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Existence of entropy solutions for nonlinear elliptic equations in
Musielak framework with L' data

M.S.B. Elemine Vall, A. Ahmed, A. Touzani and A. Benkirane

ABSTRACT: We prove existence of solutions for strongly nonlinear elliptic equations
of the form
Au) + gz, u, Vu) = f + div(¢(u)) inQ,
{ u=0 0.
Where A(u) = —div(a(z,u, Vu)) be a Leray-Lions operator defined in D(A) C
W3 Ly (Q) — WLy (), the right hand side belongs in L1(12), and ¢ € CO(R,RY),
without assuming the As-condition on the Musielak function.
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1. Introduction

Let © be a bounded open subset of RY, we consider the following nonlinear
boundary problem

—diva(z,u, Vu) + g(z,u, Vu) = f — div(¢(u)) in Q, 11
u=0, 09, (1.1)

where A(u) = —div(a(z,u, Vu)) is an operator of Leray-Lions type, g is a nonlin-
earity with the sign condition but any restriction on its growth, f € L'(Q) and
¢ € CO(R,RY™). The notion of entropy solution, used in [14], allows us to give a
meaning to a possible solution of (1.1).
In the classical Sobolv spaces, Boccardo in [14] has proved the existence and
1

regularity of an entropy solution u of problem (1.1) for 2 — & < p < N, in the

particular case where g = 0, see also [13,17] for related topics.
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In the sitting of Orlicz spaces, A.Benkirane and J.Bennouna in [6] have studied
the existence of entropy solution of (1.1) where g = 0, Aharouch and Azroul [1]
studied the problem (1.1), where g = 0, for more results see [11,12].

In the Sobolev variable exponent, E.Azroul, H.Hjiaj, and A.Touzani [4] have
proved the existence and some regularity result for the problem (1.1), Bendahmane
and Wittbold in [5] proved the existence and uniqueness of renormalized solution
to the problem (1.1) in the particular case a(z, s, &) = [£[P(*)=2¢, g =0, ¢ = 0.

In Musielak Orlicz framework, M. Ait Khellou, A. Benkirane, S.M. Douiri (see
[3]) have proved the existence of entropic solution of (1.1) in the variational case
where ¢ = 0, M. L. Ahmed Oubeid, A. Benkirane, M. Sidi El Vally in [2] proved
the existence of entropy solution of (1.1) where g = 0, ¢ = 0 and the right hand
side is a measure data, recently A.Benkirane, F.Blali and M.Sidi El Vally in [7]
have solved (1.1) in the case where the Musielak-orlicz function complementary
to o satisfies the Ag-condition. For some existing results for strongly nonlinear
elliptic equations in Musielak-Orlicz-Sobolev spaces | 10, 22].

Our purpose is to generalize the result [3] and we prove the existence of entropy
solution of (1.1). We first give a proof of a Poincaré-type inequality allowing us to
prove our result (Lemma 4.4).

This article is organized as follows. In the second section we are going to
recall some important definitions and results of Musielak-Orlicz-Sobolev spaces.
We introduce in the third section some assumptions on a(zx, s,§) and g(x, s, &) for
which our problem has a solution. The fourth section contains some important
lemmas useful to prove our main results. The section 5 will be devoted to show
the existence of entropy solutions for the problem (1.1).

2. Preliminary
Let © be an open set in R and let ¢ be a real-valued function defined in

Q x R4, and satisfiying the following conditions :
a) o(z,.) is an N-function (convex7 increasing, continous, ¢(z,0) = 0, ¢(z,t) > 0,

vt >0, @—M)ast—)O, @—)ooast%oo).
b) ¢(.,t) is a measurable function.

A function ¢, which satisfies the conditions a) and b) is called Musielak-Orlicz
function.

For a Musielak-Orlicz function ¢ we put ¢, (t) = ¢(z,t) and we associate its
nonnegative reciprocal function o, !, with respect to ¢ that is

o; (p(x, 1) = oz, 0, ' (1) = t.

The Musielak-Orlicz function ¢ is said to satisfy the As-condition if for some & > 0;
and a non negative function h; integrable in ) we have

o(x,2t) < ko(x,t) + h(z) for all x € Q and ¢ > 0. (2.1)
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When (2.1) holds only for ¢ > ¢y > 0; then ¢ said satisfies A near infinity.

Let ¢ and v be two Musielak-orlicz functions, we say that ¢ dominate v, and we
write 7 < ¢, near infinity (resp. globally) if there exist two positive constants ¢
and ty such that for almost all x €

v(z,t) < @(x,ct) for all t > tg, (resp. for allt >0 ie. tg =0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity), and
we write v << ¢, If for every positive constant ¢ we have

t t
lim (sup (@, e )) =0, (resp. lim (Sup V(e )) =0).
t—0 \ zeq ©(7,1) t—oo \ zeq @(T,t)

Remark 2.1. [8] If v << ¢ near infinity, then Ve > 0 there exist k(g) > 0 such
that for almost all x € Q we have

vz, t) < k(e)p(x,et),  for allt > 0. (2.2)

We define the functional
poc(t) = / o, u() )

where u :  — R a Lebesgue measurable function. In the following the measura-
bility of a function u : @ — R means the Lebesgue measurability.
The set

K,(Q) = {u Q0 —R measurable/p%g(u) < +oo}.

is called the generalized Orlicz class.

The Musielak-Orlicz space (the generalized Orlicz spaces) L,(f2) is the vector space
generated by K, (Q), that is, L,(£2) is the smallest linear space containing the set
K,(9Q).

Equivalently

L,(Q) = {u :Q—R measurable/p%gou(;”) < 400, for some A > 0}.

