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Existence of entropy solutions for degenerate elliptic unilateral
problems with variable exponents

E. Azroul, A. Barbara, M.B. Benboubker, K. EL Haiti

ABSTRACT: In this article, we study the following degenerate unilateral problems:
— div(a(z, Vu)) + H(z,u, Vu) = f,

which is subject to the weighted Sobolev spaces with variable exponent Wol’p(z) (2, w),
where w is a weight function on , (w is a measurable, a.e. strictly positive func-
tion on € and satisfying some integrability conditions). The function H(z,s,§) is a
nonlinear term satisfying some growth condition but no sign condition and the right
hand side f € L' ().
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1. Introduction

Let Q be a bounded open domain in RY (N > 2) and p € C*T(Q).
This paper will be concerned with the existence of entropy solutions of the following
nonlinear unilateral elliptic problems

u is a measurable function such that u > a.e.in Q, Ti(u) € Wol’p(z)(ﬂ, w),

a(x, Vu)VTi(p — u)dr + /Q H(z,u, Vu)Ti(p — u)dx > /Q fTi(p —u)dz  (1.1)

Q
V(p (S Kw n LOO(Q),
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where
Ky={ue Wol’p(z)(ﬂ,w), u> 1 ae. in Q}

with a measurable function 1 such that

ot e W™ (Q,w) N L= (Q). (1.2)

We make the following assumptions on a, H and f:
The function a : Q x RY — RY is a Carathéodory function satisfying the
following assumptions:

ja(z, )| < Buw(@) 7 (k(z) + w(z) 7@ ¢, (1.3)
la(x, &) — alz, n)](& — >>o VE £, (1.4)
a(z, )€ > aw(@)|¢P@, (1.5)

for a.e. x € Qand all £, € R, where k() is a positive function lying in Lp,(x)(ﬂ)
and o, 8 > 0.
The nonlinear term H : Q x R x RY — R is a Carathéodory function satisfying:

|[H(z,5,6)] < 7() + g(s)w(@) €[, (1.6)

where g : R — R™ is a continuous positive function that belongs to L!(R) and ~(x)
belongs to L'(Q).
Furthermore, we suppose that

feL(). (1.7)

In various applications (such as in elasticity, non-Newtonian fluids the flow
through porous media and image processing), we can meet boundary value obsta-
cle problems like problem (1.1) for elliptic equations whose ellipticity is ”disturbed”
in the sense that some degeneration or singularity appears. This ”bad” behavior
can be caused by the coefficients of the corresponding differential operator. For
degenerate partial differential equations, i.e., equations with various types of sin-
gularities in the coefficients, it is natural to look for solutions in weighted Sobolev
spaces. Many of these models have already been analyzed for constant exponents
of nonlinearity but it seems to be more realistic to assume the exponent to be
variable.

Under our assumptions, problem (1.1) does not admit, in general, a weak solu-
tion since the term a(z, Vu) may not belong to (L},.(2))". In order to overcome
this difficulty, we work with the framework of entropy solutions. This notion was
first introduced by Sanchén and Urbano [20] who studied a Dirichlet problem of
p(x)-Laplace equation and obtained the existence and the uniqueness of entropy
solutions for L' data. The paper of Sanchén and Urbano showed the way to study
the notion of entropy solutions to problems in variable exponent spaces with Dirich-
let homogeneous boundary-value conditions (see e.g. [3,4,5,6,17,23]). At the same
time, the theory regarding the weighted Sobolev spaces with variable exponent
p(z), i.e. W™ (Q,w) have been introduced in [15] and [1].
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The first goal of this paper is to show the existence of entropy solutions for (1.1)
in the weighted variable exponent Sobolev spaces, using the approximation ways
under the conditions on a, H, f introduced above and certain assumptions on w that
will be specified later. We shall make use of the properties for the weighted variable
exponent Sobolev spaces W, (I)(Q,w) proven in [14]. However, This manuscript
generalized the results in [12,22] to the obstacle case and generalized the results in
[18] to the weighted case.

The main difficulty in proving the existence of a solution stems from the fact
that H(z,u, Vu) does not assume the sign condition (i.e. H(z,s,{)s > 0). Other-
wise, the term H (z,u, Vu) is said to be an absorption term, in this case a detailed
picture of what happens is available (see e.g. [4,6,8,9,10,11]).

The plan of our paper is as follows: In Section 2, we give some preliminaries
and notations. In Section 3, the existence of entropy solutions of (1.1) is obtained.

