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Sliding window convergence and lacunary statistical convergence for

measurable functions via modulus function
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abstract: In this paper we study the concepts of sliding window convergence for
real valued measurable functions defined on [0,∞) via modulus function. We also
establish some inclusions and consistency theorems for sequential methods along
with examples. Finally, we give a Cauchy convergence criterion.
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1. Introduction and Preliminaries

A function M : [0,∞) → [0,∞) is said to be a modulus function if it satisfy the
following conditions:

1. M(x) = 0 if and only if x = 0,

2. M(x+ y) ≤ M(x) +M(y), for all x, y ≥ 0,

3. M is increasing,

4. M is continuous from the right at 0.

It follows that M must be continuous everywhere on [0,∞). The modulus function
may be bounded or unbounded. For example, if we take M(x) = x

x+1 , then M(x) is
bounded. If M(x) = xp, 0 < p < 1 then the modulus function M(x) is unbounded.
For more details about modulus function and sequence spaces one may refer to (
[4], [6], [10], [22], [25], [26]) and references therein.
The concept of statistical convergence was introduced by Steinhaus [28] and Fast
[10] and later reintroduced by Schoenberg [27] independently. In recent years, sta-
tistical convergence was discussed in the theory of Fourier analysis, ergodic theory,
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number theory, measure theory, trigonometric series and Banach spaces, e.g. ( [1]–
[3], [16]– [18]) .The corresponding notion of convergence for function of a real vari-
able was established in ( [7], [8]) and recently investigated by Mòrlicz [23] . Fridy
and Orhan ( [14], [15]) introduced lacunary statistical convergence, with some of
their result constructing on the work of Freedman et al. [12]. For latest work on
the related topic can be found in [5], [19], [20], [21]. In this paper we encompassed
Fridy and Orhan’s work into more general settings of functions of a real variable
by using an modulus function.
In this article we denote (γ, η) as a sliding window pair provided:
(1) γ and η are both nondecreasing, nonnegative real-valued measurable functions
defined on [0,∞),
(2) γ(r) < η(r) for every positive real number r, and η(r) tends to infinity as r

tends to infinity,
(3) lim infr(η(r) − γ(r)) > 0 and
(4) (0, η(r)] = ∪{(γ(s)− η(s)] : s ≤ r} for all r > 0.
Suppose Ir = (γ(r), η(r)] and η(r)−γ(r) = µ(Ir), where µ(A) denotes the Lebesgue
measure of the set A.

Let M be a modulus function, p be positive real number then we define the following
definitions:

Definition 1.1. Let (γ, η) as a sliding window pair and g : [0,∞) → R a measur-
able function. Then:
(1) The function g is N(γ, η,M, p) summable to L and write N(γ, η, p,M, )−limg =
L(or g → LN(γ, η,M, p)) if and only if

lim
r→∞

1

µ(Ir)

∫

Ir

M(|g(t)− L|)pdt = 0.

(2) The function g is statistically (γ, η,M, p) convergent to L and we write
S(γ, η,M, p)− lim g = L(or g → LS(γ, η,M, p)) if and only if

lim
r→∞

1

µ(Ir)
µ
(

t ∈ Ir : M(|g(t)− L|)p ≥ ǫ
)

= 0

for all ǫ > 0. In this case we write that g is S(γ, η,M, p) convergent. We call either
of the methods defined above a Sliding window method.

Definition 1.2. For a sequence (xp), lacunary sequence θ = {kn} is Sθ−summable
to L provided

lim
n→∞

1

kn − kn−1
|{kn−1 < p ≤ kn : M(|xp − L|)p ≥ ǫ}| = 0

for all ǫ > 0 (see [14]).