Let

Y(x,s) = §1>110>{8t —p(z, 1)}

that is, ¥ is the Musielak-Orlicz function complementary to ¢ in the sens of Young
with respect to the variable s.
In the space L,(£2) we define the following two norms :

|u|¢Q—1nf{)\>O// |)d <1}

which is called the Luxemburg norm and the so called Orlicz norm by :

o= s [ utaote)jas.

lolly,0
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where 1) is the Musielak Orlicz function complementary to ¢. There two norms are
equivalent [21].
The closure in L, (€2) of the bounded measurable functions with compact support
in Q is denoted by E,(9). It is a separable space [21].
We say that sequence of functions u,, € L,(f2) is modular convergent to u € L (2)
if there exists a constant k£ > 0 such that

Up — U
lim p%g( nk: ) =0.

n—oo

For any fixed nonnegative integer m we define
W™ML,(2) = {u € L,() :V|a| <m, D% € Lw(Q)}.

and
W™ME,(Q) = {u € E,(Q) :V]a] <m, D e EW(Q)}.

where o = (a1, ..., ) with nonnegative integers «;, |o| = |ag|+ ... + |, | and D%u
denote the distributional derivatives. The space W™ L, () is called the Musielak
Orlicz Sobolev space.

Let

Y o m . — u
Pp0(u) = Z P02 (D u) and [ul|7 = 1nf{)\ >0: p%Q(X) < 1}.
laj<m
For ue W™Ly(2) there functionals are a convex modular and a norm on W™ L, (1),
respectively, and the pair (Wngp(Q), HH’;Q) is a Banach space if ¢ satisfies the

following condition [21] :

there exist a constant ¢ > 0 such that imsf2 o(x,1) > c. (2.3)
fAS]

The space W™ L,(Q2) will always be identified to a subspace of the product
[Tjaj<m Le(§2) =1Ly, this subspace is o(I1Ly, I1Ey) closed.

We denote by D(2) the space of infinitely smooth functions with compact support
in Q and by D(Q)) the restriction of D(RY) on Q.

Let Wi Lp(€2) be the o(IIL,, IIEy,) closure of D(£2) in W™ L, (€2).

Let W™ Ep(Q) the space of functions u such that u and its distribution derivatives
up to order m lie in E, (), and Wi"Ep(Q) is the (norm) closure of D(Q2) in
W™ L, ().

The following spaces of distributions will also be used :

WLy (Q) = {f eD'(Q); f= Y (-1)ID*f, with fo € L¢(Q)}.
la<m.
and

W™"Ey(Q) = {f eD'(Q); f= Y (-1)IDf, with fo € E¢(Q)}.

laf<m
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We say that a sequence of functions u,, € W™L,(f2) is modular convergent to
u € W™L,(Q) if there exists a constant & > 0 such that

. — Up — U
Jim P, 0(=5—) =0,

For two Musielak Orlicz functions ¢ and v the following inequality is called the
Young inequality [21]:

ts < o(x,t) +(x,s), Vt,s >0,z €. (2.4)
This inequality implies the inequality
lulllg. < pyalu) +1. (2.5)
In L,(€2) we have the relation between the norm and the modular
[ullp.o < pya(u) if [Jullp,o > 1. (2.6)

[ullo. 2 pga(u) if ullp,o < 1. (2.7)

For two complementary Musielak Orlicz functions ¢ and ¢ let v € L,(2) and
v € Ly(€2) we have the Holder inequality [21]

< lulle.alllolly,o- (2.8)

/Q u(z)v(z)dz

3. Essential assumptions

Let  be a bounded open subset of RV satisfying the segment property.
Throughout this paper, we assume that ¢ and v are two Musielak complementary
functions, such that

o(x,t) decreases with respect to one of coordinate of x. (3.1)

Let A : D(A) C WiLy(Q) — W™'L,(Q) be a mapping given by A(u) =
—div(a(x,u, Vu)), where a is a function satisfying the following conditions

a(z,s,6) : 2 x R x RY — R is a Carathéodory function. (3.2)
There are two Musielak Orlicz functions ¢ and 7 such that v << ¢, a positive

function hq(-) € Ey(Q2) and positive constants v, 3 such that for a.e. x € 2 and
for all s € R, £ € RY

la(z, 5,€)| < ﬂ(hl(:c) + 1, (s vls)) + vy (e, v|§|>> (3.3)

(at0:5.6) - ates.)) (6~ €) >0 (3.4
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a(z,s,€).£ > ap(z, [¢]) (3.5)

Let furthermore g(z,s,€) : @ x R x RV — R be a Carathéodory function such
that for a.e. = € 2, and for all s € R, ¢ € RY, the following growth condition

90w, 5,€)| < b(ls|) (ha(@) + ol lED)), (3.6)

is satisfied, where b : RT — R* is a continuous positive function which belongs
to LY(Q) and ha(-) € L1(9).
And g also satisfies the following sign condition

g(x,5,6)s >0, VseR,VEERY, ae. z€q. (3.7)

Let
ferL(n). (3.8)

Et
¢ : R — R" continuous. (3.9)

4. Some technical Lemmas

Lemma 4.1. [9]. Let Q be a bounded Lipschitz domain in RY and let ¢ and 1
be two complementary Musielak-Orlicz functions which satisfy the following condi-
tions:

i) There exist a constant ¢ > 0 such that inf,cq o(z,1) > c.

i1) There exist a constant A > 0 such that for all x,y € Q with |z —y| < % we have

pla,t) tl(ﬁ) vt > 1. (4.1)

)

If D C Q is a bounded measurable set, then / oz, 1)de < co.  (4.2)
D

iv) There exist a constant C > 0 such that Y(x,1) < C a.e in 2.

