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abstract: In this paper, we propose a numerical scheme to solve multi-dimensio-
nal Black-Scholes equation using the global radial basis functions-based differential
quadrature (RBFs-DQ) method. Before applying the method, it is needed to remove
mixed derivatives from the Black-Scholes equation by making an appropriate change
of variables. Then, any spatial derivativeis are approximated by a linear weighted
sum of all the function values in the whole physical domain. In the RBFs-DQ
method the weighting coefficients are computed by RBFs. The method is very easy
to implement and the non-singularity is ensured. The proposed method combines
the advantages of the conventional DQ method and the RBFs. It also preserves
mesh-free feature of RBFs.
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1. Introduction

In the past several decades, financial derivative products have become increas-
ingly important in the world of finance. Options as a kind of important financial
derivatives have a wide range of applications that one of the major concerns in
financial markets is determining the value of options. An option contract is an
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agreement between a buying party (the holder) and a selling party (the under-
writer). The holder of the option contract has no obligation to use his option
contract, whereas the underwriter is obliged to agree with the holder uses the op-
tion contract. Since an investor of options can set the strike price of underlying
assets in advance, these options are powerful tools for hedging risk in financial
market, therefore, the trading volume of options are increasing all over the world.
Options occur in many forms. Examples are vanilla options, barrier options, digital
options and multi-asset options. In this paper, in order to implement the method,
we consider options where the payoff depends on multi underlying assets. Such
option pricing can be modelled by higher dimensional generalization of the original
Black-Scholes equation in which Black and Scholes proposed an explicit formula
for evaluating European call options without dividends [1] and extended in [2]. By
assuming that the asset price is risk-neutral, Black and Scholes showed that the
European call options value satisfies a log-normal diffusion type partial differential
equation (PDE) which is known now as the Black-Scholes equation. If we introduce
the notation, C(s1, s2, · · · , sd, t) to represent the option value at time t which stock
prices s1, s2, · · · , sd, then we get the following linear parabolic PDE

∂C

∂t
+

1

2

d
∑

i,j=1

ρijσiσjsisj
∂2C

∂si∂sj
+

d
∑

i=1

rsi
∂C

∂si
− rC = 0, (1.1)

known as the Black-Scholes equation for multi-asset option problems. Where
si,σi,ρij , and r are respectively, i-th asset price, volatility of the i-th asset price,
correlation between the prices of i-th and j-th assets, and risk free interest rate.
Since then, methods for option pricing have been discovered and improved by many
scholars. Details can be found in reference [3] which is a good review of various
models and applications to the option pricing. According to [4], there have been
numerous attempts to find the analytic form of solutions of the Black-Scholes equa-
tion for various derivative products in financial world. However, it is not easy to
get an analytic form of solution for most of financial derivatives because of the
complexity of the financial product itself and the system of the financial mar-
ket. Therefore, in finance, numerical methods such as finite difference method,
finite element method and Monte Carlo simulation techniques for pricing deriva-
tives problems, cf. [5,6,7,8,9,10,11,12], have been used. As it has been mentioned
in [13], different numerical methods can be applied to price multi-variate deriva-
tives. Higher dimensional generalizations of lattice binomial methods can be used,
cf. [14], where European options based on three underlying assets are solved nu-
merically. Stable higher order methods for the Black and Scholes equation have
been introduced by [15] and [16], mesh-free methods based on RBFs may also
reduce the computational efforts significantly, see [17]. In [4] Jo and Kim com-
bined the operator splitting method with parallel computation technique to solve
the multi-dimensional Black-Scholes equations. Nielsen, Skavhaug and Tveito, [13]
used Penalty methods for the numerical solution of American multi-asset option
problems. Authors [18] proposed explicit Runge-Kutta methods for multi-asset
American options in 2014.
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In this work, the global RBFs-DQ method is utilized for the numerical solution
of multi-asset option pricing problems. As pointed out in [19], the classical form
of the differential quadrature (DQ) method was introduced by [20,21] for the nu-
merical solution of PDEs. The basic idea of the DQ method is that any derivative
at a mesh point can be approximated by a weighted linear sum of all the function
values along a mesh line. The key procedure in the DQ method is the determi-
nation of weighting coefficients for any order derivative discretization. As shown
by [22], when the solution of a PDE is approximated by a high order polynomial,
the weighting coefficients can be computed by a simple algebraic formulation or
by a recurrence relationship. Later, [23] also showed that when the solution of
the PDE is approximated by a Fourier series expansion, the weighting coefficients
of the first- and second-order derivatives can be computed explicitly by algebraic
formulations. The details of the polynomial-based and Fourier series expansion-
based DQ methods can be found in the book of [24]. The DQ method has been
extensively applied in engineering for the rapid and accurate solution of various
linear and non-linear differential equations [22,23,24,25,26,27,28,29,30]. In general,
the polynomial-based and Fourier series expansion-based DQ methods can achieve
very accurate results by using a considerable small number of grid points. It is a
robust and efficient technique, but the dependency of the method on a mesh leads
to complications. To overcome this difficulty, using advantages of the RBF, [19]
proposed other set of mesh-less methods which is named the RBFs-DQ method,
which combines the mesh-free nature of RBFs with the derivative approximation
of DQ method. It seems that the multi-dimensional polynomial approximation as
the test function may not be a good choice in the DQ approximation. As it has
been shown in [19], RBFs, which have truly mesh-less property and insensitivity to
high dimension, could be a good choice in the DQ approximation. The advantages
of RBFs-DQ method as combination of DQ approximation and RBFs provide an
efficient discretization method, which is a derivative approximation approach and
is mesh-free. In this method, the RBFs are taken as the test functions in the DQ
approximation to compute the weighting coefficients. Moreover, the method not
only inherits the advantages of the DQ method such as high accuracy and efficient
computation, but also owns the merits of RBFs such as mesh-free feature and easy
extension to high dimension.