Note that the averages are taken over the disjoint intervals (kn−1, kn], the preced-
ing definition for statistical (γ, η,M, p) convergence does not require the intervals
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(γ(r), η(r)] to be disjoint. For instant, if γ(r) = 0 and η(r) = r, we have that
N(γ, η,M, p) and S(γ, η,M, p) are strong Cesàro summability and statistical con-
vergence for measurable functions as consider in [23] and [8].
Let N(γ, η,M, p) and S(γ, η,M, p) are strong Cesàro summability and statistical
convergence for measurable functions by means of an modulus function. A function
g is statistical convergent to L provided

lim
r→∞

1

r
µ
(

t ≤ r : M(|g(t)− L|)p ≥ ǫ
)

= 0

for all ǫ > 0. Throughout this paper by S − lim g denote the statistical limit of g.
If (γ, η) is a sliding window pair such that there is a function θ : N → (0,∞) such
that θ(n+1)−θ(n) tends to infinity and a sequence (rn) of real numbers for which,
given s ∈ (rn, rn+1], γ(s) = θ(n) and η(s) = θ(n + 1), then N(γ, η,M, p) and
S(γ, η,M, p) will be denoted by Sθ(M,p) and Nθ(M,p). Let In = (θ(n), θ(n+ 1)]
and observe that g is Sθ(M,p)− statistically convergent to L if and only if

lim
n→∞

1

µ(In)
|{t ∈ In : M(|g(t)− L|)p ≥ ǫ}| = 0

for all ǫ > 0. Note that the intervals In are pairwise disjoint in this special case. In
keeping with the sequential method, the method Sθ(M,p) will be called lacunary
statistical convergence. A similar construction of a pair (γ, η) can be used to show
that λ−statistical convergence and λ−strong summability, as defined in [24], can
be also be viewed as sliding window methods.
The objective of this paper is to introduce a class of summability methods that can
be applied to measurable functions defined on [0,∞) by means of modulus function.
These methods are known as sliding window methods are demonstrated on the
methods of statistical convergence and lacunary statistical convergence by means
of modulus function. We also establish some results for sequential summability to
the setting of real valued functions defined on [0,∞).

2. Correlation between Strong summability and Statistical convergence

In this section we establish relationship between strong summability and statistical
convergence.

Theorem 2.1. Let M be a modulus function and p be a positive real numbers. Let
(γ, η) be a sliding window pair, g be a measurable function and L be a real number.
(i) If g is a N(γ, η,M, p) summable to L, then g is S(γ, η,M, p) convergent to L.

(ii) If g is bounded, then g is N(γ, η,M, p) summable to L if and only if it is
S(γ, η,M, p) convergent to L.

Proof: Firstly we show that N(γ, η,M, p) − lim g = L implies S(γ, η,M, p) −
lim g = L. For ǫ > 0, we have

1

µ(Ir)

∫

Ir

M(|g(t)− L|)pdt ≥ ǫ
1

µ(Ir)
µ(t ∈ Ir : M(|g(t)− L|)p ≥ ǫ).
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If g is bounded by B, then we have

1

µ(Ir)

∫

Ir

M(|g(t)− L|)pdt ≤ ǫ
B

µ(Ir)
µ(t ∈ Ir : M(|g(t)− L|)p ≥ ǫ) +

1

µ(Ir)

∫

Ir

ǫdt.

As the first term of the right-hand side tends to 0 as r tends to infinity, it follows
that S(γ, η,M, p)− lim g = L implies N(γ, η,M, p)− lim g = L when g is bounded.

✷

Theorem 2.2. Let M be a modulus function and p be a positive real numbers.
If g is S(γ, η,M, p) convergent to L, then there is a measurable set A such that
S(γ, η,M, p)− limχA = 1 and limM(g(t)− L)pχA(t) = 0.

Theorem 2.3. Let M be a modulus function and p be a positive real numbers. Let
(γ, η) be a sliding window pair. Then there is a measurable function g that is not
S(γ, η,M, p) convergent.

Proof: We construct a set A such that its characteristic function, i.e., a function
that only takes the value 0 or 1, is not S(γ, η,M, p) convergent. Let r1 be given
and set A1 = (γ(r1), η(r1)]. As A1 is bounded, there is an r2 > r1 such that for all
s ≥ r2 we have that

µ(Is ∩ A1) <
1

3
µ(Is).

Set A2 = (γ(r2), η(r2)]\A1. Proceed inductively: given rn−1 and An−1 select rn
such that s ≥ rn implies that µ(Is ∩

⋃n−1
j=1 Aj) < ( 1

3n−1 )µ(Is) and set An =

(γ(rn), η(rn)]\
⋃n−1

j=1 Aj . Observe that

µ(Irn ∩ A1) > (1 −
1

3n−1
)µ(Irn).

