. But $s\neq 1$ and hence, $x_k=0$, a contradiction. Hence, $\sigma_p(Z_s,cs)=\phi$.

If $T:cs\to cs$ is a bounded linear operator represented by a matrix A, then it is known that the adjoint operator $T^*:cs^*\to cs^*$ is defined by the transpose A^t of the matrix A. It should be noted that the dual space cs^* of cs is isometrically isomorphic to the Banach space bv of all bounded variation sequences normed by $\|x\|_{bv} = \sum_{n=0}^{\infty} |x_{n+1} - x_n| + \lim_{n\to\infty} |x_n|$.

Theorem 3.4. The point spectrum of the operator Z_s^* over cs^* is given by

$$\sigma_p(Z_s^*,cs^*\cong bv)=\{\alpha\in\mathbb{C}: |\alpha-s|<|1-s|\}.$$

Proof: Let α be an eigenvalue of the operator Z_s^* . Then there exists $x \neq \theta = (0,0,0,...)$ in bv such that $Z_s^*x = \alpha x$. Then, we have

$$Z_s^t x = \alpha x$$

$$\Rightarrow sx_0 + (1 - s)x_1 = \alpha x_0$$

$$sx_1 + (1 - s)x_2 = \alpha x_1$$

$$sx_2 + (1 - s)x_3 = \alpha x_2$$

$$\dots$$

$$sx_n + (1 - s)x_{n+1} = \alpha x_n, \quad n \ge 0$$

Then, we have

$$x_n = \left(\frac{\alpha - s}{1 - s}\right)^n x_0.$$

Since $x=(x_n)\in bv$, so $x=(x_n)\in c$. The sequence (x_n) is convergent if and only if $|\alpha-s|<|1-s|$. Hence, $\sigma_p(Z_s^*,cs^*\cong bv)=\{\alpha\in\mathbb{C}: |\alpha-s|<|1-s|\}$. \square

Theorem 3.5. The residual spectrum of the operator Z_s over cs is given by

$$\sigma_r(Z_s, cs) = \{\alpha \in \mathbb{C} : |\alpha - s| < |1 - s|\}.$$

Proof: Since,

$$\sigma_r(Z_s, cs) = \sigma_p(Z_s^*, cs^*) \setminus \sigma_p(Z_s, cs),$$

so we get the required result by using Theorem 3.3 and Theorem 3.4.

Theorem 3.6. The continuous spectrum of the operator Z_s over cs is given by

$$\sigma_c(Z_s, cs) = \{ \alpha \in \mathbb{C} : |\alpha - s| = |1 - s| \}.$$

Proof: Since, $\sigma(Z_s, cs)$ is the disjoint union of $\sigma_p(Z_s, cs)$, $\sigma_r(Z_s, cs)$ and $\sigma_c(Z_s, cs)$, therefore, by Theorem 3.2, Theorem 3.3 and Theorem 3.5, we get

$$\sigma_c(Z_s, cs) = \{ \alpha \in \mathbb{C} : |\alpha - s| = |1 - s| \}.$$

Theorem 3.7. If $\alpha = s$, then $\alpha \in III_1\sigma(Z_s, cs)$.

Proof: If $\alpha = s$, the range of $Z_s - \alpha I$ is not dense. So, from Table 2 and Theorem 3.3, we have $\alpha \in \sigma_r(Z_s, cs)$. From Table 2,

$$\sigma_r(Z_s, cs) = III_1\sigma(Z_s, cs) \cup III_2\sigma(Z_s, cs).$$

Therefore, $\alpha \in III_1\sigma(Z_s, cs)$ or $\alpha \in III_2\sigma(Z_s, cs)$. Also for $\alpha = s$,

$$Z_s - \alpha I = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 - s & 0 & 0 & 0 & \cdots \\ 0 & 1 - s & 0 & 0 & \cdots \\ 0 & 0 & 1 - s & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

To prove the result, it is enough to show that the operator $Z_s - \alpha I$ is bounded below. It is easy to verify that for all $x \in cs$, we have

$$\parallel (Z_s - \alpha I)x \parallel \geq \frac{|1 - s|}{2} \parallel x \parallel$$

which shows that the operator $Z_s - \alpha I$ is bounded below and so $Z_s - \alpha I$ has a bounded inverse. This completes the theorem.

