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A Numerical Study of RBFs-DQ Method for Multi-Asset Option
Pricing Problems

Leila Khodayari and Mojtaba Ranjbar

ABSTRACT: In this paper, we propose a numerical scheme to solve multi-dimensional
Black-Scholes equation using the global radial basis functions-based differential
quadrature (RBFs-DQ) method. Before applying the method, it is needed to re-
move mixed derivatives from the Black-Scholes equation by making an appropriate
change of variables . Then, any spatial derivatives are approximated by a linear
weighted sum of all the function values in the whole physical domain. In the RBFs-
DQ method the weighting coefficients are computed by RBFs. The method is very
easy to implement and the non-singularity is ensured. The proposed method com-
bines the advantages of the conventional DQ method and the RBFs. It also remains
mesh-free feature of RBFs.
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1. Introduction

In the past several decades, financial derivative products have become increas-
ingly important in the world of finance. Options as a kind of important financial
derivatives have a wide range of applications that one of the major concerns in
financial markets is determining the value of options. An option contract is an
agreement between a buying party (the holder) and a selling party (the under-
writer). The holder of the option contract has no obligation to use his option
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contract, whereas the underwriter is obliged to agree with the holder uses the op-
tion contract. Since an investor of options can set the strike price of underlying
assets in advance, these options are powerful tools for hedging risk in financial
market, therefore, the trading volume of options are increasing all over the world.
Options occur in many forms. Examples are vanilla options, barrier options, digital
options and multi-asset options. In this paper, in order to implement the method,
we consider options where the payoff depends on multi underlying assets. Such
option pricing can be modelled by higher dimensional generalization of the original
black-Scholes equation which Black and Scholes proposed an explicit formula for
evaluating European call options without dividends [1] and extended by [2]. By
assuming that the asset price is risk-neutral, Black and Scholes showed that the
European call options value satisfies a lognormal diffusion type partial differential
equation (PDE) which is known now as the Black-Scholes equation. If we introduce

the notation, C(s1, $2, -+, Sq,t) to represent the option value at time ¢ and stock
prices s1, S2,- -, Sq, then we get the following linear parabolic PDE
ac+1zd: 0%C +Zd: C o, O
Lz iS5 rs;— —rC =0,
o 2 A PO s T e D,

known as the Black-Scholes equation for multi-asset option problems. Where
8i,04,pij, and 7 are respectively, i-th asset price, volatility of the i-th asset price,
correlation between the prices of i-th and j-th assets, and risk free interest rate.
Since then, methods for option pricing have been discovered and improved by many
scholars. Details can be found in reference [3] which is a good review of valuation
models and applications to the option pricing. According to [4], there have been
numerous attempts to find the analytic form solutions of the Black-Scholes equation
for various derivative products in financial world. However, it is not easy to get an
analytic form solution for most of financial derivatives because of the complexity
of the financial product itself and the system of the financial market. Therefore,
in finance, numerical methods such as Finite Difference Method (FDM), Finite
Element Method (FEM) and Monte Carlo (MC) simulation techniques for pricing
derivatives problems, cf. [5,6,7,8,9,10,11,12], have been used. As has been men-
tioned in [13], different numerical methods can be applied to price multi-variate
derivatives. Higher dimensional generalizations of lattice binomial methods can be
used, cf. [14], where European options based on three underlying assets are solved
numerically. Stable higher order methods for the Black and Scholes equation have
been introduced by [15] and [16], mesh-free methods based on RBFs may also
reduce the computational efforts significantly, see [17]. In [4] Jo and Kim com-
bined the operator splitting method with parallel computation technique to solve
the multi-dimensional Black-Scholes equations. [13] used Penalty methods for the
numerical solution of American multi-asset option problems. [18] proposed explicit
Runge-Kutta methods for multi-asset American options in 2014.

