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Abstract. In this article we have investigated the relations of p-I-generator, p1-I-
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1. Introduction, motivation and scopes of bitopological space in other areas
of mathematics and natural sciences

Kelly [1] introduced bitopological space via quasi-pseudo metric and systematically
investigated its various important properties. It has drawn direct and indirect attentions
of many point set topologists, fuzzy topologists, engineers and researchers of medical sci-
ences, computer scientists etc. for its applications.

Definition of topological ideal is a very old concept. Topological ideal I and σ-ideal
can be found in Dontchev etal [2]. Ideal of all nowhere dense sets and ideal of all meager
sets of a ideal topological space (X, τ, I) are denoted by N and M respectively. Through-
out no separation properties are considered unless it is stated clearly.

Kuratowski [3] introduced the notion of local function of A ⊆ X in (X, τ) with respect
to I and τ (briefly A∗). A∗(I) or A∗ = {x ∈ X|U ∩ A /∈ I, x ∈ U for all U ∈ τ}.

It is well known that cl∗(A) =A∗ ∪ A, defines a Kuratowski closure operator for a
topology τ ∗(I) finer than τ .

Throughout this paper ”bitopological space” will be denoted by BS.

A cover U of a BS (X, τ1, τ2) is called τ1τ2-open (Swart[4], Definition 4.1) if U ⊆ τ1∪τ2.
If in addition U contains atleast one non-empty member of τ1 and atleast one nonempty
member of τ2; it is called pairwise open(see for instance Fletcher et al. [5]). Pairwise
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compactness was defined by Fletcher et al. [5]. p-compact, p1- compact, p-Lindelöf and
p1-Lindelöf are defined by Kilićkman and Salleh[6]. According to Reilly [7]; (X, τ1, τ2) is
pairwise Lindelöf (pairwise compact)if each pairwise open cover has a countable (finite)
subcover. Cooke et al. [8] investigated relation between semi-compactness and pairwise
compactness in bitopological space.

Kilićkman and Salleh [9-11] also investigated various properties of pairwise Lindelöfness.
Cocompactness, cotopology, (i, j)-baire space etc. were studied by Dvalishvili [12].

Frolik [13] introduced weakly Lindelöf space and Willard and Dissanayake [14] intro-
duced almost Lindelöf space in a topological space and their bitopological version are
studied by Kilićkman and Salleh [9]. In the last two decades various developments have
taken place in bitopological space. Still a little progress has been observed in case of
generalized closed sets of bitopological space and related areas. Fuzzy version of some
generalized closed sets and related structures of both topology and bitopology has been
investigated (one may refer to [15-17]). Fuzzy version of topological ideal was introduced
in [18].

Bitopological space and their properties have many useful applications in real world. In
2010, Salama [19] used lower and upper approximations of Pawlak’s rough sets by using a
class of generalized closed set of bitopological space for data reduction of rheumatic fever
data sets. Fuzzy topology integrated support vector machine (FTSVM)-classification
method for remotely sensed images based on standard support vector machine (SVM)
were introduced by using fuzzy topology by Zhang etal [20]. For some of recent indirect
applications of topological or bitopological space as fuzzy version, one may refer to [19-
21]. Topological ideal has also huge applications in real world. Recently Tripathy and
Acharjee [22] have introduced a class of generalized closed set in bitopological space using
topological ideal, two expansion operators and local functions. The application of this set
can be found in market price equilibrium [23]. There are the maximum nine out eleven
strategies under which expected value of daily used items decided by a consumer and
value decided by govt.is equal. Other two strategies are special cases. These are useful
from the view point that no one will have to face poverty in year 2015 if she have price
table of items of year 2014 and 2013. She is free to choose daily used items according to
her preferences.

One may refer to [41] for inter related research works on topology, order of mathe-
matics and utility theory of mathematical economics. In this paper one may find that
how concepts of countability, compactness, normality, Lindelöfness etc. of general topol-
ogy and order (i.e. LOTS etc) have been used to represent countable representation of
utility function.For reference; Prof. G. Bosi’s [42,43 ] extensive publications and vast ex-
pertise lies on mathematical economics using general topology, bitopology, order topology.