The organization of this paper is as follows. In Section 2 we describe RBFs-DQ
method for partial derivatives approximation. In Section 3 we apply the method
on multi-dimensional option pricing problems by applying Theorem 3.1. Stability
of the method to solve multi-asset option pricing problems is studied in Section
4. In the Section 5, the numerical example for two-asset option pricing with this
method is given. Finally, Section 6 is dedicated to a brief conclusion. Note that
we have computed the numerical results by Matlab programming.

2. RBFs-based DQ method

In this section, we present the global RBFs-DQ method in detail. In the fol-
lowing, we give the details step by step.
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2.1. Radial basis functions

In the past decades, the interpolation theory of RBF has undergone intensive
research, and nowadays RBFs play an increasingly important role in the field of
reconstructing functions from multivariate scattered data. In general, the interpo-
lation theory of RBF can be described as follows: If an unknown function f(X)
is only known at a finite set of centers Xi, i = 1, ..., N , the approximation of a
function f(X) can be written as a linear combination of N , RBFs

f(X) ∼=
N
∑

j=1

λjϕ(X,Xj) + ψ(X), X ∈ Ω ⊂ R
d, (2.1)

where N is the number of data points, X = (x1, x2, ..., xd), d is the dimension of
the problem, λ’s are coefficients to be determined and ϕ is the RBF. Also, Eq.
(2.1) can be written without the additional polynomial ψ. The success of RBF
interpolant is due to its excellent performance. Based on numerical experiments,
[31] gave a comprehensive review on the interpolation methods for scattered data.
From the numerical tests, Franke found that RBFs performed better than other
tested methods regarding accuracy, stability, efficiency, memory requirement, and
simplicity of implementation. Among the tested RBFs, multi-quadrics (MQs) yields
the most accurate results. MQ-RBFs can be written as

ϕ(X,Xj) = ϕ(rj) =
√

r2j + c2j , (2.2)

where rj = |X −Xj | is the usual Euclidean distance and cj is a shape parameter
(for generality, it is written with a variable shape parameter cj) and given by the
practitioners. It is noted that the shape parameter plays a very important role
in the MQ formulation. Its value determines the fundamental shape of the basis
function. These effects were initially observed for scattered data interpolation, but
we will see that they also occur in the numerical solution of the PDEs. Thus, the
problem of how to select a good value for the parameter c is a key question. Several
methods for selecting c for the MQ interpolants in the two-dimensional case were
suggested in the literature. [32] used c = 0.815d where d = 1/N