Theorem 3.8. If $\alpha \neq s$ and $\alpha \in \sigma_r(Z_s, cs)$, then $\alpha \in III_2\sigma(Z_s, cs)$.

Proof: Since, $\alpha \in \sigma_r(Z_s, cs)$, therefore, from Table 2,

$$\alpha \in III_1\sigma(Z_s, cs)$$
 or $\alpha \in III_2\sigma(Z_s, cs)$.

Now, $\alpha \in \sigma_r(Z_s, cs)$ implies that $|\alpha - s| < |1 - s|$. Therefore, the series (3.1) in Theorem 3.2 is not convergent and hence, the operator $Z_s - \alpha I$ has no bounded inverse.

Therefore,
$$\alpha \in III_2\sigma(Z_s, cs)$$
.

Theorem 3.9. If $\alpha \in \sigma_c(Z_s, cs)$, then $\alpha \in II_2\sigma(Z_s, cs)$.

Proof: If $\alpha \in \sigma_c(Z_s, cs)$, then $|\alpha - s| = |1 - s|$. Therefore, the series (3.1) in Theorem 3.2 is not convergent and hence, the operator $Z_s - \alpha I$ has no bounded inverse. So, α satisfies Goldberg's condition 2.

Now we shall show that the operator $Z_s - \alpha I$ is not onto.

Let $y = (y_n) = (1, 0, 0, 0, ...)$. Clearly, $(y_n) \in cs$.

Let $x = (x_n)$ be a sequence such that $(Z_s - \alpha I)x = y$.

On solving, we get

$$x_n = \frac{(s-1)^n}{(s-\alpha)^{n+1}}.$$

Now, the series

$$\sum_{n=0}^{\infty} x_n = \sum_{n=0}^{\infty} \frac{(s-1)^n}{(s-\alpha)^{n+1}} = \frac{1}{s-\alpha} \sum_{n=0}^{\infty} \left(\frac{s-1}{s-\alpha}\right)^n$$

is not convergent as $|\alpha - s| = |1 - s|$ and hence the operator $Z_s - \alpha I$ is not onto. So, α satisfies Goldberg's condition II.

This completes the proof.

Theorem 3.10. The approximate point spectrum of the operator Z_s over cs is given by

$$\sigma_{ap}(Z_s, cs) = \{ \alpha \in \mathbb{C} : |\alpha - s| \le |1 - s| \} \setminus \{s\}.$$

Proof: From Table 2,

$$\sigma_{ap}(Z_s, cs) = \sigma(Z_s, cs) \setminus III_1\sigma(Z_s, cs).$$

By Theorem 3.7, $III_1\sigma(Z_s,cs)=\{s\}$. This completes the proof.

Theorem 3.11. The compression spectrum of the operator Z_s over cs is given by

$$\sigma_{co}(Z_s, cs) = \{ \alpha \in \mathbb{C} : |\alpha - s| < |1 - s| \}.$$

Proof: By Proposition 2.1(e), we get

$$\sigma_p(Z_s^*, cs^*) = \sigma_{co}(Z_s, cs).$$

Using Theorem 3.4, we get the required result.