Now set A =
⋃∞

j=1 A2j−1. Note that if n is odd, then

1

µ(Irn)
µ(Irn ∩ A) ≥

1

µ(Irn)
µ(Irn ∩ An) > 1−

1

3n−1

and if n is even

1

µ(Irn)
µ(Irn ∩ A) =

1

µ(Irn)
µ
(

Irn ∩

n
2
⋃

j=1

A2j−1

)

<
1

3n
.

Define g by g(t) = χA(t) and select ǫ such that 0 < ǫ < 1. The above calculation
shows that

lim
n

1

µ(Ir2n−1
)
µ(t ∈ Ir2n−1

: M(|g(t)− 1|)p ≥ ǫ) = 0

and that

lim
n

1

µ(Ir2n)
µ(t ∈ Ir2n : M(|g(t)|)p ≥ ǫ) = 0
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and thus, g is not S(γ, η,M, p) convergent. ✷

Next we show that in general S(γ, η,M, p) convergence is stronger than ordi-
nary convergence and that S(γ, η,M, p) convergence does not imply N(γ, η,M, p)
summability.

Theorem 2.4. Let M be a modulus function and p be a positive real numbers.
Let (γ, η) be a sliding window pair. Then there is a function g such that limt g(t)
does not exist and S(γ, η,M, p)− lim g = 0 and an unbounded function h such that
S(γ, η,M, p)− limh = 0 and N(γ, η,M, p)− limh does not exist.

Proof: First we suppose that 0 < lim infs(η(s)−γ(s)) = b < ∞. Select a sequence
(sj) that is increasing to infinity and
1. s > sj implies that η(s)− γ(s)) > b − 1

j
,

2. η(sj)− γ(sj) ≤ 2b and
3. η(sj) < γ(sj+1).
Note that the last choice is possible since η(sj) → ∞ as j → ∞, η(sj) − γ(sj)
is bounded as function of j and hence γ(sj) → ∞ as j → ∞. Also let δj be a
sequence of positive numbers decreasing to 0 and such that (δj+δj+1)\(b−

1
j
) → 0

as j → ∞. Set Hj = (γ(j), γ(j) + δj ] and define the function g by g(t) = 1 for
t ∈

⋃

j Hj and 0 otherwise. Note that limt g(t) does not exist.
We show that S(γ, η,M, p) − lim g = 0. Let r ∈ [sj , sj+1) and note that γ(sj) ≤
γ(r) ≤ η(r) ≤ η(sj+1) and hence for ǫ > 0,

{t ∈ Ir : M(|g(t)|)p ≥ ǫ} ⊂ Hj ∪Hj+1.

As µ(Hj ∪Hj+1) = δj + δj+1 and µ(Ir) > b − 1
j
, it follows that

1

µ(Ir)
µ({t ∈ Ir : M(|g(t)|)p ≥ ǫ}) ≥ (δj + δj+1) \

(

b−
1

j

)

,

which tends to 0 as j tends to infinity. It follows that S(γ, η,M, p) − lim g = 0.
Similarly we can show that S(γ, η,M, p)− limh = 0 for any function h that has its
support contained in

⋃

j Hj . Now define a function h by

h(t) =

{

δ−1
j (µ(Isj ) + 2)j , t ∈ (γ(j), γ(j) + δj ];
0, otherwise.

Observe that since for any L there is a J such that j > J implies

1

µ(Isj )

∫ η(sj)

γ(sj)

M(|h(t)− L|)pdt ≥
1

µ(Isj )
((µ(Isj ) + 2)j − L)

which tends to infinity as j tends to infinity. Hence N(γ, η,M, p)− limh = 0 does
not exist and S(γ, η,M, p) − limh = 0. Next we consider the case lim infs(η(s) −
γ(s)) = ∞. Select a sequence (sj) increasing to infinity such that η(s1) > 1,
η(sj+1) > 2η(sj) and r ≥ sj implies that η(r)−γ(r) ≥ 2j . Set Kj = (η(sj)−1, η(sj)]
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and define the function g by g(t) = 1 for t ∈
⋃

j Kj and 0 otherwise. Note that
limt g(t) does not exist. We now demonstrate that S(γ, η,M, p) − lim g = 0. Let
r ∈ [sj , sj+1) and ǫ > 0. Note that η(r) ≤ η(sj+1) implies that