Under these assumptions, D(Q) is dense in L,(Q) with respect to the modular
topology, D(?) is dense in Wi Ly(Q2) for the modular convergence and D(S) is
dense in WYL, (Q) the modular convergence.

Consequently, the action of a distribution S in W~1L,(2) on an element u of
Wi L,(9) is well defined. It will be denoted by < S, u >.
Truncation operator. For £ > 0 we define the truncation at height k: T : R — R
by:
s if [s] < k.

Tk(s){ ke ifls] > k.

(4.3)
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Lemma 4.2. [§]. Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Let
¢ be a Musielak- Orlicz function and let w € Wy L,(2). Then F(u) € Wy Ly(Q).
Moreover, if the set D of discontinuity points of F' is finite, we have

0 B F'(u)% in{x e Q:u(x) € D}.
6xiF(u) B { 0 ain {r € Q:u(zx) € D}.

Lemma 4.3. [3]. Let (f,), f € L'(Q) such that
i) fn >0 aeinQ.

ii) f, — f a.cin Q.

i) [y fu(@)(de — [, f(2)da.

Then f, — f strongly in L'(Q).

Lemma 4.4. Under the assumptions of lemma 4.1, and by assuming that o(z,t)
decreases with respect to one of coordinate of x, there exists a constant ¢ > 0 which
depends only on  such that

/cp(:c, lu(z)|)dx < / o(z, c|Vu(z)|)dz  Yu € Wy L, (Q). (4.4)
Q Q

Proof: Since ¢(z,t) decreases with respect to one of coordinate of x , there exists
iop € {1,..., N} such that the function 0 — @(@1, ..., Tig—1,0, Tig41s s TN, T) 1S
decreasing for every xi, ..., Zi,—1, Tig+1, ---» Ny € R and V¢ > 0.

To prove our result, it suffices to show that

/Qgp(:c, |u(z)|)d:cg/ﬂgp(z,2d]aii (x)Ddx, Yu € WL, (Q). (4.5)

where d = max (diam(Q), 1) and diam(€?) is the diameter of €.
First suppose that u € D(Q), then

oz, |u(zy, ...,xn)|)

(p(x,/jio ou

8%

/+°0 go(:c,d‘

oo

IN

(X1 ooy Tig—1, Ty Tig+1, ...,xN)da),

IN

1 ou
p i (T1y ooy Tig—1, 0, Tig41, .-y TN ) |do

(acl, s Lig—150, Tjy+1, ...,.Z‘N))dO'.

Feo ou
SE/ SD(-TI;-"axio—laaaxio-i-la"'axNad’aTio

— 00

By integrating with respect to x, we get

/ o(z, |u(z, ..., zN)|)dz
Q

1 [T ou
S - ga(l'l,...,1'7;071,0',1'7;0+1,...,:EN,d‘— (581,...,:82'071,0',1'7;04@,...,iL'N))dO'd:E,
Q d —o0 axio
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since <p(x1, ey Tig—15 Oy Tigt1y ooy TN d’ B ‘(ml, vy Tig—15 Oy Tig 41, ...,xN)) indepen-
dent of z;,, we can get it out of the 1ntegral to respect of x;, and by the fact that
o is arbitrary, then by Fubini’s Theorem we get

| etatu@hids < [ o(o.d 5@

For u € W3 L,(f2) according to Lemma 4.1, we have the existence of u,, € D(Q)
and A > 0 such that

))dw, Vu € D(9). (4.6)

_ Up — U
Q%Q(T) =0, asn— 400,

hence

ngp(z M)dzﬂo, as n — +00,

ngo( M)d90—>0, as n — +o0,

u, — u a.ein , ( for a subsequence still denote u,,).

Then, we have
/‘P(ﬂc |u($)|)dm < hmmf/ x [un( )
Q T 2d\ T n—+oo T 2d)\

(
it [ o 23 i @]

<
Ju Ju ou
1 1| 0u, ou
< 2 limi - -
- 2 7}12}1}_150 /Q 90(567 A 6:51-0 (ZL') 6:51-0 (SC)DdZL‘

+ %/ﬂgﬁ(m,% %(x)‘)dm

/ng(x,% %(x)‘)dx

Hence

/ng(x, |u(ac)|)dac < Ag@(x,Qd‘aa;:U (m)‘)dm, Vu € Wy Ly(Q).

d

Lemma 4.5 (The Nemytskii Operator). [3]. Let 2 be an open subset of RN with
finite measure and let  and 1 be two Musielak Orlicz functions. Let f : Q@ xRP —
RY be a Carathéodory function such that for a.e. x € Q and all s € RP :

f(,8)] < e(@) + ki p(a, ko s)), (4.7)
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where k1 and ky are real positives constants and c(.) € Ey ().
Then the Nemytskii Operator Ny defined by Ny(u)(x) = f(z,u(x)) is continuous
from

(T(Ew(Q), k%)p =11 {u € Ly,() : d(u, E,()) < k%}

into (Ly(Q))? for the modular convergence.
Furthermore, if c(-) € E,(Q) and v << 1, then Ny is strongly continuous from

(oB.@.2) 10 (B, @)

Lemma 4.6 (Technical Lemma ). Assume that (3.2)...(3.5) are satisfied, and let
(2n)n be a sequence in Wi L,(Q) such that

i) zn — 2 in Wi Ly(Q) for o(IIL,, I1IE,).

ii) (a(:, 2n, Vzn))n is bounded in (Ly,(Q2))N.

iii) [, (a(m, Zn, Vin) — a(z, zp, VzXS)) (Vz, —Vzx,)dz — 0 as n, s — oo.
where x4 is the characteristic function of Qs = {x € Q: |Vz| < s}.

Then, we have

zn — 2 for the modular convergence in Wong,(Q).