∑N

i=1 di and di
is the distance between the i-th node and its neighboring node. The parameter
d is replaced by D/

√
N in [31], where D is the diameter of the minimal circle

enclosing all supporting points and suggested to use 1.25D/
√
N . Optimization of

shape parameter and its distribution are still active research field. If ψd
q denotes the

space of d-variate polynomials of order not exceeding q, and letting the polynomials
P1, · · · , Pm be the basis of ψd

q in R
d, then the polynomial ψ(X) in Eq. (2.1), is

usually written in the following form

ψ(X) =
m
∑

i=1

ξiPi(X), (2.3)

where m = (q−1+d)!
(d!(q−1)!) . To determine the coefficients (λ1, λ2, · · ·, λN ) and (ξ1, ξ2, · · ·,

ξm), extra m equations are required in addition to the N equations resulting from
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the collocating Eq. (2.1) at the N points. This is ensured by the m conditions for
Eq. (2.1),

N
∑

j=1

λjPi(Xj) = 0, i = 1, · · · ,m. (2.4)

2.2. DQ method for partial derivative approximation in multi-dimension

In this section,we explain the method to approximate the spatial derivative
in two-dimension. However, the method can be generalized for multi-dimensional
cases.

We note that the basic idea of the DQ method is that any derivative can be

Figure 1: A structured mesh for two-dimensional problem

approximated by a linear weighted sum of function values at some mesh points.
We can keep this idea but release the choice of function values along a mesh line in
the conventional DQ approximation. In other words, for a two-dimensional problem
shown if Fig. 1, any spatial derivative is approximated by a linear weighted sum of
all the function values in the whole two-dimensional domain. In this approximation,
a mesh point in the two-dimensional domain is represented by one index, k, while in
the conventional DQ approximation, the mesh point is represented by two indexes
i, j. If the mesh is structured, it is easy to establish the relationship between i, j
and k. For the example shown in Fig. 1, k can be written as k = (i − 1)N2 +
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j, i = 1, 2, ..., N1; j = 1, 2, ..., N2. Clearly, when i is changed from 1 to N1, and
j is changed from 1 to N2 and k is changed from 1 to N = N1 × N2. The DQ
approximation for the n-th order derivative with respect to x, ∂

nf
∂xn , and the m-th

order derivative with respect to y, ∂
mf

∂ym at (xk, yk) can be written as

∂nf

∂xn
(xk, yk) =

N
∑

s=1

w
(n)x
k,s f(xs, ys), (2.5)

∂mf

∂ym
(xk, yk) =

N
∑

s=1

w
(m)y
k,s f(xs, ys). (2.6)

In [19], Shu et al. employed this technique and made a novel and effective algorithm
for the use of RBFs to solve the PDEs. Instead of using polynomials for determining
coefficients, they applied RBFs as test functions.

In the following subsection, we will show that the weighting coefficients in Eq.
(2.5) and Eq. (2.6) can be determined by the function approximation of RBFs and
the analysis of a linear vector space.

2.3. RBFs-DQ approximation

In this subsection, we will use the MQ-RBFs as test functions to determine the
weighting coefficients in the DQ approximation of derivatives for a two-dimensional
problem. However, the method can be easily extended to the multi-dimensional
case as it is dimension-independent, and other RBFs can also be used as test
functions.

Suppose that the solution of a PDE is continuous, which can be approximated
by MQ-RBFs, and only a constant is included in the polynomial term ψ(x, y). So,
for a two-dimensional case, Eq. (2.1) can be reduced to

f(x, y) =

N
∑

j=1

λjϕ(|(x, y)− (xj , yj)|) + µ. (2.7)

To make the problem well-posed, one more additional equation is required. From
Eq. (2.4), we have

N
∑

j=1

λj = 0 =⇒ λi = −
N
∑

j=1,j 6=i

λj . (2.8)