{t ∈ Ir : M(|g(t)|)pdt ≥ ǫ} ⊂

j+1
⋃

l=1

Kl

and hence µ(t ∈ Ir : M(|g(t)|)p ≥ ǫ) ≤ j + 1. Since µ(Ir) > 2j , it follows that

1

µ(Ir)
µ(t ∈ Ir : M(|g(t)|)p ≥ ǫ) <

j + 1

2j

which tends to 0 as j tends to infinity. Hence S(γ, η,M, p)− lim g = 0. As before,

S(γ, η,M, p)− limh = 0 for any function that has its support contained in
⋃

j=1

Kj.

Define the function h by h(t) = j(η(sj) − γ(sj)) when t ∈ Kj for some j and 0
otherwise. Observe that for any L there is a J such that j > J implies

1

µ(Isj )

∫ η(sj)

γ(sj)

M(|h(t)− L|)pdt ≥
1

µ(Isj )

∫ η(sj)

η(sj)−1

M(|h(t)− L|)pdt > j − 1.

Hence N(γ, η,M, p)− limh does not exist and S(γ, η,M, p)− limh = 0. ✷

Next we compare sliding window methods to statistical convergence. The next
examples establishes that in general statistical sliding window convergence is not
equivalent to statistical convergence.

Example 2.5. Let M be a modulus function and p be a positive real numbers.
Let (γ, η) be a sliding window pair and a bounded function g with the property that
g is S(γ, η,M, p) convergent but neither strongly Cesàro summable nor statistical
convergence. Let M = I(identity) and p = 1. By using an inductive argument we
constructed sliding window pair to generate a sequence (an). Let a1 = 1 and select
a2 such that

1

a2
(a2 − a1) > 1−

1

2

and a3 such that
1

a3
(a2 − a1) <

1

2
.

Proceeding inductively: if n− 1 is odd, select an such that

1

an

n
2
∑

j=1

(a2j − a2j−1) > 1−
1

n
.

and if n− 1 is even select an such that

1

an − an−3

n−1

2
∑

j=1

(a2j − a2j−1) <
1

n
.
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Define the sliding window pair (γ, η) using the function γ(t) = a2n and η(t) = a2n+3

for t ∈ (n, n+ 1] and the function g by g(t) = 1 for t ∈ (an−1, an] when n is even
and 0 otherwise. We establish that the function g is S(γ, η,M, p) convergent to 0
by observing, that for s ∈ (p, p+ 1] and ǫ > 0, we have that

1

η(s)− γ(s)
µ(t ∈ Is : M(|g(t)|)p ≥ ǫ) =

a2p+2 − a2p+1

a2p+3 − a2p
<

1

2p+ 3
.

which tends to 0 as s hence p tends to infinity. Recall that strong Cesàro summa-
bility and statistical convergence correspond respectively to N(γ′, η′,M ′, p′) and
S(γ′, η′,M ′, p′) convergence when M ′(r) = I(identity), p′ = 1, γ′(r) = 0, and
η′(r) = r for all positive real r. First we establish g is not strongly Cesàro summable.
Observe that

1

a2p

∫ 2p

0

g(t)dt =
1

a2p

p
∑

j=1

(a2j − a2j−1) > 1−
1

2p

which tends to 1 as p tends to infinity. Next note that

1

a2p + 3

∫ 2p+3

0

g(t)dt =
1

a2p+3

p+1
∑

j=1

(a2j − a2j−1) <
1

2p+ 3

which tends to 0 as p tends to infinity. Hence g is not strongly Cesàro summable.
As g is bounded, it follows from Theorem 2.1 that g is not statistical convergent.

Lemma 2.6. [9] Let V = (0, v] be an interval and let U = {Uz : z ∈ Z} be a
collection of half-open, half-closed intervals such that V =

⋃

{Uz : z ∈ Z} and
there is a b > 0 such that b < µ(Uz) for all z ∈ Z. Then, for any ǫ > 0, there is a
finite, disjoint subcollection {U1, ....., Un} of U such that

n
∑

i=1

µ(Ui) >
v

3
− ǫ.