Proof: Let s > 0and Q, = {z € Q: |Vz| < s} and denote by x, the Characteristic
function of €.
Fix r > 0 and let s > 7, we have

0 < /Q (a(x, Zn, Vzn) — a(x, zn, Vz)) (Vz, — Vz)dx
< /Q (a(m, Zn, Vzp) — alx, 2, Vz)) (Vz, — Vz)dx
= /Q (a(az, Zn, Vzp) — alx, 2, szs)) (Vz, — Vzx,)dz
< /Q (al@, 20, Vzn) = alw, 20, V2x,) ) (V20 — Vax,)de.

By iii), we obtain

lim (a(:c, Zn, Vzn) — a(x, 2, Vz)) (Vzy, — Vz)dx = 0.

n—r-o0 Q
r

So as in [18], we have
Vz, — Vz a.e. in Q. (4.8)



134 M.S.B. ELEMINE VALL, A. AHMED, A. TOUZANI AND A. BENKIRANE

On the one hand, we have

/ a(x, 2, Vz)Vepdr = (a(:c, Zn, Vzn) — a(x, 2, szs)) (Vzp, — Vzx,)dz
Q

+ a(x, 2n, Vzx,)(Vz, — Vzx,)dz

S~ 5—

+ / a(z, zp, Vzn)Vzxde. (4.9)
Q

Since (a(-, zn, V25))n is bounded in (L, (2))Y and using the almost every where
convergence of the gradients we obtain

a(z, 2, Vz,) = a(z, 2, Vz) weakly in (Ly(Q))Y for o(IILy, TIE,).

Which implies that
/a(z,zn,Vzn)szsdx — / a(x,z, Vz)Vzydx. (4.10)
Q Q
Letting s — 0o, we obtain

/ a(x,z,Vz2)Vax,de — | a(z,z,Vz)Vzdz. (4.11)
Q Q

On the other hand, it is easy to see that second term of the right hand side of (4.9)
tends to 0, as n — oo. Consequently, from i), (4.10) and (4.11), we have

/ a(x, 2n, Vzn)Vapdr — / a(x,z,Vz)Vzd. (4.12)
Q Q
Using (3.5) and the convexity of ¢, we have

n — 1 1
acp(x, w) < 5&(:0, 2n,Vizn) Vi, + ia(:c, 2,Vz)-Vz.

Then by (4.12), we get

lim sup/ <p(:c, w)dm = 0.
E

meas(E)—0 peN 2
Then by using Vitali’s theorem, one has

2, —> z for the modular convergence in Wy L, (€2).
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5. Main results

In the sequel we assume that €2 is an open bounded subset of RN (N > 2), and
let ¢ and ¥ be a two complementary Musielak Orlicz functions. We consider the
following boundary value problem

A(u) + g(.,u, Vu) = f + div(¢p(u)) in Q,
(P) { ! u=0 on 0.

We will prove the following existence theorem

Theorem 5.1. Let ¢ et 1) be two complementary Musielak Orlicz functions satis-
fying the assumptions of Lemma 4.1, we assume that (3.1)-(3.9) hold true. Then
the problem

Ti(u) € Wi Ly(Q2), Vk>0
Jo al@,u, Vu) - VI (u —v)dz + [, g(z,u, Vu)Ti(u — v)dz
< Jo [Ti(u—v)dz + [, ¢(u)VTi(u —v)dx
Yo € WEL,(Q) N L®(Q),

(5.1)

has at least one solution.

Proof:
Step 1 : Approximate problems.

We consider the following approximate problems

(Pn) { —div (a(m, Un, vun) + ¢n(un))1 + gn(-a Un, vun) = fn in Qa
un € Wo Lo (Q),
where (fn,) is a sequence in W1 E,(Q) N LY(Q) such that f,, — f in L1(Q) with
[fallt < [1£ll1s @n(s) = ¢(Tn(s5)) and gn(z,s, &) = Tn(g(z, 5,€)).

From A. Benkirane, M. Sidi El Vally in [8], then the problem (P,) has at least one
weak solution u, € Wi L, ().

Step 2 : A priori estimates

Taking T (u,) as a test function in (P, ), we obtain
/ a(x, up, V) - VI (uy)de  + / In (2, Up, Vg ) Tr (uy,)da
Q Q
- / fuT () + / G (tn) - VT ()
Q Q
Thanks to (3.7), we have

/ a(x, U, Vi) - VT (u,)de < / T (uy)dx +/ ¢ (un) - VT (uy,)dx
Q Q Q
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/ FaTi(un)ds < ||l - K

Taking ¢, ( = [y &n(7)dr, then ¢,,(0) = Og~ and ¢, € C*(RN). By the Diver-
gence T heorem (see also [L)]) we obtain
fﬂ ) VT (up)dx = fQ dw & (Ti(uy)))dx

= faQ ¢ Tk(“n)) T dz
-V (fm¢ (Ti(u nldx) —0,

~ ~ ~N
since u = 0 on 99, with ¢,, = (qﬁ,ll, vy ) and 7 = (ny,...,ny) the normal vector
on 0f).
Then, we have

[ 4t Vua) - VTiun)do < Loy -k (5.2)
Q
Hence, by using (3.5), we have
I £l (o)
oz, |V (uy)])de < - k (5.3)
Q

Assuming the existence of a positive function M such that lim;_, o @ = 400
and M (t) < essinf,ecq ¢(x,t), Vt>0.

Then, we have
k
/ M(—)dm
{lunl>k} ¢

M(%)meas{|un| > k)

< / ar (Helenly g,
Q c

< el

< /Q ga(z, |VTk(un)|)dz, ( using Lemma 4.4)
||f||;<ﬂ) -k, (using (5.3)),

where this ¢ is the constant of Lemma 4.4.