Substituting Eq. (2.8) into Eq. (2.7) gives

f(x, y) =

N
∑

j 6=i,j,i=1

λj(ϕ(|(x, y)− (xj , yj)|) − ϕ(|(x, y)− (xi, yi)|)) + µ. (2.9)

The number of unknowns in Eq. (2.7) is reduced to N . When no confusion rises,
µ can be replaced by λi and Eq. (2.9) can be written as

f(x, y) =

N
∑

j 6=i,j,i=1

λj(ϕ(|(x, y) − (xj , yj)|)− ϕ(|(x, y)− (xi, yi)|)) + λi (2.10)
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By setting gj(x, y) = ϕ(|(x, y)− (xj , yj)|)−ϕ(|(x, y)− (xi, yi)|), j = 1, · · · , i−1, i+
1, · · · , N , Eq. (2.10) can be further written as

f(x, y) =

N
∑

j 6=i=1

λjgj(x, y) + λi. (2.11)

Eq. (2.11) constructs an N -dimensional linear vector space VN . A set of base
functions in VN can be taken as qi = 1, qj = gj(x, y) = ϕ(|(x, y) − (xj , yj)|) −
ϕ(|(x, y) − (xi, yi)|), j = 1, · · · , i − 1, i + 1, · · · , N. From the concept of linear in-
dependence, the bases of a vector space can be considered as linearly independent
subset that spans the entire space. From the property of a linear vector space, if all
the base functions satisfy Eq. (2.5) and Eq. (2.6), so does any function in the space
VN represented by Eq. (2.11). There is an interesting feature. From Eq. (2.11),
while all the base functions are given, the function f(x, y) is still unknown since
the coefficients λi are unknown. However, when all the base functions satisfy Eq.
(2.5) and Eq. (2.6), we can guarantee that f(x, y) also satisfies Eq. (2.5) and Eq.
(2.6). In other words, we can guarantee that the solution of a PDE approximated
by the RBF satisfies Eq. (2.5) and Eq. (2.6). Thus, when the weighting coefficients
of DQ approximation are determined by all base functions, they can be used to
discretize the derivatives of a PDE. That is the essence of the RBFs-DQ method.
Using the idea of DQ method, the weighting coefficients of the n−th order partial
derivatives can be determined by substituting all the base functions q1, q2, · · · , qN ,
into Eq. (2.5), as

∂nqi(xi, yi)

∂xn
=

N
∑

k=1

w
(n)x
i,k = 0, (2.12)

∂nqj(xi, yi)

∂xn
=

N
∑

k=1

w
(n)x
i,k qj(xk, yk), j = 1, 2, · · · , N, j 6= i. (2.13)

For the given i equation system (2.12) and (2.13) has N unknowns with N equa-
tions. The matrix form for the weighting coefficients can be written as

qi
(n)x = [Q]W

(n)x
i , (2.14)

where

q
(n)x
i = [0,

∂nq1(xi, yi)

∂xn
, · · · , ∂

nqi−1(xi, yi)

∂xn
,
∂nqi+1(xi, yi)

∂xn
, · · · ∂

nqN (xi, yi)

∂xn
]T ,

[Q] =

























1 · · · 1
q1(x1, y1) · · · q1(xN , yN )

...
. . .

...
qi−1(x1, y1) · · · qi−1(xN , yN )
qi+1(x1, y1) · · · qi+1(xN , yN)

...
. . .

...
qN (x1, y1) · · · qN (xN , yN )

























,
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and
W

(n)x
i = [w

(n)x
i,1 , w

(n)x
i,2 , ..., w

(n)x
i,N ]T .

Therefore, the coefficient vector W
(n)x
i can be obtained by

W
(n)x
i = [Q]−1q

(n)x
i . (2.15)

Then, the coefficient vector W
(n)x
i can be used to approximate the n-th-order

derivative in the x direction for any unknown smooth function at node i. Clearly,
there exists a unique solution only if the collocation matrix [Q] is non-singular.
The non-singularity of the collocation matrix [Q] depends on the properties of
used RBFs. [33] proved that matrix [Q] is conditionally positive definite for MQ-
RBFs. This fact can not guarantee the non-singularity of matrix [Q]. [34] showed
that cases of singularity are quite rare, and not serious objection to a valuable
numerical technique. In a similar manner, all the base functions are substituted
into Eq. (2.6) to approximate the m-th-order derivative in the y direction for any
unknown smooth function at node i. For MQ-RBFs, qj(x, y) can be written as

qj(x, y) =
√

(x− xj)2 + (y − yj)2 + c2j −
√

(x − xi)2 + (y − yi)2 + c2i , (2.16)

where second- and higher-order derivatives of qj(x, y) can also be obtained by
differentiating Eq. (2.16). One of the most attractive properties in the above
method is that the weighting coefficients are only related to the test functions and
the position of the collocation points.