Lemma 2.7. [9] Let (γ, η) be a sliding window pair.
1. If Q < r, then (η(Q), η(r)] ⊂

⋃

{Is : Q < s ≤ r}.
2. If Q is sufficiently large and ǫ > 0, then there is a finite disjoint subcollection
{Isi} of {Is : Q < s ≤ r} such that

n
∑

i=1

µ(Isi ) >
η(r)

3
− η(Q)− ǫ.

Note that example 2.5 shows that it is necessary to assume that the function is
convergent with respect to both methods.

Theorem 2.8. Let M be a modulus function and p be a positive real numbers. If
g is statistically (γ, η) convergent and statistically convergent, then S(γ, η,M, p)−
lim g = S − lim g.
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Proof: We assume without loss of generality, that g is a function such that S(γ, η,
M, p) − lim g = 1 and S − lim g = 0 and derive a contradiction. First select Q

such that s > Q implies that µ(t ∈ Is : M(|g(t)− 1|)p ≥ 3
4 ) < (16 )µ(Is) and hence

µ(t ∈ Is : M(|g(t)|)p > 1
4 ) ≥ µ(Is)− (16 )µ(Is) = (56 )µ(Is). Since η(r) → ∞, we may

select R > Q such that r > R implies η(Q)
η(r) < 1

12 .

Let 0 < ǫ < 1
12 , be given and using Lemma 2.7 select a finite disjoint collection of

intervals {Is : Q < si ≤ r; i = 1, ......n} such that

n
∑

i=1

µ(Isi ) ≥
η(r)

3
− η(Q)− ǫ.

Now

µ
(

t ≤ η(r) : M(|g(t)|)p >
1

4

)

≥

n
∑

i=1

µ
(

t ∈ Isi : M(|g(t)|)p >
1

4

)

≥
(5

6

)

n
∑

i=1

µ(Isi)

>
(5

6

)(η(r)

3
− η(Q)− ǫ

)

.

Since ǫ < 1
12 , we have

1

η(r)
µ
(

t ≤ η(r) : M(|g(t)|)p >
1

4

)

>
1

9
.

Consequently, the statistical limit of g is not equal to 0 which contradicts the
hypothesis on g. ✷

Theorem 2.9. Let M be a modulus function and p be a positive real numbers. Let
(γ, η) be a sliding window pair. The following are equivalent:
(1) If a function g is statistically convergent, then g is statistically (γ, η,M, p)
convergent.

(2) lim inf η(r)
γ(r) > 1.

Proof: Firstly, we need to show (2) implies (1). By hypothesis we have lim inf η(r)
γ(r)

> 1 which yields that there are positive numbers Q and δ such that r > Q implies

that η(r)
γ(r) > 1 + δ. Note that

η(r) − γ(r)

η(r)
= 1−

γ(r)

η(r)
>

δ

1 + δ

and hence
1

η(r)
>

δ

1 + δ

1

η(r) − γ(r)
.
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Now let ǫ > 0 and r > Q be given. Observe that

1

η(r)
µ
(

t ≤ η(r) : M(|g(t)− L|)p ≥ ǫ
)

≥
1

η(r)
µ
(

t ∈ Ir : M(|g(t)− L|)p ≥ ǫ
)

>
δ

1 + δ

1

η(r)− γ(r)
µ
(

t ∈ Ir : M(|g(t)− L|)p ≥ ǫ
)

.

It follows that if S − lim g = L, then S(γ, η,M, p) − lim g = L. Next we show

(1) imply (2). Let us assume that lim inf η(r)
γ(r) = 1 and construct a function g

such that S − lim g = 0 and S(a, b) − lim g does not exist. We start a number of

increasing sequence (rj) such that rj → ∞ and
η(rj)
γ(rj)

→ 1 as j → ∞. We define

ǫj by
η(rj)
γ(rj)

= 1 + ǫj . Note that lim ǫj = 0 and γ(rj) =
η(rj)
(1+ǫj)

also observe that

η(rj) → ∞ as γ(rj) → ∞. We construct a sequence of disjoint intervals ((γn, ηn])
as follows. Set γ1 = γ(r1) and η1 = η(r1). Next select s = rj for some j > 1 such
that

η1
η(s)

<
ǫ1

1 + ǫ1
and γ(s) > η1.