Then
£l - &

()

meas{|un — Uy | > 5} < meas{|un| > k} + meas{|um| > k}

meas{|un| > k} < — 0, ask— 40 (5.4)

Since Vd > 0

n meas{|Tk(un) — Ti(um)| > 5}
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Using (5.4), we get Ve > 0, there exists kg > 0 such that

meas{|un| > k} <, meas{|um| > k} < VEk > ko(e), (5.5)

< <
3 3’
By using (5.3) the sequence (T (uy,)), is bounded in Wy L, (), then there exists
v, € Wi Ly(Q) such that

(5.6)

Tr(un) — vg in Wi Ly (2) for o (1L, I1Ey,)
Ty (un) — vy strongly in E,(Q).

Therefore, we can assume that (7% (uy))n is a Cauchy sequence in measure in €2,
then for all £ > 0 and §,e > 0 there exists ng = ng(k, d,£) such that

meas{|Tk(un) — T (um)| > 5} << Vmn>ng (5.7)

<
3 )
Combining (5.5) and (5.7), we obtain that for all §,e > 0, there exists ng = ng(d, )
such that

meas{|um — Uy | > 5} <e, Vn,m >ng.

It follows that (u,), is a Cauchy sequence in measure, the there exists a function
u such that

{ Ti(un) — Ti(u) in Wi Ly(Q) for o(I1L,, I1E,)

Ty (un) — Tr(u) strongly in E, (). (5-8)

Step 3 : Boundness of (a(z, Tk (un), VTi(un)))n in (Ly ()Y

Let w € (E, ()" be arbitrary such that ||w|,q <1, by (3.4) we have

(a(z, Th(tn), VTio(un)) — a(z, Tio(un),

NS

))(VTk(un) _ %) > 0.

hence

IN

/ a(x, Tr (un), VTk(un))Ed:c / a(x, Ty, (un), VI (un))VTE(up)dx
Q v Q

- [ el Tutun).

NS

)V T () — %)d:c.
(5.9)

On the one hand, thinks to (5.2), we have

/Qa(z, T (un), VT (un)) VT (uy)dx < ck.
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On the other hand, for A large enough (A > (), we have by using (3.3).
a(z, Tk (uy),%
f9¢x( ( kB(/\ : V))dx

[ (ﬁ(w) 0 (v T ) + v (s ) o

- 3
b b () + 5 (1@, | T () ) + 5 (p(, [w])
B

< B3N ( o Y, (ha(z))dx + /Q Y(z, v| Tk (un)|)dz + /Q o(x, |w|)dx>

< g [ e+ [ s+ [ o upa).

Now, since 7y grows essentially less rapidly than ¢ near infinity ad by using the
Remark 2.1, there exists r(k) > 0 such that vy(z,vk) < r(k)e(x,1) and so we have

fQ b, (a(maTkg(;ln)v%) ) dr

< g [ vtmtonds 40 [ otoans [ otafuliaz).

hence a(z, Ty (uy), 2) is bounded in (L (€2))V.

Which implies that second term of the right hand side of (5.9) is bounded, conse-
quently, we obtain

/ a(z, T (un ), VT (un))wdz < cs(k),  for all w € (L, (Q))N with [|w]|yq < 1.
Q

Hence by the theorem of Banach Steinhous, the sequence (a(x, Ty (ur,), VI (tn)))n
remains bounded in (Ly ().
Which implies that, for all k > 0 there exists a function I, € (L (Q))" such that

a(z, Ty (un), VTk(uy,)) — I, weakly in (Ly(Q))Y for o(TILy, IEp). (5.10)
Step 4 : Mean convergence of truncations
In the sequel, we denote by ¢;(n), i = 1,-- -, various real functions which converge
to 0 as n tends to infinity.
2
Let n,.(s) = sexp(os?) where o = (S—Z) and by, = sup{b(s) : |s| < k} it is obvious
that

Mi(s) = —Im(s)| = 5, VseR (5.11)

Q
Do | =

Let Qs = {z € Q : |VTi(u(x))] < s} and denote by x, the characteristic function
of Qs, it is easy to show that Qs C Q441 and meas(2\ Q5) — 0 as s tend to
infinity, and x, denotes the characteristic function of the subset €.
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Denote by €;(n,s)(i = 0,1,2,...) various sequences of real numbers which tend to
0 when n and s — o0, i.e

lim lim ¢g;(n,s) =0.

S§—>00 N—> 00

We consider h > k > 0 and M = 4k + h, we set
W = Tok (tn — Th (tn) + Th () — Tk(u)).

Taking 7, (wy,) as a test function in (P,), we obtain

/ a(z, un, Vuy,) - Vwpn), (wy,)dz +/ Gn (X, Uy Vg )0y, (W) dx
Q Q

- / Fu(wn)da + / 6 11n) - Ve (wn )
Q Q

It is easy to see that Vw,, = 0 on {|u,| > M} and since g, (z, un, Vuy) -1 (w,) >0
on {|un| > k}, we have

[ ate Tastun), VTas(ua)) - Vst + [ ga(oun, Vgl )do
Q {lunlgk}
S/fnnk(wn)dx+/¢n(un)~an77;€(wn)d:c. (5.12)
Q Q
We have

Jo a(@, Tag(un), VTar(un)) - Vwun,(wn)dz
= / a(z, Te(un), Vi (un)) - Vo (un — Ti(u))n) (wy,)dz

{lun|<k}
+ / (e, Tas (), V01 () - ¥ T (tn = Th () + T (1) = To() ) (1)