In this work, the global RBFs-DQ method is utilized for the numerical solution
of multi-asset option pricing problems. As printed out in [19], the classic form of
the differential quadrature (DQ) method was introduced by [20,21] for the numer-
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ical solution of PDEs. The basic idea of the DQ method is that any derivative at
a mesh point can be approximated by a weighted linear sum of all the function
values along a mesh line. The key procedure in the DQ method is the determina-
tion of weighting coefficients for any order derivative discretization. As shown by
[22], when the solution of a PDE is approximated by a high order polynomial, the
weighting coefficients can be computed by a simple algebraic formulation or by a
recurrence relationship. Later, [23] also showed that when the solution of the PDE
is approximated by a Fourier series expansion, the weighting coefficients of the first
and second-order derivatives can be computed explicitly by algebraic formulations.
The details of the polynomial-based and Fourier series expansion-based DQ meth-
ods can be found in the book of [24]. The DQ method has been extensively applied
in engineering for the rapid and accurate solution of various linear and non-linear
differential equations [22,23,24,25,26,27,28,29,30]. In general, the polynomial-based
and Fourier series expansion-based DQ methods can achieve very accurate results
by using a considerable small number of grid points. It is a robust and efficient
technique, but the dependency of the method on a mesh leads to complications.
To overcome this difficult, using advantages of the RBF, [19] proposed other set
of meshless methods which is named the RBFs-DQ method, which combines the
mesh-free nature of RBF's with the derivative approximation of differential quadra-
ture (DQ) method. It seems that the multi-dimensional polynomial approximation
as the test function may not be a good choice in the DQ approximation. As has
been shown in [19], RBFs, which have truly meshless property and insensitivity to
high dimension, could be a good choice in the DQ approximation. The advantages
of RBF-DQ method as combination of DQ approximation and RBFs provide an
efficient discretization method, which is a derivative approximation approach and
is mesh-free. In this method, the RBF's are taken as the test functions in the DQ
approximation to compute the weighting coefficients. Moreover, the method not
only inherits the advantages of the DQ method such as high accuracy and efficient
computation, but also owns the merits of RBF's such as mesh-free feature and easy
extension to high dimension.

The organization of this paper is as follows. In Section 2 we describe RBFs-DQ
method for partial derivatives approximation. In Section 3 we apply the method
on multi-dimensional option pricing problems by applying Theorem 3.1. Stability
of the method to solve multi-asset option pricing problems is studied in Section 4.
In the following Section 5, the numerical example for two-asset option pricing with
this method is given. Finally, Section 6 is dedicated to a brief conclusion. Note
that we have computed the numerical results by Matlab programming.

2. RBFs-based DQ method

In this section, we will show in detail the global RBFs-DQ method. In the
following, we will show the details step by step.

2.1. RADIAL BASIS FUNCTIONS. In the past decades, the interpolation theory of
RBF has undergone intensive research, and nowadays RBFs play an increasingly
important role in the field of reconstructing functions from multivariate scattered
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data. In general, the interpolation theory of RBF can be described as follows:

if an unknown function f(X) is only known at a finite set of centres X;,i =1,..., N,
the approximation of a function f(X) can be written as a linear combination of N,
RBFs

N
FX) =) Ne(X,X;) +P(X), XeQcCRY (2)

j=1

where N is the number of data points, X = (z1, 22, ..., 4), d is the dimension of the
problem, \’s are coefficients to be determined and ¢ is the RBF. Also, Eq. (2) can
be written without the additional polynomial P. The success of RBF interpolant
is due to its excellent performance. Based on numerical experiments, [31] gave a
comprehensive review on the interpolation methods for scattered data. From the
numerical tests, Franke found that RBFs performed better than other tested meth-
ods regarding accuracy, stability, efficiency, memory requirement, and simplicity of
implementation. Among the tested RBFs, multi-quadrics (MQs henceforth) yields
the most accurate results. MQ-RBF's can be written as