Set γ2 = γ(s) and η2 = η(s). If γn−1 and ηn−1 have been selected, we choose s = rj

for some j such that γ(s) > ηn−1 and
ηn−1

η(s) <
ǫn−1

1+ǫn−1

. Set γn = γ(s) and ηn = η(s)

Define g by g(t) = 1 if t ∈ (γn, ηn] for some n and 0 otherwise. First we establish
that S− lim g = 0. Let 0 < ǫ < 1 and r ∈ (0,∞). Observe that if r ∈ (ηn−1, γn] for
some n then

1

r
µ
(

t ≤ r : M(|g(t)|)p ≥ ǫ
)

=
1

r

n−1
∑

j=1

(ηj − γj)

≤
1

ηn−1

n−2
∑

j=1

(ηj − γj) +
1

ηn−1

(ηn−1 − γn−1)

≤
ηn−2

ηn−1

+
ǫn−1

1 + ǫn−1
≤

ǫn−2

1 + ǫn−2
+

ǫn−1

1 + ǫn

which tends to 0 as n tends to infinity. Next suppose that r ∈ (γn, ηn] for some n.

In this case

1

r
µ
(

t ≤ r : M(|g(t)|)p ≥ ǫ
)

=
1

r

n−1
∑

j=1

(ηj − γj) +
1

r
(r − γn) (2.1)

<
ηn−1

γn

+ (1 −
γn

r
).

Now, since γn = ηn

1+ǫn
and r ≤ ηn, we have that

(2.1) ≤
ηn−1

ηn
(1 + ǫn) +

(

1−
γn

ηn

)

<
ǫn−1(1 + ǫn)

1 + ǫn−1
+

ǫn

1 + ǫn−1
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which also tends to 0 as n tends to infinity. As

lim
r

1

r
µ
(

t ≤ r : M(|g(t)|)p ≥ ǫ
)

= 0.

for all ǫ > 0, we have that S − lim g = 0. Now note that, by construction

1

ηn − γn

µ
(

γn < t ≤ ηn : M(|g(t)|)p ≥
1

2

)

= 1

for all n, hence the S(γ, η,M, p)− limg is either not equal to 0 or does not exist. By
Theorem(2.8), since S− lim g = 0, if S(γ, η,M, p)− lim g exists then S(γ, η,M, p)−
lim g = 0. Hence S(γ, η,M, p)− lim g does not exist. ✷

Theorem 2.10. Let M be a modulus function and p be a positive real numbers.
Let (γ, η) be a lacunary sliding window pair. The following are equivalent:
(1) If a function g is lacunary statistically convergent, then g is statistically con-
vergent.

(2) lim sup η(r)
γ(r) < ∞.

Proof: Since (γ, η) be a lacunary sliding window pair, there is a function θ : N →
(0,∞) such that θ(n+1)−θ(n) tends to infinity and a sequence (rn) of real numbers
for which, given s ∈ (rn, rn+1], γ(s) = θ(n) and η(s) = θ(n+ 1). First we establish

that (2) implies (1). Suppose that Sθ − lim g = L and that lim supr
η(r)
γ(r) < ∞, i.e.,

there is an H > 0 such that θ(l+1)
θ(l) < H for all l ∈ N. Throughout the proof we let

Il = (θ(l), θ(l + 1)]. Let ǫ, δ > 0 be given. Select N such that n > N implies that

µ
(

t ∈ In : M(|g(t)− L|)p ≥ ǫ
)

< µ(In)
δ

(2H)

and Q such that l > Q implies that θ(N + 1) <
θ(l)δ
2 . Now let l > Q and s ∈

(θ(l), θ(l + 1)]. Now that

0 ≤
1

s
µ
(

0 ≤ t ≤ s : M(|g(t)− L|)p ≥ ǫ
)

(2.2)