{lun|>k}

(5.13)
On the one hand, since |u,, — Tk (u)| < 2k on {|u,| < k}, we have
/ a(x, Ti(un), VIk(un)) - Vo (un — T(w))ny (wy)de
{lun|<k}

/{l . a(z, Ty (un ), VT (un)) - V(Ti(tn) — Ti(w))n) (wy,)da

53\

a(z, Tk (un), VTi(un)) - V(Tk(un) — Ti(w))n, (wy,)dz

(5.14)
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Since 1 < 0. (wy) < 0} (2k), it follows that

_ /{ . a(@, Ti(wn), VTi(un)) - V(Th(un) — Tr(w))n), (wy)do

/{ >k} a2, T (un), Vi (un)) - VTk ()i (wn)da
< 772(2/@)/ la(x, Ty (un), VT (un) ||V Tk (u)|dx.
{lun|>k}

Then by (5.10), we have
a(z, Ty (un), VT (un)) — U, in (Ly(Q)N for o(TIL,, TIE,,).

Then
/ la(x, Tk (un), VI (un)) || VT (u)|de — / Ik VT (u)|de = 0,
{lun|>k} {lu>k}
and we obtain
/ a(z, T (un), VTk(un))V(Tk(un) — Tk(u))nﬁc(wn)dx <eop(n). (5.15)
{lun|>k}

On the other hand, for second term on the right hand side of (5.13), and taking
Yn = Up — Th(un) + T (un) — T (u)a we obtain

/{‘ . a(z, Tar (un), VTM(“n))U;g(wn)VTgk(yn)dx

a(, Tar (un), VT () )0 (wn) VTok (yn ) dac

Il
—

{lun|>k}N{{yn|<2k}

(@, Tar (n), Vs ()7 () ¥ (10 = T (1) + T () = T (1) ) dv
{lun|>k}n{lyn|<2k}

Il
—

— S

(@, Tar (n), Vs ()0 () ¥ (0 = T0) )X 5y 0

lun|>k}0{lyn|<2k}

a(@, Tar (un ), VTor (wn )1 (Wi ) V Tk (W) X | <1y
un |>k}N{|yn|<2k}

{
(@, Tar (un), VTt () Tt (), (0) Xy 51 0

Il
—

{lun|>k}N{lyn|<2k}

a(@, Tar (un ), VTar (wn )1 (i) V Tk () X {4 |5 1y 4T
un |>k}N{|yn|<2k}

a(@, Tar (un), VI () )0 (W) VI (W)X, <h)

|
S

{

|
—

{lun|>k}N{lyn|<2k}

<= [ e T ), T )V T ) i ) (5.10)
{lun|>k}
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By combining (5.13)-(5.16), we obtain
/(a(z,TM(un),VTM(un))n;(wn)and:c
)
> / a(x,Tk(un),VTk(un»n;(wn)(VTk(un) - VTk(u))dz
Q
*/ la(@, T (un), VT (wn) ||V Tar (w) |0 (wn)dz — eo(n),
{lun] >k}
which implies
o€ i, 9T e Titw), 9T 0| (V0) = 9T 01, )
< [ e Tarun), VT )|V T ()
{lun|>k}
+/Qa(m,TM(un),VTM(un))ann;(wn)dx
- /Q a(x,Tk(un),VTk(u)Xs)(VTk(un) fVTk(u))n;(wn)dx
- /Q a(@, Ti(un), VT(n) - (VTk(w)x, = VT(w) ) (wa)de
+ [ e i), TTL@x) (TTL@Y, = V700 )i (w0 + co(n).
We obtain
- o€ T, V70 e, Titw), 9T )| (VT0) = 9T 01, )

< 1, (2K) /{ e T, VT ) [T

+/Qa(m,TM(un),VTM(un))ann;c(wn)dx
Jr??k(?"«‘)/Q |a(z, Ty (un), Vi (u)x )|V Tk (un) — VT (u)|dz
—/ a(x, Ti(un), VI (un)) - (VTk(u)XS - VTk(u))dx
Q
+ /Q a(z, T (un), VTk(u)xs)<VTk(u)xs - VTk(u))dac + eo(n). (5.17)

Now, we study each term on the right hand side of the above inequality. For the
first term, we have

la(z, T (un), VI (un))| = [Im]  in Ly (),

and since p(z, [VTi (0) [ X{ju, >k1) S@(@, [VTi(u)]) and o (2, VT (W)X {ju, ) >k)) —
0 a.e in €2, by the Lebesgue dominated convergence theorem, we deduce that

VT(un)X{jun sk —> 0 in Ly(R), asn — oo,
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which implies the first term in the right hand side of (5.17) tends to 0 as n tends
to infinity, and we can write

. (2k) /{l o la(x, Tar (wn), VI (un)|| VT (u)|de = e1(n). (5.18)

For the third term of the right hand side of (5.17), we have by using (5.10) and
the fact that VT (u,) tends weakly to VT (u) in (L,(2))" and by Lemma 4.5
a(x, Ty (un), VIk(w)x,) tends to a(z, Ty (u), VT (u)x,) strongly in (Ey(Q))V.
Then we obtain

7}2(2]{)/ la(x, Tr, (un), VI ()X )| VTk(un) — VT (u)|de — 0 as n — oo,
Q
then

n?c(Qk)/ la(x, Tk (un), VI (W)X ) VTk(un) — VT (u)|dx = e2(n). (5.19)

Q
For the fourth term on the right hand side of (5.17) and by using (5.10)we have
/ a(x, T (un), VI (un)) - (VTk(u)XS - VTk(u))d:E
Q
— / Uy, - (VTk(u)XS - VTk(u))dz.
Q
Then, by letting s to infinity, we obtain
/ a(z, Ty (un), VTi(un)) - (VTk(u)xS - VTk(u))dz = e3(n, s). (5.20)
Q