<P(X7Xj) :W(Tj) = T]2'+C?’ (3)

where 7; = | X — Xj| is the usual Euclidean distance and c¢; is a shape parameter
(for generality, it is written with a variable shape parameter c;) and given by the
practitioners. It is noted that the shape parameter plays a very important role
in the MQ formulation. Its value determines the fundamental shape of the basis
function. These effects were initially observed for scattered data interpolation, but
we will see that they also occur in the numerical solution of the PDEs. Thus, the
problem of how to select a good value for the parameter ¢ appears in front of us.
Several methods for selecting ¢ for the MQ interpolants in the two-dimensional case
were suggested in the literature. [32] used ¢ = 0.815d where d = 1/N EZ\LI d; and
d; is the distance between the ¢ th node and its neighboring node. [31] replaced d by
D/ V/N where D is the diameter of the minimal circle enclosing all supporting points
and suggested to use 1.25D/\/]V. Up to now, optimization of shape parameter
and its distribution are still under research. If IP’g denotes the space of d-variate
polynomials of order not exceeding ¢, and letting the polynomials P, --- , P, be
the basis of P4 in R?, then the polynomial P(X) in Eq. (2), is usually written in
the following form

P(X) = Z &Py (X), (4)

where m = %. To determine the coefficients (A1, Az, -+, Ax) and (§1,&2, -+, &m)s
extra m equations are required in addition to the N equations resulting from the
collocating Eq. (2) at the N points. This is ensured by the m conditions for Eq.
(2),

N

D NP(X;) =0i=1,--,m, (5)

Jj=1
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2.2. DQ METHOD FOR PARTIAL DERIVATIVE APPROXIMATION IN MULTI-DIMENSION.
In this section we explain the method to approximate the spatial derivative in two-
dimension. However, the method can be generalized for multi-dimensional cases.
It is noted that the basic idea of the DQ method is that any derivative can be ap-
proximated by a linear weighted sum of function values at some mesh points. We
can keep this idea but release the choice of function values along a mesh line in the
conventional DQ approximation. In other words, for a two-dimensional problem,
any spatial derivative is approximated by a linear weighted sum of all the function
values in the whole two-dimensional domain. In this approximation, a mesh point
in the two-dimensional domain is represented by one index, k, while in the conven-
tional DQ approximation, the mesh point is represented by two indexes i, 7. If the
mesh is structured, it is easy to establish the relationship between 4, j and k. For
the example, k can be written as k = (i — 1)Na + 4,0 =1,2,..., N1;j = 1,2,..., Na.
Clearly, when ¢ is changed from 1 to Nj, and j is changed from 1 to Ny and k
is changed from 1 to N = Nj; x N,. The DQ approximation for the n-th order
derivative with respect to x, gmf , and the m-th order derivative with respect to

Y, 5 —f at (zx,yr) can be written as

3”f .

a e xlwyk ;wké) f xsays) (6)

om

ay ,5 (Ths Yi) Zw,ﬁ Y (24, ys). (7)
s=1

[19] employed this technique and made a novel and effective algorithm for the use of
RBFs to solve the PDEs. Instead of using polynomials for determining coefficients,
they applied RBFs as test functions.

In the following subsection, we will show that the weighting coefficients in Eq.
(6) and Eq. (7) and can be determined by the function approximation of RBFs
and the analysis of a linear vector space.

2.3. RBFs-D(Q APPROXIMATION. In this subsection, we will use the MQ-RBFs
as test functions to determine the weighting coefficients in the DQ approximation
of derivatives for a two-dimensional problem. However, the method can be easily
extended to the multi-dimensional case as it is dimension-independent, and other
RBFs can also be used as test functions.

Suppose that the solution of a PDE is continuous, which can be approximated
by MQ-RBFs in Eq. (3), and only a constant is included in the polynomial term
P(z,y). So, for a two-dimensional case, the function approximation can be written
as

y) :ijw(\(r,y) = (25,95)]) + 1 (®)

Eq. (8) has (N + 1) unknown coefficients and can only be applied at N nodes.
So, we need an additional equation to close the system. To make the problem
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be well-posed, this additional equation can be made by Eq. (5) ( the sum of the
expansion coefficients to be zero). As a result, we have

N N
Z)\j:O:)\i:_ Z )\j. (9)
j=1

j=1,j#i

Substituting Eq. (9) into Eq. (8) gives

N
Fay) =Y Aol y) = (@,9)) = ell(@,y) = (@iy)) +u. - (10)

J#4,4,i=1

The number of unknowns in Eq. (8) is reduced to N. As no confusion rises, y can
be replaced by A; and Eq. (10) can be written as