3. Global RBFs-DQ method for multi-dimensional Black-Scholes

equation

In this section, first we will introduce the variable transformations si = exi and
C(s1, ..., sd, t) = V (x1, ..., xd, t). By this change of variable Eq. (1.1) becomes the
parabolic PDE with constant coefficients as

∂V

∂t
+

1

2

d
∑

i,j=1

ρijσiσj

∂2V

∂xi∂xj
+

d
∑

i=1

(r − 1

2
σ2
i )
∂V

∂xi
− rV = 0, (3.1)

as Eq. (3.1) satisfies the conditions of the following theorem, we can remove the
crossing terms

ρijσiσj

∂2V

∂xi∂xj
, i 6= j,

then we can apply the RBFs-DQ method to option pricing.

Theorem 3.1. Consider the second-order equation

n
∑

i,j=1

aijuxixj
+

n
∑

i=1

aiuxi
+ a0u = 0,
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assuming that the mixed partial derivatives are equal, we may as well assume that

aij = aji, by making an appropriate change of variables, we can write the top-order

term
∑n

i,j=1 aijuxixj
as

∑n

k=1 dkuxkxk
, where the coefficients dk are the eigenvalues

of the n× n matrix A = (aij).

Therefore, the multi-dimensional Black-Scholes equation transformes into

− ∂U

∂t
=

d
∑

i=1

{ai
∂U

∂ξi
+ bi

∂2U

∂ξ2i
} − rU ≡ DU, (3.2)

The domain is discretized by taking N knots according to the method used in
previous section and we would like to discrete the Eq. (3.2) with respect to time.
We introduce a weight θ and apply the θ implicit scheme to the problem as

− ∂U

∂t
|(tn,χk)

∼= Ũn
k − Ũn−1

k

∆t
= (1 − θ)DŨ |(tn,χk)

+ θDŨ |(tn−1,χk)
(3.3)

Denote Ũ |(tn,χk)
= Ũn

k , where represents the approximation of the function value

U at knot k, χk = (ξk1 , ..., ξ
k
d), and the time tn. By applying the RBFs-DQ method,

Eq. (3.2) can be rewritten in a discrete form as follows:

(1 + r(1 − θ)△t)Ũn
k + (1− θ)△t{−

d
∑

i=1

{ai
N
∑

j=1

w
(1)ξi
kj Ũn

j + bi

N
∑

j=1

w
(2)ξi
kj Ũn

j }} =

(1− rθ△t)Ũn−1
k − θ△t{−

d
∑

i=1

{ai
N
∑

j=1

w
(1)ξi
kj Ũn−1

j + bi

N
∑

j=1

w
(2)ξi
kj Ũn−1

j }},

where k = 1, 2, ..., N and w
(1)ξi
kj and w

(1)ξi
kj represents the computed weighting

coefficients in the DQ approximation.

4. Stability of the method

In this section, we study the stability of the implicit finite difference method
described above. Let us assume that U be exact and Ũ is the numerical solution of
equation (3.3). Note that the discrete equations in the last section can be rewritten
as the following form

[I + (1− θ)∆tD]Ũn = [I − θ∆tD]Ũn−1. (4.1)

So we can write Eq. (4.1) as

Ũn = [I + (1− θ)∆tD]−1[I − θ∆tD]Ũn−1 = EŨn−1, (4.2)

where

D = r −
d

∑

i=1

{ai{[Q]−1[Q]
ξ
(1)
i

}T + bi{[Q]−1[Q]
ξ
(2)
i

}T }
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is an N ×N matrix determined by descretized form of Eq. (3.2) and

[Q]
ξ
(j)
i

= [q
(j)ξi
1 ,q

(j)ξi
2 , · · · ,q(j)ξi

N ], j = 1, 2.