≤
1

θ(l)
µ
(

0 ≤ t ≤ θ(l + 1) : M(|g(t)− L|)p ≥ ǫ
)

and setting Ji = {t ∈ Ii : M(|g(t)− L|)p ≥ ǫ}, we have that

0 ≤
1

θ(l)
µ
(

0 ≤ t ≤ θ(l + 1) : M(|g(t)− L|)p ≥ ǫ
)

(2.3)

= 1
θ(l)µ

(

N
⋃

i=1

Ji +
l
⋃

i=N+1

Ji

)

≤
θ(N + 1)

θ(l)
+

1

θ(l)

l
∑

i=N+1

µ(Ji).
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Note that for i > N, µ(Ji) < ( δ
2H )µ(Ii) and µ(Ii) = θ(i+ 1)− θ(i). Thus,

(2.3) ≤
θ(N + 1)

θ(l)
+

1

θ(l)

δ

2H

l
∑

i=N+1

(θ(i+ 1)− θ(i))

≤
θ(N + 1)

θ(l)
+

θ(l + 1)

θ(l)

δ

2H

≤
δ

2
+H

δ

2H
= δ.

As δ > 0 was arbitrary, it follows that S − lim g = L. Next we need to show (2)
implies (1). Let Sθ(M,p) be a lacunary method such that

lim sup
l

θ(l + 1)

θ(l)
= ∞.

We will construct a function g such that Sθ − lim g = 0 and S − lim g = L does

not exist. By assumption, there is a subsequence ly such that
θ(ly+1)
θ(ly)

> y for each

y. Set Jy = (θ(ly), 2θ(ly)] and define g by g(t) = 1 if t ∈ Jy for some y and 0
otherwise. Note that µ(Jy) = θ(ly) and θ(ly + 1) > yθ(ly). Let ǫ > 0 be given and
suppose that θ(q) < s ≤ θ(q + 1). If q = ly for some y, then

1

µ(Is)
µ
(

t ≤ Is : M(|g(t)|)p ≥ ǫ
)

=
µ(Jq)

θ(q + 1)− θ(q)
=

θ(q)

θ(q + 1)− θ(q)
. (2.4)

Now note that θ(ly + 1) > yθ(ly) yield that θ(ly + 1) − θ(ly) > (y − 1)θ(ly) hence
if q = ly, then (2.4) is less then 1

y−1 , which tends to 0 as q tends to ∞. Also note

that if q 6= ly, for all y, then µ
(

t ≤ Is : M(|g(t)|)p ≥ ǫ
)

= 0. Hence Sθ − lim g = 0.

Next observe that for 0 < ǫ < 1,

1

2θ(ly)
µ
(

0 < t ≤ 2θ(ly) : M(|g(t)|)p ≥ ǫ
)

≥
θ(ly)

2θ(ly)
=

1

2

and hence Sθ − lim g 6= 0 or does not exist. As before, Theorem 2.8 yield that
S − lim g does not exist. ✷

3. Cauchy Criterion for S(γ, η,M, p)−convergence

In this section we make an effort to establish Cauchy criterion for S(γ, η,M, p)-
convergence and a criterion for two sliding window methods to be equivalent for
bounded functions.

Definition 3.1. Let (γ, η) be a sliding window pair. The function g is said to
be S(γ, η,M, p)-Cauchy if for every r > 0 there is an element tr ∈ Ir such that
limr g(tr) exists and

lim
r→∞

1

µ(Ir)
µ
(

t ∈ Ir : M(|g(t)− g(tr)|)
p ≥ ǫ

)

= 0
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for all ǫ > 0.

Theorem 3.2. Let M be a modulus function and p be a positive real numbers. Let
(γ, η) be a sliding window pair and g be a measurable function. Then S(γ, η,M, p)−
lim g exists if and only if g is S(γ, η,M, p)-Cauchy.