N
Fay) = Y Nlel@y) = (@u)) —e((@y) = @y + X (11)

J#,g,i=1

By setting gj(377y) = np(l(x,y) - (xjvy]')‘) —np(l(x,y) - (xzvyl)va =1 i-104
1,--+,N, Eq. (11) can be further written as

N
flay) =Y Ngi(z,y) + A (12)

=1

The form of Eq. (12) constructs an N-dimensional linear vector space VY. A
set of base functions in VY can be taken as ¢; = 1,¢; = gj(z,y) = ¢(|(z,y) —
(x5, 95)) — e((z,y) — (@i, 943)]),5 = 1,---,i — 1,4+ 1,--- ,N. From the concept
of linear independence, the bases of a vector space can be considered as linearly
independent subset that spans the entire space. From the property of a linear
vector space, if all the base functions satisfy the linear Eq. (6) and Eq. (7), so
does any function in the space vy represented by Eq. (12). There is an interesting
feature. From Eq. (12), while all the base functions are given, the function f(x,y)
is still unknown since the coefficients \; are unknown. However, when all the base
functions satisfy Eq. (6) and Eq. (7), we can guarantee that f(x,y) also satisfies
Eq. (6) and Eq. (7). In other words, we can guarantee that the solution of a PDE
approximated by the RBF satisfies Eq. (6) and Eq. (7). Thus, when the weighting
coeflicients of DQ approximation are determined by all the base functions, they can
be used to discretize the derivatives in a PDE. That is the essence of the RBFs-
DQ method. Using the idea of DQ method, the weighting coefficients of the n—th
order partial derivatives can be determined by substituting all the base functions
q1,92, " ;4N into Eq (6)7 as

N
0"qilziryi) _ N~ e _
=Yl =0 (13

axn
k=1



BSPM IXTEX STYLE 7

N

0" qj(xs, y:) (n)a . .,
— A Zwlk gj(zr,yk),  J=1,2- N,j#i (14)

For the given ¢ equation system (13) and (14) has N unknowns with N equations.
The matrix form for the weighting coefficients can be written as

a4, = (W], (15)
where
a”" =0 q(wiy)  0"G-1(wiyi) O qipa (@i yi) 5’"QN($i,yi)]T
g ’ Ox™ B ox™ ’ ox™ ’ Ox™ ’
i 1 . 1 T
a(z,y) - q(en,yn)
Q=1 ¢-1(zi,y1) - qalznyn) |,
C]z‘+1(3317y1) s ql‘+1($N7yN)
gn(z1,91) - an(ZN,YN)
and

Wgn)z = [wgﬁ),wg), ...,wEZ\),]T.

Clearly, there exists a unique solution only if the collocation matrix [Q] is non-
singular. The non-singularity of the collocation matrix [Q] depends on the prop-
erties of used RBFs. [33] proved that matrix [Q] is conditionally positive definite
for MQ-RBFs. This fact can not guarantee the non-singularity of matrix [Q]. [34]
showed that cases of singularity are quite rare, and not serious objection to a valu-
able numerical technique. Therefore, the coefficient vector WZ(»”)“ can be obtained
by

W = Q] g™, (16)

{2

Then, the coefficient vector Wl(n)‘ can be used to approximate the m-th-order
derivative in the x direction for any unknown smooth function at node i. In a
similar manner, all the base functions are substituted into Eq. (7) to approximate
the m-th-order derivative in the y direction for any unknown smooth function at
node i. For MQ-RBFs, ¢;(z,y) can be written as

@) =@ —e) -2+ G -2+ g -w2+d, (17)

where second- and higher-order derivatives of g;(x,y) can also be obtained by
differentiating Eq. (17). One of the most attractive properties in the above method
is that the weighting coefficients are only related to the test functions and the
position of the collocation points.
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3. Global RBFs-DQ method for multi-dimensional Black-Scholes
equation

In this section, first we will introduce the variable transformation S; = e®* and
C (81,5 845t) = V(x1,...,xq,t). Under this change of variables Eq. (1) becomes
the parabolic PDE with constant coefficients as

d d
v 1 0%V 1, 0V
Vo= ey . _ _ 1
+ 5 ”E:lp”aza]a - + ;:1(7“ 201) rV =0, (18)

ot ;0 ox;

as Eq. (18) satisfies the conditions of the following theorem, we can remove the

crossing terms
32

PijOi0; 5—— o a i # 7
then we can apply the RBF-DQ method to option pricing.