Theorem 3.12. The defect spectrum of the operator Z_s over cs is given by

$$\sigma_{\delta}(Z_s, cs) = \{ \alpha \in \mathbb{C} : |\alpha - s| \le |1 - s| \}.$$

Proof: From Table 2, we have

$$\sigma_{\delta}(Z_s, cs) = \sigma(Z_s, cs) \setminus I_3 \sigma(Z_s, cs).$$

Also,

$$\sigma_p(Z_s, cs) = I_3 \sigma(Z_s, cs) \cup II_3 \sigma(Z_s, cs) \cup III_3 \sigma(Z_s, cs).$$

By Theorem 3.3, we have
$$\sigma_p(Z_s, cs) = \phi$$
 and so $I_3\sigma(Z_s, cs) = \phi$.
Hence, $\sigma_\delta(Z_s, cs) = \{\alpha \in \mathbb{C} : |\alpha - s| \le |1 - s|\}.$

Corollary 3.1. The following statements hold:

(i)
$$\sigma_{an}(Z_s^*, cs^* \cong bv) = \{\alpha \in \mathbb{C} : |\alpha - s| < |1 - s|\}.$$

(ii)
$$\sigma_{\delta}(Z_s^*, cs^* \cong bv) = \{\alpha \in \mathbb{C} : |\alpha - s| < |1 - s|\} \setminus \{s\}.$$

Proof: Using Proposition 2.1 (c) and (d), we get

$$\sigma_{ap}(Z_s^*, cs^* \cong bv) = \sigma_{\delta}(Z_s, cs)$$

and

$$\sigma_{\delta}(Z_s^*, cs^* \cong bv) = \sigma_{ap}(Z_s, cs).$$

Using Theorem 3.10 and Theorem 3.12, we get the required results.

Acknowledgments

The authors are grateful to the referees for their careful readings of the details and making useful comments that improved this paper.

References

- 1. A. M. Akhmedov and S. R. El-Shabrawy, On the fine spectrum of the operator $\Delta_{a,b}$ over the sequence space c, Comput. Math. Appl., 61(10), (2011),2994-3002.
- 2. A. M. Akhmedov and F. Başar, The fine spectra of the Cesàro operator C_1 over the sequence space bv_p $(1 \le p < \infty)$, Math. J. Okayama Univ. 50(2008),135-147.
- 3. B. Altay and F. Başar, On the fine spectrum of the difference operator Δ on c_0 and c, Inf. Sci., 168(2004), 217-224.
- 4. B. Altay and F. Başar, On the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces c_0 and c, Int. J. Math. Math. Sci., 2005:18 (2005), 3005-3013.
- 5. B. Altay and M. Karakuş, On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, Thai J. Math., 3(2) (2005), 153-162.
- M. Altun, On the fine spectra of triangular Toeplitz operators, Appl. Math. Comput., 217(2011),8044-8051.
- M. Altun, Fine spectra of tridiagonal symmetric matrices, Int. J. Math. Math. Sci., 2011, Article ID 161209.
- 8. J. Appell, E. Pascale, A. Vignoli, *Nonlinear Spectral Theory*, Walter de Gruyter, Berlin, New York, 2004.
- 9. F. Başar, N. Durna, M. Yildirim, Subdivisions of the spectra for generalized difference operator over certain sequence spaces, Thai J. Math., 9(2)(2011), 279-289.
- 10. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, Istanbul, 2012.
- 11. H. Bilgiç and H.Furkan, On the fine spectrum of operator B(r,s,t) over the sequence spaces ℓ_1 and bv, Math Comput. Model., 45(2007),883-891.
- 12. H. Bilgiç and H.Furkan, On the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces ℓ_1 and bv_p (1 , Nonlinear Anal., 68(2008),499-506.
- 13. J. P. Cartlitdge, Weighted mean matrices as operators on ℓ^p , Ph.D dissertation, Indiana University, Indiana, (1978).
- 14. H. Furkan, H.Bilgiç and K.Kayaduman, On the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces ℓ_1 and bv, Hokkaido Math. J. 35 (2006), 893âÄŞ904.
- 15. H. Furkan, H. Bilgiç and B. Altay, On the fine spectrum of operator B(r,s,t) over c_0 and c,Comput. Math. Appl.,53(2007), 989-998.
- 16. H. Furkan, H. Bilgiç and F. Başar, On the fine spectrum of operator B(r,s,t) over the sequence spaces ℓ_p and $bv_p, (1 , Comput. Math. Appl., 60(2010), 2141-2152.$
- $17. \ \, \text{S. Goldberg}, \, \textit{Unbounded Linear Operators-Theory and Applications}, \, \text{Dover Publications}, \, \text{Inc, New York.}$
- 18. M. Gonzalez, The fine spectrum of the Cesàro operator in ℓ^p , Arch. Math., 44(1985)., 355-358.
- 19. A. Karaisa and F. Başar, Fine spectrum of upper triangular triple-band matrices over the sequence space ℓ_p (0 < p < ∞ , Abst. Appl. Anal., 2013, Article ID 342682.
- V. Karakaya and M. Altun, Fine spectra of upper triangular double-band matrices, J. Comp. Appl. Math., 234(2010),1387-1394.
- 21. K. Kayaduman and H. Furkan, The fine spectra of the difference operator Δ over the sequence spaces ℓ_1 and bv ,Int. Math. Forum,1(24), (2006), 1153-1160.