Hence there is need and scope of investigation considering different types of pairwise
compactness, pairwise Lindelöf from the point of view of topological ideal, (i, j)-meager
and (i, j)-Baire space so that these results may contribute to both theory and application
in various areas of sciences.
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In this paper we are trying to give some possible answers of the following questions.
They are as follows:

(i) Is there any relation between different forms of pairwise Lindelöfness and (i, j)-
meager and pairwise Baire space in bitopological space?

(ii) Is there any relation between different forms of pairwise Lindelöfness and topolog-
ical ideal in bitopological space?

(iii) What are the results related to pairwise Lindelöfness in product bitopology using
Dutta’s perfect mapping?

In this paper we particularly consider only two pairwise Lindelöfnss. They are p-
Lindelöf due to Kilićkman and Salleh [2] and p1-Lindelöf due to Birsan [24] as defined
by Kilićkman and Salleh [2]. Dvalishvili [25] defined (i, j)-nowhere dense set. Dontchev
et al. [26] studied ideal irresoluteness in topology. Dutta [27] defined perfect map from
bitopological view point. Researchers have investigated Khalimsky digital line considering
generalized closed sets in topological space (one may refer to [28-30]). Many topologists
are now focusing on ideal and its various consequences. Systematic study on pairwise Lin-
delöfness also can be found in Salleh and Kilićkman[31]. Recently Acharjee and Tripathy
[32] studied pairwise compactness on (γ, δ)-BSC set in bitopological spaces. Throughout
this paper we will consider i, j ∈ {1, 2}, i 6= j

From above it can be considered that bitopology is also gaining speed now a days as
an applied branches as many research areas are using bitopological properties as their
tools to solve mechanical, medical, economical problems etc. Hence these above ques-
tions might play significant roles in applied sectors in near future. Often it seems easy
to assume that bitopological results are extensions of results from general topology; but
actually is it not as it seems. One may simply say that bitopology has more than two
definitions of Lindelöfness using only pairwise open sets etc.

Variation of i and j between only 1 and 2 in a bitopological space often signifies differ-
ent properties which general topology never follows. In [44], Acharjee and Papadopoulos,
gave some answers to some open questions and one suitable counterexample.

2. Some preliminary definitions

Definition 2.1 ([9], Definition 2.7). A BS (X, τ1, τ2) is said to be (i, j)-nearly Lin-
delöf (resp. (i, j)-almostLindelöf, (i, j)-weakly Lindelöf) if every τi-open cover {Uα|α ∈
∆} of X, there exists a countable subcollection {Uαn|n ∈ N} such that X =

⋃
n∈N

τiintτjcl(Uαn) ( resp. X=
⋃

n∈N
τjcl(Uαn), X = τjcl(

⋃
n∈N

Uαn)).

X is said to be pairwise nearly Lindelöf if it is both (i, j)-nearly Lindelöf and (j, i)-
nearly Lindelöf. Similarly we can define pairwise almost Lindelöf, pairwise weakly Lin-
delöf.

Definition 2.2 ([25], Definition 1.1). A subset A of a BS (X, τ1, τ2) is termed as
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(i, j)-nowhere dense if τiintτjcl(A) = ∅. The families of all (i, j)-nowhere dense subsets
of X are denoted by (i, j)-ND(X).

Let I be a topological ideal then I 6= ∅ and I is said to be codense [2] for a topological
space (X, τ) if and only if I ∩ τ = {∅}. Keeping same meaning in our mind we may define
τi-codense; i = 1, 2 for a BS (X, τ1, τ2). An ideal I is said to be pairwise codense if it is
both τ1-codense and τ2-codense. We denote ideal of (i, j)-nowhere dense subsets of BS
(X, τ1, τ2) by IiNj(X)

Definition 2.3 ([12], Definition 1.6). A subset A of a BS (X, τ1, τ2) is termed as

(i, j)-first category (or (i, j)-meager) if A =
∞⋃

n=1
An where An ∈ (i, j)-ND(X); for every

n ∈ N and A is of (i, j)-second category (or (i, j)-non meager) if it is not of (i, j)-first
category. The families of all sets of (i, j)-first categories (or (i, j)-second categories) in X
are denoted by (i, j)-CatgI(X)((i, j)-CatgII(X)).