For the fifth term on the right hand side of (5.17) and by using Lemma 4.5, we
have

/ a(z, Ti(un), VTk(u)xS)(VTk(u)xS - VTk(u))dz
Q
~ | a(z, Te(w), VTk(w)y,) (VTk (u)x, — VTk(u))d:c
Q

Then by letting s to infinity, we obtain
/Q az, T (un), VTk(u)XS)(VTk(u)XS - VTk(u))d:c = ea(n, s). (5.21)
By (5.17)-(5.21), we deduce that
[ Tut), 9 70000)) = ol T, VT 000) | (Vi) = T, )

< / a(@, Tar (un), VT (un)) Vwnny (wn)dz + e5(n, s). (5.22)
Q
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Now, we turn to the second term on the left hand side of (5.12). By (3.6) we have

‘ / gn($7un,Vun)nk(wn)dx
{lun|<k}

< /{\un\gk} b(|unl) [hz(x) + o(z, |VTk(un)|)] 7, (wn)|dz

b [m) et 19T e

IN

br.
b et [ o T VT ) - T
= /{\un\sm 2 @)l (el
+%/Qa(l’,Tk(un)7VTk(u)Xs)(VTk(un)—VTk(u)Xs)mk(wn”dx

+% Q|:a($, Tk(un)7VTk(un)) —a(az, Tk(un)7VTk (U)Xs):| (V:FlC (un) —VT (U)Xs) |77k(wn)|dx

b
2 [ 0l Tulwn), V) VI, e () o
Q
Then

/. [au,Tkmn),vmun»fa<x,Tk(Un>7 v k<“)xs)] (V73 (un) = P Tl (w0 o

> \ [ antmun Van e~ b [ el )i
{lun|<k} {lun|<k}
b
2O T (), VT (w)x,) (VT (n) — VT, )l () e
a Jo

_%/ a2, T (), VT (un)) T () X 7 (100 e (5.23)
Q

As in (5.20) and (5.21), we have

b
= e, T(wn), VI (VT () = VT, ) I (wa) [dz = 6(n. ),
Q
(5.24)
and )
Ek a(x, T, (un), VI () VT () x4 |05 (wn)|de = e7(n, s). (5.25)
Q
By letting n to infinity, we obtain
/ ha (@) |0y, (wn)|de — ha (@) |y, (Tor (u = Tr(u)))|dz = 0. (5.26)
{lun|<k} {lul<k}

Concerning the third term on the right hand side of (5.23), we have

/Q a(, T (un), VT (w)x,) (VTk(un) = VTk()X, ) i (1) d

< g (2F) /Q |a (@, Th(un), VIk(w)x )|V Tk (un) — VTi(u) x| d,
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from (5.19), we have as n goes to infinity
/Q (e, Te(un), VT (w)x,) (VT () — VT ()X, ) )z — 0. (5.27)
For the last term of the right hand side of (5.23), by using (5.10) and the fact that
VT ()X [k (wn) | — VTe(w)x [ (Tor(u = Ti(w)))| = 0 in (Byp(Q))",
we have
| e i), VL) VT ) )

— / VT (uw)x|ne (Tog (uw — Th(w)))|de = 0. (5.28)
Q

Combining (5.23)-(5.28), we obtain

by
aJo

2 ‘ / gn(%umvun)nk(wn)dx
{lun|<k}

. i), V) = ) VT )| (V) =V (0. ) iy )

+es(n, s). (5.29)

Thanks to (5.12), (5.22) and (5.29), we obtain
/ [a(x,Tk(un), VT (un)) — a(z, T (un), VTk(u)Xs)} (VTk(un) - VTk(u)XS)
Q
() = 2 () )

< [ ale, Tis () Tar () 10, Vo \ [ g Ve wn)ie
Q {lun|<k}

+e9(n, s)

< [ fomtwadz s [ o (T (wn) Vionde + e, ). (5.30)
Q {lun|<M}
Using the fact that w, — Ta,(u — Th(u)) weakly in L°°(Q), then
/ Juny (wp)dr — / Ing(Top(u — Th(uw)))de  as n — oo, (5.31)
Q Q

and for n large enough ( for exemple n > M), we deduce

/ (T ()1 (1) Vol = / O(Tar () (1) Vi .
Q {lun|<M}

It follows that
R TAT (5.32)
Q

— /Q(b(TM(u))n;C(TQk(u — Th(w)))VTog(u — Th(u))dx as n — oo.
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Combining (5.11), (5.30) and (5.32), we obtain
%/ﬂ {a(x,Tk(un),VTk(un)) - a(x,Tk(un),VTk(u)Xs)] (VTk(un) - VTk(u)Xs)dx
< [ Tt = T ()i
+ /Q A(Tar ()0, (Tor (u — Th(w)))VTok (u — Th(u))dz + £9(n, s). (5.33)

Taking ¢(s) = [y ¢(7)n' (7 — Th(7))dr, then ¢(0) = Og» and ¢ € C*(R"). By the
Divergence Theorem (see also [15]), we obtain

/Q (Tt ()i (Tt — T () ¥ Tare (s — T ()
-/ o(w)y(u — Ty () Vude
h<u<2k+h
- / O(Tor s (W) (Toppn () — Th(w)) Vudz
|u|<2k+h
- / T T3 0) = Ti0) VT )
:/diva(Tngrh(u))d:c—/diva(Th(u))d:c
Q Q
- /6 (o) e = [ G () e

o0

=3 ([ uTasn(w)mide ~ [ G(Tu(w)mide) =0,

= \oa 20
since u = 0 on A, with ¢ = (¢,,...,¢x) and 7 = (n1,...,ny) the normal vector

on 0.
Then, by letting h to infinity in (5.33), we obtain

/Q {a(z, Ti(un), VT (up)) — alz, Tr(un), VTk(u)xs)}
x (VTk(un) - VTk(u)xs)d:c 0, (5.34)

as n —» 00.
Then by using Lemma 4.6, we obtain

o (5 IV ()] ) — (- [V T(w)]) strongly in L'(Q). (5.35)
Then by Lemma 4.4, we have

Ti(un) — Ti(u) in Wy L,(Q2) for the modular convergence. (5.36)
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Step 5 : The equi-integrability of g, (z,u,, Vuy,).