Proof: First we establish that S(γ, η,M, p)-convergent functions are S(γ, η,M, p)-
Cauchy. Let g be a function such that S(γ, η,M, p) − lim g = L and j ∈ N. Set
Kj = {0 ≤ t < ∞ : M(|g(t)− L|)p < j−1} and observe that

( 1

µ(Ir)

)

µ(Ir ∩Kj) → 1

as r tends to infinity for each j ∈ N. Hence there is an increasing sequence of
indices R1 < R2 < ........ such that r > Rj implies Kj ∩ Ir 6= 0, Let tr ∈ Ir ∩Kj for
Rj ≤ r < Rj+1. It is clear, by construction, that limr M(|g(tr)−L|)p = 0. Now note
that if M(|g(t) − g(tr)|)

p ≥ ǫ and M(|g(tr) − L|)p < ǫ
2 , then M(|g(t) − L|)p ≥ ǫ

2 ,

and hence {t : M(|g(t) − g(tr)|)
p ≥ ǫ} ⊂ {t : M(|g(t) − L|)p ≥ ǫ}. Select J such

that 1
J
< ǫ

2 and let δ > 0 be given. Next select R′ such that r > R′ implies that

M(|g(tr)− L|)p < ǫ
2 and µ

(

t ≤ Ir : M(|g(t)− L)p ≥ ǫ
2

)

< δµ(Ir). It follows that

1

µ(Ir)
µ
(

t ∈ Ir : M(|g(t)− g(tr)|)
p ≥ ǫ

)

≤
1

µ(Ir)
µ
(

t ∈ Ir : M(|g(t)− L|)p ≥
ǫ

2

)

< δ

and hence g is S(γ, η,M, p)-Cauchy.
Conversely, suppose that if g is S(γ, η,M, p)-Cauchy, (tr) as given in the definition
and limr g(tr) = L. Let R′ such that r > R′ implies M(|g(tr)−L|)p < ǫ

2 . Note that

0 ≤
1

µ(Ir)
µ
(

t ∈ Ir : M(|g(t)− L|)p ≥ ǫ
)

≤
1

µ(Ir)
µ
(

t ∈ Ir : M(|g(t)− g(tr)|)
p ≥

ǫ

2

)

for r > R′. Hence limr

(

1
mr

)

µ
(

t ≤ Ir : M(|g(t) − L|)p ≥ ǫ
)

= 0 and thus,

S(γ, η,M, p)− lim g = L. ✷

Theorem 3.3. Let M be a modulus function and p be a positive real numbers.
Let (γ, η) and (γ′, η′) be two sliding window pairs and g be a bounded measurable
function. If there is a B > 0 such that

|γ(t)− γ′(t)|+ |η(t)− η′(t)| ≤ B

for all t and lims(η(s) − γ(s)) = ∞, then g → LN(γ, η,M, p) if and only if g →
LN(γ′, η′,M, p) and g → LS(γ, η,M, p) if and only if g → LS(γ′, η′,M, p).
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Proof: By Theorem 2.1, it suffices to demonstrate that g → LN(γ, η,M, p) if and
only if g → LN(γ′, η′,M, p) and then it suffices to consider the case L = 0. First
we establish that

1

µ(I ′r)

∫ η′(r)

γ′(r)

M(|g(t)|)pdt−
1

µ(Ir)

∫ η(r)

γ(r)

M(|g(t)|)pdt (3.1)

−→ 0 as r −→ ∞.

Note that

(3.1) =
1

µ(I ′r)

(

∫ γ(r)

γ′(r)

M(|g(t)|)pdt−

∫ η(r)

η′(r)

M(|g(t)|)pdt

)

+

(

µ(Ir)− µ(I ′r)

µ(I ′r)

)

1

µ(Ir)

∫ η(r)

γ(r)

M(|g(t)|)pdt.

Now suppose that M(|g(t)|)p ≤ V for all t ≥ 0. Then

1

µ(I ′r)

(

∫ γ(r)

γ′(r)

M(|g(t)|)pdt−

∫ η(r)

η′(r)

M(|g(t)|)pdt

)

≤
V

µ(I ′r)

(

|γ(t)−γ′(t)|+|η(t)−η′(t)|

)

≤
BV

µ(I ′r)

and
(

µ(Ir)− µ(I ′r)

µ(I ′r)

)

1

µ(Ir)

∫ η(r)

γ(r)

M(|g(t)|)pdt ≤
BV

µ(I ′r)
.

Since limr µ(I
′
r) = ∞, both terms tends to 0 as r tends to ∞. It follows that

g → 0N(γ, η,M, p) if and only if g → 0N(γ′, η′,M, p). ✷
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