IfX ∈ (i, j)-CatgI(X)(X ∈ (i, j)-CatgII(X)) is abbreviated toX is of (i, j)-CatgI((i, j)-
CatgII).

We denote σ-ideal of (i, j)-meager subsets of a BS (x, τ1, τ2) by σiMj(X) (see [2]).

Now We define following definition.

Definition 2.4. A BS (X, τ1, τ2) is said to be (i, j)-non-nearly Lindelöf (resp. (i, j)-
non-almost Lindelöf, (i, j)-non-weakly Lindelöf) if every τi-open cover {Uα|α ∈ ∆} of

X, there exists a τj-open countable sub-collection {Uαn|n ∈ N} such that X =
⋃

n∈N

τjintτicl(Uαn) ( resp. X=
⋃

n∈N
τicl(Uαn), X = τicl(

⋃
n∈N

Uαn)).

X is said to be pairwise non-nearly Lindelöf if it is both (i, j)-non-nearly Lindelöf
and (j, i)-non-nearly Lindelöf. Similarly we have pairwise non-almost Lindelöf, pairwise
non-weakly Lindelöf.

Kilićkman and Salleh defined p-Lindelöf [6, Definition 6]. It was stated that Birsan
defined p1-Lindelöf [6, Definition 1].

Definition 2.5. ([44], Definition 3.1) Let (X, τ1, τ2) be a bitopological space, then:

(i) (X, τ1, τ2) is said to be an (i, j)-second countable bitopological space if (X, τi) is
second countable with respect to τj.

(ii) (X, τ1, τ2) is said to be a contra second countable bitopological space if it is
both (1, 2)-second countable bitopological space and (2, 1)-second countable bitopolog-
ical space.

We procure the following results those will be used in this paper.

Lemma 2.1([6], Theorem 6) If (X, τ1, τ2) is second countable space, then (X, τ1, τ2)
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is p-Lindelöf.

Definition 2.6. ([7]) A bitopological space (X, τ1, τ2) is pairwise compact (resp. pair-
wise Londelöf ) if each pairwise open cover of (X, τ1, τ2) has a finite (resp. countable)
subcover.

Definition 2.7. ([46]) (X, τ1, τ2) is said to be pairwise countably compact if every
countable pairwise open cover of (X, τ1, τ2) has a finite subcover.

Proposition 2.1. ([7]) In a pairwise Lindelöf space pairwise countable compactness
is equivalent to pairwise compactness.

Proposition 2.2. ([7]) Any second countable bitopological space is pairwise Lindelöf.

Proposition 2.3. ([7]) If (X, τ1, τ2) is pairwise Lindelöf and A is a proper subset of
X which is τ1-closed then A is pairwise Lindelöf and τ2-Lindelöf.

Proposition 2.4. ([7]) If (X, τ1, τ2) is pairwise Lindelöf and pairwise regular then it
is pairwise normal.

3. Main results

In this section we have defined a new class in a bitopological space which will generate
p-Lindelöf space and p1-Lindelöf space.

Definition 3.1. A BS (X, τ1, τ2, I) is said to be τi-I-generator (τ c
i -I-generator) if

every τi-open cover {Uα|α ∈ ∆} of X, there exists a (τj-open) countable sub collection

{Uαn|n ∈ N} such that X \
⋃

n∈N
Uαn ∈ I.

X is said to be p-I-generator (p1-I-generator) if it is both τi-I-generator (τ c
i -I-

generator) and τj-I-generator (τ c
j -I-generator).

Remark 3.1. From definition of ideal it is clear that I 6= ∅. If I = {∅} then
Definition 3.1 reduces to p-Lindelöf (p1-Lindelöf) i.e. p-{∅}-generator⇔ p-Lindelöf and
p1-{∅}-generator⇔ p1-Lindelöf.

From [2,26] we know that a subset S of (X, τ, I) will be a topological space with ideal
IS={I ∩ S : I ∈ I}.

A subset A of X of (X, τ1, τ2) is said to be pairwise clopen if it is both τ1-clopen and
τ2-clopen.