From (5.36), we have
Vu, — Vu a.e. in . (5.37)

To prove that
gn (2, Un, V) — g(z,u, Vu) strongly in  L'(€),

using the Vitali’s theorem, it is sufficient to prove that g¢,,(z, u,, Vu,,) is uniformly
equi-integrable. Indeed, taking Ti(u, — Th(u,)) as a test function in (P,), we
obtain

/ a(z, Un s vun)VTl(un - Th(un)) dx + / gn(l', Un, vun)Tl (un - Th(“n)) dz
Q Q

= ) oy (uy — Th(uy)) do + i Oy (U )VT1 (U, — Th(uy)) dz,
2 2

which is equivalent to

/ a(m, U, vun)vun dxr + / gn(l', U, vun)Tl (un - Th(un)) dx
{h<|un|§h+1} {hglunl}
= fuT1 (wy — T (uy)) do + / o, () Vg, dx.
{h< unl} {h<|un|<h+1}

t
Taking ¢, (1) :/ ¢,(7) d7, then ¢,(0) =0xr~y and ¢, € C'(R,RY), in view

0
of the Divergence theorem, we obtain

/ @, (Un )V, da :/ @, (Un )V, do
{h<‘un|§h+1} {lunlgh‘i‘l}

— @ (Un )V, da
{lun|<h}
- / O (Ther (4n)) VT 41 (1)
—/Q G (Th (un)) VT (uy) do
- / div By (T (un)) ez — / div B, (Th () d
(9] Q
- / B (T (un)). 7 do

B o
7 &, (Th(up)). 7 do =0,
o0

since u, =0 on 99, with ¢, = (¢,.1,-..,¢, ), and since

/ a(x, up, Vi) Vu, de > 0.
{h<|un|<h+1}
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Then

/ |gn(x,un,Vun)|d:E
{h+1<]unl}

|gn €T Unvvun”Tl( Th(un)) dx

IN

|gn (2, tp, Vun )| T1 (un — Th(un)) da

§h+1<un}

h<|un|}

[full Ty (un — Th(un))| dx
h<|un|}

|ful de.
{hglunl}

Thus, for all § > 0, there exist h(J) > 0 such that

IN

P
/ 90 (&t V)| dr < . (5.39)
{(h(&)<[unl} 2
For any measurable subset E C €2, we have
[t unias < [ b(k) (ha(z)
E En{|un|<h(d)}
bl [Vl do+ [ 90 (2 t, V)|
{Jun|>h(6)}
(5.39)

Thanks to (5.37), there exists S(4) > 0 such that

/ bR (o) + (o, (V) i < 3
En{|un|<h(d)}

Finally, by combining (5.38) — (5.40), we obtain

for meas(E) < (). (5.40)

/ |gn (2, U, Vuy,)| de < 0, with  meas(E) < 5(9). (5.41)
E

Then (gn(x, un, Vuy,))n is equi-integrable, and by the Vitali’s Theorem we deduce
that
In (@, Un, Vuy) — g(z,u, Vu) in L'(Q). (5.42)

Step 6 : Passage to the limit.
Let v € WiLy(2) NL>®(Q) and A=k + [|v] with k&> 0, we will show that

1inr_1>inf/ a(x, Up, Vg ) VT (u, —v) de > / a(x,u, Vu)VTi(u — v) d.
If |un| > Athen |u,—v| > Jup|—||v||cc > k, therefore {|u,—v| < k} C{|u,| < A},
which implies that

a(m, up, Vup ) VT (up —v) = a(®, tn, Vun)V(Un = )X {0, o<k}
= a(z, Tx(un), VIx(un)) (VT2 (Un) = VO)X{ |0, —v|<k}-
(5.43)
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Then
/a(x Un, Vg ) VT (un —v) do /a z, T (un) VA (un)) (VI (un) = V)X {0 — 0| <k} 4T
Q Q -
= /Q( a(@, Tx(un), VIx(un)) = a(a, Ta(un), VO)) (VT (un) = VU)X (|0, —o|<ky 4T
+/ a(z, Tx(un), VO)(VTx(un) — VU)X {0 —0| <k} 4
Q
(5.44)

We obtain

n——+00
> /Q(a(x,TA(u), VT (u)) —a(z, Th(u), Vo)) (VT (u) — VU)X{IuwISk} dx

+ lim a(@, Tx(un), VO)(VTx(un) = VU)X {ju, —v|<k} T

n—-4oo Q

lim inf/ a(x, up, Vg, ) VT (u, — v) dz
Q

(5.45)
The second term in the right hand side of (5.45) is equal to

/Q a(z, T (u), Vo) (VIx(u) = VU)X { |y <k d.

Finally, we get

n——+oo

lim inf/a(a@umVun)VTk(un—v)dx Z/a(x,TA(u),VTA(u))(VTA(u)—VU)XHUHJK,C} dz,
Q Q -

a(z,u, Vu)(Vu — VU)X jy—p)<k} 47
; <

= / a(z,u, Vu)VTi(u — v) dz.
Q

Now, taking T (u, — v) as a test function in (P,) and passing to the limit, we
conclude the desired statement. O
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