Theorem 3.1 Consider the second-order equation

Z AUz, —|—Za Uy, + aou = 0,

1,j=1

assuming that the mized partial derivatives are equal, we may as well assume that
ai; = aj;, by making an appropriate change of variables, we can write the top-order
term szzl AjjUy;z; AS 22:1 iUz, z,, , Where the coefficients dy, are the eigenvalues
of the n x n matric A = (a;j).

Therefore, the multi-dimensional Black-Scholes equation transformed into

ou | 0%U
_E:Z{ z——l—bag}—rUEDU, (19)
=1 ?

The domain is discretized by taking N knots according to the method used in
previous section and we would like to discrete the Eq. (19) with respect to time.
We introduce a weight § and apply the 6 implicit scheme to the problem as

ou O

ot (tnoxE) = Tk =(1- G)DUl(tn;Xk) +6DU

(tn—1,xk) (20)
Denote U\(thk) = U,?, where represents the approximation of the function value

U at knot k, xx = (€F,...,&%), and the time t,,. By applying the RBF-DQ method,
Eq. (19) can be rewritten in a discrete form as follows:

(1+7(1— 0)A)TR + (1 — 0)At{— Z{aZZw,iJ’waubZ Deigmyy =

(1= r0ATL " — 0t~ Z{ai waj&i o 4 b, Z wS T,

i=1  j=1 j=1



BSPM I4TEX STYLE 9

where £k = 1,2,..., N and wlg)gi and w,(c?gi represents the computed weighting

coefficients in the DQ approximation.

4. Stability of the method

In this section, we study the stability of the implicit finite difference method
described above. Let us assume that U be exact and U is the numerical solution of
equation (20). Note that the discrete equations in the last section can be rewritten
as the following form

[T+ (1-6)AtD|U, = [I - §AtD|U,,_;. (21)
So we can write Eq. (21) as
U, = [I+ (1 -60)AtD] I - 0AtD|U,,_, = EU,_, (22)

where

d
D =r— {a{[Q Q] }" +bA1Q) " [Ql )"}
i=1
is N x N matrix determined by descretized form of Eq. (19) and

[Q]E,(J> = [qgj)gl ) ng)gi P ,qg\j/')gi]uj = 17 2.

The scheme for initial value problem is stable if and only if there exists a positive
constant C' independent of the mesh spacing and initial data such that

[Tl < C|[To|,n — 0o, At, Ax — 0,

If E depended on n we would get a product of the operators at each time level.
Taking a norm

10, = IE"Uol| < ||E"[||Toll,n — oo, At, Ax — 0,

Therefore, the numerical scheme is stable if and only if there exists positive constant
C' such that
IE"|| < C,n — oo, At, Ay — 0,

Since p(E) as the spectral radius of E provides a lower bound to any matrix norm,
for the scheme to remain stable, we should have p(E) < 1 or equivalently we can
say that
1-— HAtnD
|1+(1—6)AtnD‘ -
which holds for np, eigenvalues of the matrix D, located in the right half plane.

Inequality (23) also shows that stability of the scheme, in the case of RBFs with
shape parameter like MQ, depends upon shape parameter.

(23)
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5. Numerical computation of two asset European option

For two-dimensional option pricing under Geometric Brownian motion frame-
work, consider the PDE (1) with d = 2 and the final time condition for European
call is

C(s1,82,T) = max(maz(s1,s2) — E,0), (24)

where F, T are exercise price and maturity time. The following boundary condi-
tions are imposed

C(sl max; 52 T) = Slmax — Eeir(Tit)a (25)

C(Sla S$2 max» T) = S2max — Ee_T(T_t)a (26)

where $1max, S2max are respectively maximum of s;, maximum of ss.