Theorem 3.1. (i) Let (X, τ1, τ2, I) be a p-I-generator. If A be a pairwise closed
subset of X then (A, τ1|A, τ2|A, IA) is also p-IA-generator.
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(ii) Let (X, τ1, τ2, I) be a p1-I-generator. If A be a pairwise clopen subset of X then
(A, τ1|A, τ2|A, IA) is also p1-IA-generator.

Proof.(i) Let UA = {Uα ∩ A : Uα ∈ τi, α ∈ ∆} be a τi|A-open cover of A. Thus
U = {Uα : α ∈ ∆} ∪ (X \A) is τi open cover of X. Thus X has a countable subcollection

V={Uαn : Uαn ∈ τi, n ∈ N} ∪ (X \ A) such that X \ {
⋃

n∈N
Uαn ∪ (X \ A)} = R(say)∈ I.

Then A ⊆
⋃

n∈N
{Uαn : n ∈ N} ∪ R. Thus A =

⋃
n∈N

(Uαn ∩ A) ∪ (R ∩ A). So, clearly we

have A \ {
⋃

n∈N
(Uαn ∩ A)} ⊆ (R ∩ A) ∈ IA. Thus VA = {Uαn ∩ A : n ∈ N} is satisfying

required condition for p-IA-generator. Hence proof.

(ii) It can be established following the technique of (i).

Remark 3.2. If I = {∅} then IA = {∅}, then by Theorem 3.1, A is p-{∅}-generator.
Which implies Lemma 1. of Kilićkman and Salleh [6] and vice-versa. Similarly If A is
p1-{∅}-generator, then it implies Lemma 4. of Kilićkman and Salleh [6]

In view of Lemma 2.1 and Remark 3.1 we have the following result.

Corollary 3.1. Every second countable space is p-{∅}-generator.

Theorem 3.2. (i) Let (X, τ1, τ2) be a BS, then X is pairwise weakly Lindelöf if and
only if X is both τi-IjNi-generator and τj-IiNj-generator.

(ii) Let (X, τ1, τ2) be a BS, then X is pairwise non-weakly Lindelöf if and only if X is
both τi-IiNj-generator and τj-IjNi-generator.

Proof. (i) Necessity.
we have only to show that if X is (i, j)-weakly Lindelöf then it is τi-IjNi-generator.

Let us assume that X is (i, j)-weakly Lindelöf and let U = {Uα|α ∈ ∆} be an τi-open
cover of X. Then by Definition 2.1, there exists a countable subcollection {Uαn|n ∈ N}
such that X = τjcl(

⋃
n∈N

Uαn). Then X \
⋃

n∈N
Uαn ∈ IjNi(X). Similarly established for

(j, i)-weakly Lindelöf case.

Sufficiency

We proof that if X is τi-IjNi-generator then X is (i, j)-weakly Lindelöf.

Let U = {Uα|α ∈ ∆} be an τi-open cover of X, then by Definition 3.1; there ex-

ists a countable subcollection {Uαn|n ∈ N} such that X \
⋃

n∈N
Uαn ∈ IjNi(X). Then

X = τjcl(
⋃

n∈N
Uαn). Thus X is (i, j)-weakly Lindelöf. Similarly we can prove for τj-IiNj-

generator case.

(ii) It can be established by following the technique of proof of (i).

Theorem 3.3.(i) A BS (X, τ1, τ2) is pairwise weakly Lindelöf if and only if it is both
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τi-R-generator and τj-S-generator for some τj-codense ideal R and τi-codense ideal S.

(ii) A BS (X, τ1, τ2) is pairwise non-weakly Lindelöf if and only if it is both τi-R-
generator and τj-S-generator for some τi-codense ideal R and τj-codense ideal S.

Proof. (i) Necessity.

If (X, τ1, τ2) is pairwise weakly Lindelöf, then by Theorem 3.2(i), X is both τi-IjNi-
generator and τj-IiNj-generator. It can be checked that IjNi(X)∩τj = {∅}. So, IjNi(X)
is τj-codense. Similarly it can be shown for other case.

Sufficiency.