- 22. E. Kreyszig, Introductory Functional Analysis with Application, John Wiley and Sons, (1989).
- 23. J. I. Okutoyi, On the spectrum of C_1 as an operator on bv_0 , J. Austral. Math. Soc. (Series A) 48 (1990), 79-86.
- 24. B. L. Panigrahi and P. D. Srivastava, Spectrum and the fine spectrum of the generalised second order difference operator Δ_{uv}^2 on sequence space c_0 , Thai J. Math., Vol. 9 (2011), No. 1, 57-74.
- 25. B. L. Panigrahi and P. D. Srivastava, Spectrum and fine spectrum of the generalized second order forward difference operator Δ^2_{uvw} on the sequence space ℓ_1 , Demonstratio Mathematica, Vol. XLV, No. 3, 2012.
- D. Rath and B. C. Tripathy, On the Banach algebra of triangular conservative matrices of operators, J. Math. Anal. Appl.; 197(3) (1994); 743-751.
- B. E. Rhoades, The fine spectra for weighted mean operators, Pac. J. Math., 104(1), (1983), 219-230
- 28. P. D. Srivastava and S. Kumar, Fine spectrum of the generalized difference operator Δ_v on the sequence space ℓ_1 , Thai J. Math., 8(2) (2010), 221-233.
- 29. B. C. Tripathy and A. Paul, Spectra of the operator B(f,g) on the vector valued sequence space $c_0(X)$, Bol. Soc. Parana. Mat., 31(1) (2013), 105-111.
- 30. B. C. Tripathy and A. Paul, The Spectrum of the operator D(r,0,0,s) over the sequence space c_0 and c; Kyungpook Math. J., 53(2)(2013), 247-256.
- 31. B. C. Tripathy and P. Saikia, On the spectrum of the Cesàro operator C_1 on $\overline{bv} \cap \ell_{\infty}$, Math. Slovaca, 63(3)(2013), 563-572.
- 32. B. C. Tripathy and A. Paul, Spectrum of the operator D(r,0,0,s) over the sequence spaces ℓ_p and bv_p , Hacettepe Journal of Mathematics and Statistics, 43 (3) (2014), 425-434.
- 33. B. C. Tripathy and A. Paul, The Spectrum of the Operator D(r,0,0,s) over the sequence space bv_0 , Georgian Journal of Mathematics, 22(3)(2015), 421-426.
- 34. B.C. Tripathy and A. Paul, The spectrum of the operator D(r,0,s,0,t) over the sequence spaces ℓ_p and bv_p , Afrika Matematika, 26(5-6), (2015), 1137-1151.
- 35. A. Wilansky, Summability Through Functional Analysis, North Holland, 1984.

 $Rituparna\ Das$

Department of Mathematics, Sikkim Manipal Institute of Technology,

Sikkim 737136, India.

E-mail address: rituparnadas_ghy@rediffmail.com

E-mail address: ri2p.das@gmail.com