In this case, the variable transformation s; = e*,s9 = e¥ and C(sq, $2,t) =
V(z,y,t). Under this change of variables the two-dimensional Eq. (1) in which
d=2 becomes

8l+ aQV _|_1 282‘/_’_1 282V+( _1 2)al+( _1 Q)al_ V=0
ot pal‘”axay 271942 T 272 Oy? TR g, T2 Ay e
(27)

. 2 .
Now we can remove the crossing term poy aggx—gy . In this way, we apply character-

istic line to remove mixed derivatives in Eq. (27) by considering its characteristic
equation for the above PDE [35] as

dy  porog+\/oiai(p2—1) o2 )
dr o = —=(p+ V1 - p%),
X 09 o1

where ¢ = v/—1. Thus we observe the following relation between spatial variables
x and y,

o1y — oopx — G0/ 1 — px = .

Let 5 =01y — (sz)l'ﬂ] = —02v 1- pr’ and V({E,y7t) = U(§7777t) then

oV _oUdE Uy U oU

ov. _ovo ovon Y 11— 222
R T I I T T A

V_oUdE oUdy _ U
dy ooy  amoy loc
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Further, we have

o’V , 02U 02U
—— = 202p\/1 — 23 it
81'2 2p 852 + 02p 858 —p )8772
o0?V 02U 0%U
i i /1— 2
droy 10 gez T 9192 P ocan
0?V ,0?U
8y2 o1 €2
Hence,
1 ,0%V ?v 1 282 15, 0?U o2
50—1 8.’132 +p0—102a B 2 02 8y 50—102(1 )( 852 )7
and
1,0V 1,0V 1 1 8U
(r—=02)——+(r—=03) = = —(rosp—=ooep—ro;+= 0201 —(rogv/1—1p —70102\/ 1- .
2 oz 2 oy 2 2
Thus, the Black-Scholes equation in (27) ransformed into
ou ou ou 0’U  0*U
— b— — ) —rU = 2
6t+8§ +(a§2+ 7)) —rU =0, (28)
where
a=—(rogp — iafagp —ro; + 50501),

1
= —(rogy/1—p2 — 50%02\/1—p2),
1l e, 1— 2
c= 20102( p7)-

where the mixed derivative term vanishes. Eq. (28) can be rewritten in a discrete
form as follows:

N
(1+r(1— AT + (1 - ) At{—a Y wyUp — me,ﬁ?nUy - Zw @eprn 4 Zw(z)”Uf =
i=1 i

(1-— rGAt)U" T ONt{— aZw(l 5UZ” L bzw,(i ”U[“l — C(Z wgi)sffi’kl + ng)"ﬁfﬂ)}

i=1

where ¢ = 1,2,..., N. For illustration of the accuracy of the proposed method,
we consider a European call option with two underlying assets with £ = 10,r =
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Figure 1: Comparison of two-asset option pricing results by RBF-DQ method and
Stulz method

0.05,00 = 0.22,00 = 0.14,p = 0.5 and T = 0.5 (year) with 100 time steps .
Let 51 € [e72%,e], 55 € [e73?,e%], and § = 0.5. To study the behavior of the
method, different structured mesh sizes are used for the point distribution in £ and
n direction with shape parameter ¢? = 1.25(D/+/N) as selected by Franke (1982),
where D is the diameter of the minimal circle enclosing all supporting points. Fig.
1 shows that our scheme can provide reasonable approximations for Stulz method
[36] which provides a closed form solution and is available in Matlab. The root-
mean-square-error (RMSE) defined by the

N
1 . ~

where Ug;,. is the solution by Stulz Method, Unum. is solution by numerical ap-
proximations. As p(E), the spectral radius of matrix E, is equivalent or less than
unity in each simulation, it guarantees the stability of the method.

6. Conclusion

A mesh-free RBFs-DQ method is presented and used for numerical solution
of multi-dimensional Black-Scholes equation in this paper. In our approach, any
spatial derivative is approximated by a linear weighted sum of all the function val-
ues in the whole physical domain. The weighting coefficients in the method are
determined by RBF approximation and linear vector space analysis. The proposed
method is similar to finite difference schemes in the sense of derivative approxima-
tion. Numerical results showed that our RBFs-DQ scheme is an efficient approach
for solution of multi-asset option pricing.
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