Let R be any τj-codense ideal and X is τi-R-generator. Let U = {Uα|α ∈ ∆} be
any τi-open cover of X. Then there is a countable subcover Uαn|n ∈ N} such that

X \
⋃

n∈N
Uαn ∈ R. As R is τj-codense ideal, so X = τjcl(

⋃
n∈N

Uαn). Thus X is (i, j)-weakly
Lindelöf. Similarly we can prove for the other case. Thus X is pairwise weakly Lindelöf.
Hence the proof.

Dvalishvili ([12, Definition 1.7],[25]) cited (i, j)-Baire space and pairwise Baire space.

In next theorem we establish the relation between pairwise weakly Lindelöf space and
pairwise σ-ideal generator under certain condition.

Theorem 3.4. Let (X, τ1, τ2) is a pairwise Baire space. Then (i) (X, τ1, τ2) is pairwise
weakly Lindelöf if and only if (X, τ1, τ2) is both τi-σjMi-generator and τj-σiMj-generator.

(ii) (X, τ1, τ2) is pairwise non-weakly Lindelöf if and only if (X, τ1, τ2) is both τi-σiMj-
generator and τj-σjMi-generator.

Proof. (i) (X, τ1, τ2) is (i, j)-Baire space and (j, i)-Baire space ⇒ X is (i, j)-CatgII

and (j, i)-CatgII .

(X, τ1, τ2) is (i, j)-Baire space and (j, i)-Baire space ⇔ σiMj(X) is τi-codense and
σjMi(X) is τj-codense. Then from Theorem 3.3(i) proof follows.

A BS (X, τ1, τ2) is said to have property * if τicl(τjcl(U)) = τjcl(U) whenever U ⊆ X
and i, j ∈ {1, 2}, i 6= j.

We state the following result without proof.

Theorem 3.5.(i) If (X, τ1, τ2) is pairwise almost Lindelöf with property * then it is
both τi-σjMi-generator and τj-σiMj-generator.

(ii) If (X, τ1, τ2) is pairwise non-almost Lindelöf with property * then it is both τi-
σiMj-generator and τj-σjMi-generator.
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In view of Theorem 3.4 and Theorem 3.5 we state the following result.

Corollary 3.2. (i) If a BS (X, τ1, τ2) is pairwise almost Lindelöf with property * and
pairwise Baire space then it is pairwise weakly Lindelöf.

(ii) If a BS (X, τ1, τ2) is pairwise non-almost Lindelöf with property * and pairwise
Baire space then it is pairwise non weakly Lindelöf.

The following result is a consequence of Theorem 3.1 and Theorem 3.2.

Corollary 3.3. (i) If A be a pairwise clopen subset of a pairwise weakly Lindelöf
space (X, τ1, τ2) then (A, τ1|A, τ2|A) is pairwise weakly Lindelöf.

(ii) If A be a pairwise clopen subset of a pairwise non-weakly Lindelöf space (X, τ1, τ2)
then (A, τ1|A, τ2|A) is pairwise non-weakly Lindelöf.

During the preparation of this present article with refer to Kilic̀man and Salleh’s ar-
ticle [6], some open questions were aroused; some of whose answers were positive and
counter example was provided by Acharjee and Papadopoulos [44] using interlocking and
nest in a bitopological space. These questions were as follows:

“What type of a countable space in a bitopological space is a p1-Lindelöf space?”. “Is
every p1-Lindelöf space implies that same type of countable space?” The positive answer
of first question and counter example of non-existence of second questions using nest and
interlocking were provided in [44]. Thus we have one theorem.

Theorem 3.6. Let (X, τ1, τ2) be a contra second countable bitopological space, then
it is p1-{∅}-generator.

Proof. Remark 3.1. and Theorem 3.1. of [44] give the proof.

Theorem 3.7. Every pairwise closed subset of a contra second countable bitopologi-
cal space is p1-{∅}-generator.

Proof. By corollary 3.1. of [44] and Remark 3.1. we have the proof.

4. Relation with perfect mapping

The following definition on perfect mapping is due to Datta [27].

Definition 4.1([27], Definition 2.1) A mapping f : (X, τ1, τ2) −→ (Y, ψ1, ψ2) is
said to be perfect if

(i) f is continuous; that is f is τ1-ψ1-continuous and τ2-ψ2-continuous.