The scheme for initial value problem is stable if and only if there exists a positive
constant C independent of the mesh spacing and initial data such that

‖Ũn‖ ≤ C‖Ũ0‖, n→ ∞,∆t,∆χ → 0,

If E depends on n we get a product of the operators at each time level. Taking a
norm

‖Ũn‖ = ‖EnŨ0‖ ≤ ‖En‖|Ũ0‖, n→ ∞,∆t,∆χ→ 0,

Therefore, the numerical scheme is stable if and only if there exists a positive
constant C such that

‖En‖ ≤ C, n → ∞,∆t,∆χ→ 0,

Since ρ(E) as the spectral radius of E provides a lower bound to any matrix norm,
for the scheme to remain stable, we should have ρ(E) ≤ 1 or equivalently we can
say that

| 1− θ∆tηD
1 + (1 − θ)∆tηD

| ≤ 1, (4.3)

which holds for η
D

are located in the right half plane, where η
D

are eigenvalues of
the matrix D. Inequality (4.3) also shows that stability of the scheme, in the case
of RBFs with shape parameter like MQ, depends upon shape parameter.

5. Numerical computation of two asset European option

For two-dimensional option pricing under Geometric Brownian motion frame-
work, consider the PDE (1.1) with d = 2 and the final time condition for European
call is

C(s1, s2, T ) = max(max(s1, s2)− E, 0), (5.1)

where E, T are exercise price and maturity time. The following boundary condi-
tions are imposed

C(smax
1 , s2, T ) = smax

1 − Ee−r(T−t), (5.2)

C(s1, s
max
2 , T ) = smax

2 − Ee−r(T−t), (5.3)

where smax
1 , smax

2 are respectively maximum of s1, maximum of s2.
In this case, the variables transformation are s1 = ex, s2 = ey and C(s1, s2, t) =

V (x, y, t). Under this change of variables the two-dimensional Eq. (1.1) in which
d=2 becomes

∂V

∂t
+ρσ1σ2

∂2V

∂x∂y
+

1

2
σ2
1

∂2V

∂x2
+

1

2
σ2
2

∂2V

∂y2
+(r− 1

2
σ2
1)
∂V

∂x
+(r− 1

2
σ2
2)
∂V

∂y
− rV = 0.

(5.4)
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Now we can remove the crossing term ρσ1σ2
∂2V
∂x∂y

. In this way, we apply character-

istic line to remove mixed derivatives in Eq. (5.4) by considering its characteristic
equation for the above PDE [35] as

dy

dx
=
ρσ1σ2 +

√

σ2
1σ

2
2(ρ

2 − 1)

σ2
1

=
σ2

σ1
(ρ+

√

1− ρ2i),

where i =
√
−1. Thus we observe the following relation between spatial variables

x and y,

σ1y − σ2ρx− iσ2

√

1− ρ2x = c′.

Let ξ = σ1y − (σ2ρ)x, η = −σ2

√

1− ρ2x, and V (x, y, t) = U(ξ, η, t) then



















∂V

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂η

∂η

∂x
= −σ2ρ

∂U

∂ξ
− σ2

√

1− ρ2
∂U

∂η

∂V

∂y
=
∂U

∂ξ

∂ξ

∂y
+
∂U

∂η

∂η

∂y
= σ1

∂U

∂ξ
.

Further, we have














































∂2V

∂x2
= σ2

2ρ
2 ∂

2U

∂ξ2
+ 2σ2

2ρ
√

1− ρ2
∂2U

∂ξ∂η
+ σ2

2(1− ρ2)
∂2U

∂η2

∂2V

∂x∂y
= −σ1σ2ρ

∂2U

∂ξ2
− σ1σ2

√

1− ρ2
∂2U

∂ξ∂η

∂2V

∂y2
= σ2

1

∂2U

∂ξ2
.