(ii) f is compact, that is, the inverse image of every point of Y is τ1-compact,τ2-
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compact and pairwise compact.

(iii) f is closed, that is, the image of every τ1-closed (τ2-closed) subset of X is ψ1-closed
(ψ2-closed) subset of Y .

Let f : (X, τ1, τ2, I) −→ (Y, ψ1, ψ2,J ) be a function, then we denote f(I) = {f(I)|I ∈
I} and f−1(J ) = {f−1(J)|J ∈ J }. In this case f(I) and f−1(J ) are ideal of Y and X
respectively.

Theorem 4.1 (i) Let f : (X, τ1, τ2, I) −→ (Y, ψ1, ψ2) be a continuous function and
surjection. If (X, τ1, τ2, I) is p-I-generator, then (Y, ψ1, ψ2) is also p-f(I)-generator.

(ii) Let f : (X, τ1, τ2, I) −→ (Y, ψ1, ψ2) be a continuous function and surjection. If
(X, τ1, τ2, I) is p1-I-generator then (Y, ψ1, ψ2) is also p1-f(I)-generator.

Proof.(i) We only prove that if (X, τ1, τ2, I) is τi-I-generator then (Y, ψ1, ψ2) is also
ψi-f(I)-generator.

Let U = {Uα|α ∈ ∆} be any ψi-open cover of Y , Then by Definition 4.1, V =
{f−1(Uα)|α ∈ ∆} is τi-open cover of X. So by definition we have a subcollection

{f−1(Uαn)|n ∈ N} such that X \
⋃

n∈N
f−1(Uαn) ∈ I. Suppose f−1(Y \

⋃
n∈N

Uαn) = I.

So,(Y \
⋃

n∈N
Uαn) = f(I) ∈ f(I) as I ∈ I. Thus we have the proof

(ii) It can be established following the technique used in establishing part(i).

We state the following result without proof.

Theorem 4.2. Let f : (X, τ1, τ2) −→ (Y, ψ1, ψ2,J ) be a perfect, open and surjective.
Then

(i) If (Y, ψ1, ψ2,J ) is p-J -generator then (X, τ1, τ2) is p-f−1(J )-generator.

(ii) If (Y, ψ1, ψ2,J ) is p1-J -generator then (X, τ1, τ2) is p1-f
−1(J )-generator.

Lemma 4.1. If f : (X, τ1, τ2) −→ (Y, ψ1, ψ2,J ) be an open function and surjective.
If J is ψi-codense then f−1(J ) is τi-codense.

Proof. Let f−1(J ) is not τi-codense. Let f−1(J) ∈ f−1(J ) ∩ τi 6= {∅}. Then
f−1(J) ∈ τi \ {∅}. Due to surjective and open f(f−1(J)) = J ∈ ψi \ {∅}. This contradicts
the fact that J is ψi-codense. Hence the proof.

Corollary 4.1. Let f : (X, τ1, τ2) −→ (Y, ψ1, ψ2) be a perfect,open and surjective.
Then

(i)If (Y, ψ1, ψ2) is p-Lindelöf then (X, τ1, τ2) is p-Lindelöf .
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(ii)If (Y, ψ1, ψ2) is p1-Lindelöf then (X, τ1, τ2) is p1-Lindelöf .

Proof. (i) (Y, ψ1, ψ2) is p-Lindelöf implies it is p-{∅}-generator.Then the proof follows
from Theorem 4.2(i) and Remark 3.1.

(ii) Proof follows similar to the case (i)

Applying Theorem 3.3 and Lemma 4.1 one can get the following result.

Corollary 4.2. Let f : (X, τ1, τ2) −→ (Y, ψ1, ψ2) be a open and surjective. Then

(i) If (Y, ψ1, ψ2) is pairwise weakly Lindelöf then (X, τ1, τ2) is pairwise weakly Lindelöf .

(ii) If (Y, ψ1, ψ2) is pairwise non-weakly Lindelöf then (X, τ1, τ2) is pairwise non-weakly
Lindelöf .

5. On product bitopology

It is well known that every continuous mapping between p-compact spaces is p-compact
in bitopological space. One may refer to Dutta ([27], pg no- 124)

Theorem 5.1. (i) If (X, τ1, τ2, I) is p-I-generator and (Y, ψ1, ψ2) is p-compact then
(X×Y, τ1×ψ1, τ2×ψ2) is p-π−1(I)-generator where π : X×Y −→ X is a projection map.

(ii) If (X, τ1, τ2, I) is p1-I-generator and (Y, ψ1, ψ2) is p-compact then (X × Y, τ1 ×
ψ1, τ2 × ψ2) is p1-π

−1(I)-generator where π : X × Y −→ X is a projection map.

Proof. The projection map is perfect. Hence the rest follows from Theorem 4.2.

The following result is a consequence of Theorem 3.3, Lemma 4.1 and Theorem 5.1.

Corollary 5.1. (i) If (X, τ1, τ2) is pairwise weakly Lindelöf and (Y, ψ1, ψ2) is p-
compact then (X × Y, τ1 × ψ1, τ2 × ψ2) is pairwise weakly Lindelöf.

(ii) If (X, τ1, τ2) is pairwise non-weakly Lindelöf and (Y, ψ1, ψ2) is p-compact then
(X × Y, τ1 × ψ1, τ2 × ψ2) is pairwise non-weakly Lindelöf .

Corollary 5.2. (i) If (X, τ1, τ2) is p-Lindelöf and (Y, ψ1, ψ2) is p-compact then (X ×
Y, τ1 × ψ1, τ2 × ψ2) is p-Lindelöf .

(ii) If (X, τ1, τ2) is p1-Lindelöf and (Y, ψ1, ψ2) is p-compact then (X×Y, τ1×ψ1, τ2×ψ2)
is p1-Lindelöf .

Proof. (i) By Remark 3.1, (X, τ1, τ2) is p-Lindelöf ⇔ (X, τ1, τ1) is p-{∅}-generator.
By Theorem 5.1(i), (X × Y, τ1 × ψ1, τ2 × ψ2) is p-{∅}-generator. Hence the proof.
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Conclusion

In this paper we investigated that p-Lindelöf ness and p1-Lindelöf ness can be derived
by defining new classes in bitopological space. We also proved results related to perfect
mapping of bitopological space and used them in the area of product bitopology. We
have used perfect mapping to prove various results. One may understand from classical
literatures of bitopology that various types of pairwise mappings play crucial role in con-
tradiction of results related to various pairwise concept. This idea may extend on other
types of Lindelöf ness in bitopological space.These methods give a short and concrete way
to prove various results in product of Lindelöf spaces. We are hoping that this paper
will attract attentions of both topologists, economists and researchers of other branches.
The connection between countability and p1-Lindelöfness or p1-{∅}-generator will help
economists to use bitopological space, Lindelöfness etc in their respective research areas
as possible idea can be gained from [41-43] where authors studied utility functions and
various results based on compactness, Lindelöfness and other properties of general topol-
ogy and order.
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delöf bitopological spaces, Albanian J. Math., 1(2) (2007), 115-120.

[12] B. Dvalishvili, Relative compactness, cotopology and some other notions from the
bitopological point of view, Topology Appl., 140 (2004), 37-55.

[13] Z. Frolik, Generalizations of compact and Lindelöf spaces, Czech. Math. Jour.,
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in Proc. 2nd IMT-GT regional conf. on Mathematics, Statistics and their applications,
Universiti Scins Malayesia, Penag, Malayesia, June 2006.

[40] B.C.Tripathy, M.Sen and S. Nath, Lacunary-I-convergence in probabilistic n-
normed space, Journal of Egyptian Math. Soc., 23(1) (2015), 9094

[41] E. Minguzzi, Normally preordered spaces and utilities, Order, 30 (2013), 137150.

13



[42] G. Bosi, http://www.deams.units.it/en/department/people/bosi-gianni/1167
( personal web page of University of Tristie )

[43] G. Bosi and G.B. Mehta, Existence of a semicontinuous or continuous utility func-
tion: a unified approach and an elementary proof, Jour. Math.Eco, 38(3) (2002), 311-328.

[44] S. Acharjee and K. Papadopoulos, On relation between countable space and p1-
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