Hence,

1

2
σ2
1

∂2V

∂x2
+ ρσ1σ2

∂2V

∂x∂y
+

1

2
σ2
2

∂2V

∂y2
=

1

2
σ2
1σ

2
2(1− ρ2)(

∂2U

∂ξ2
+
∂2U

∂η2
),

and

(r − 1

2
σ2
1)
∂V

∂x
+ (r − 1

2
σ2
2)
∂V

∂y
= −(rσ2ρ−

1

2
σ2
1σ2ρ− rσ1 +

1

2
σ2
2σ1)

∂U

∂ξ

−(rσ2

√

1− ρ2 − 1

2
σ2
1σ2

√

1− ρ2)
∂U

∂η
.

Thus, the Black-Scholes equation in (5.4) ransformed into

∂U

∂t
+ a

∂U

∂ξ
+ b

∂U

∂η
+ c(

∂2U

∂ξ2
+
∂2U

∂η2
)− rU = 0, (5.5)
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where

a = −(rσ2ρ−
1

2
σ2
1σ2ρ− rσ1 +

1

2
σ2
2σ1),

b = −(rσ2

√

1− ρ2 − 1

2
σ2
1σ2

√

1− ρ2),

c =
1

2
σ2
1σ

2
2(1− ρ2).

where the mixed derivative term vanishes. Eq. (5.5) can be rewritten in a discrete
form as follows:

(1 + r(1 − θ)△t)Ũn
k + (1− θ)△t

{−a
N
∑

i=1

w
(1)ξ
ki Ũn

i − b

N
∑

i=1

w
(1)η
ki Ũn

i − c(

N
∑

i=1

w
(2)ξ
ik Ũn

i +

N
∑

i=1

w
(2)η
ki Ũn

i )} =

(1 − rθ△t)Ũn−1
k − θ△t

{−a
N
∑

i=1

w
(1)ξ
ki Ũn−1

i − b
N
∑

i=1

w
(1)η
ki Ũn−1

i − c(
N
∑

i=1

w
(2)ξ
ik Ũn−1

i +
N
∑

i=1

w
(2)η
ki Ũn−1

i )}

where i = 1, 2, ..., N . For illustration of the accuracy of the proposed method, let
s1 ∈ [e−3.5, e4], s2 ∈ [e−3.5, e4], and θ = 0.5. To study the behavior of the method,
different structured and random mesh sizes are used for the point distribution in
ξ and η direction with shape parameter c2 = 1.25(D/

√
N) as selected by Franke

(1982), where D is the diameter of the minimal circle enclosing all supporting
points. Fig. (2) and Fig. (3), show that our scheme can provide reasonable
approximations for Stulz method [36] which provides a closed form solution. The
root-mean-square-error (RMSE) defined by the

RMSE =
1

N

√

√

√

√

N
∑

i=1

(U i
Stz. − Ũ i

num.)
2,

where UStz. is the solution by Stulz Method, Ũnum. is solution by numerical ap-
proximations. As ρ(E), the spectral radius of matrix E, is equivalent or less than
unity in each simulation, it guarantees the stability of the method.

6. Conclusion

In this paper, A mesh-free RBFs-DQ method is presented and used for numer-
ical solution of multi-dimensional Black-Scholes equation. In our approach, any
spatial derivative is approximated by a linear weighted sum of all the function val-
ues in the whole physical domain. The weighting coefficients in the method are
determined by RBF approximation and linear vector space analysis. The proposed
method is similar to finite difference schemes in the sense of derivative approxima-
tion. Numerical results showed that our RBFs-DQ scheme is an efficient approach
for solution of multi-asset option pricing.
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Figure 2: Comparison of two-asset option pricing results by RBFs-DQ method and
Stulz method with different structured mesh sizes and parameters E = 10, r =
0.05, σ1 = 0.22, σ2 = 0.14, ρ = 0.5, T = 0.5 (year) and 100 time steps
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Figure 3: Comparison of two-asset option pricing results by RBFs-DQ method
and Stulz method with different random mesh sizes and parameters E = 12, r =
0.05, σ1 = 0.15, σ2 = 0.15, ρ = −0.01, T = 0.25 (year) and 100 time steps
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