2. Abstract framework

In this section, we will introduce an adequate functional space where problems
of type (1.1) can be studied. Such a space will be called weighted Sobolev spaces
with variable exponent Wlﬁp(i) (Q,w), where Q is a bounded domain in RN (N > 2).

Set C+(Q) ={plp e C(QQ), p(x) >1 for any = € Q}.
Let w be a measurable positive and a.e. finite function defined in R". Further,
in all this section, we suppose that the following integrability conditions are satisfied
(H2) : 07T € L(9).
(H3) : w™*® e L} (), where s(z) € (i,oo) N [;,oo).
p(x) p(z) —1

The reasons that we assume (H1), (H2) and (H3) can be found in [14]. By
LP®)(Q,w) we denote the weighted space of measurable functions u(x) on Q such
that

/ Ju(z)|P®w(z)dz < oo,
Q

where p € C4(Q), 1 < p_ = ingp(:c) < p(x) < pg :=supp(z) < oo and w is the
zTE zES

weight function. This is a Banach function space with respect to the norm

p(z)
][ p(z) e = inf {)\ > 0, /Q ‘@‘ w(z)dr < 1}.

We denote by Lp,(””)(Q,w*) the conjugate space of LP(*)(Q, w), where ﬁ +
ﬁ =1 and where w*(z) = w(z) ¥ @),
Proposition 2.1. Denote

I, (u) = i luP@w(z)de, Yue LPP(Q,w).
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Then the following assertions hold:
(i) [Jullp)w < 1 (resp. = 1 or > 1) if and only if I,(u) <1 (resp. =1 or>1)

(i) [ullp)w > 1 implies |jull” < Ly(u) < Hu|p(+z)7w, and [|ulpyw < 1

e = i p
implies |[ull, () o < Lo(u) < ulle, .,

(i) [|ullpz),w — 0 if and only if I,(u) — 0, and ||ul|p(z). — o0 if and only if
I,(u) — oo.

Proof. By taking I, (u) = I(wﬁu), where I(u) = [, |u[P*)dz and ||wﬁu|\p(m) =
|4l p(2),w» We can prove Proposition 2.1 as a consequence of the corresponding one
in [13]. 0
We define the weighted Sobolev space with variable exponent by
WhP)(Q w) = {u € LP™)(Q) and |Vu| € LP@)(Q,w)}.
with the norm

H“Hl,p(z),w = Hullp(z) + Hv“Hp(I),w Yu € lep(x)(Qaw)'

We denote by Wol’p(x)(Q,w) the closure of €°(Q) in WP (Q,w) and p*(x) =

]\J[Vf;(zz)) for p(x) < N.

Remark 2.2. Under the assumptions (H1)-(H3), we can prove the following re-
sults which will be used later. It is worth pointing out that the conditions (H1) and
(H2) are essential. Without it the space WP (Q, w) is not necessarily a Banach
space even though p(x) is a constant.

Proposition 2.3. [1/] Let Q € RN be an open set, p € C(Q). If (H1) and (H2)
holds, then
LP®(Q,w) < Lipe()

Proposition 2.4. [14]. If (H1) and (H2) holds, then WP(®)(Q, w) is a separable
and reflexive Banach space.

For p,s € CT(0Q), set

ps(x) = Tt (o) <p(),
where s(z) is given in (H3). Put
p(z)s(z)N .
pi(z) = (1+s(2))N — p(x)s(x) Tf N > ps(x),
+00 if N Sps(z),

for almost all z € Q.
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Proposition 2.5 ([14]). Let p,s € CT(Q), 1 < p_ < py < 0o and let (H1),(H2)
and (H3) be satisfied, then we have the continuous embedding

WLP(I)(Q’W) N Wl,ps(r)(m,
Moreover, we have the compact embedding

WP (Q, w) s LT@(Q)
provided that r € C* and 1 < r(z) < p*(z) for all x € Q.

3. Some technical Lemmas

Lemma 3.1 ([7]). Let g € LP®™)(Q,w) and g, € LP®)(Q,w) with ||gnpz)0 < C
for 1 < p(z) < co. If gn(z) = g(z) a.e. on Q, then g, — g in LP®)(Q,w).

Lemma 3.2. Assume that (1.3)~(1.5), and let (uy)n be a sequence in Wol’p(z)(ﬂ, w)
such that w, — u weakly in Wol’p(l)(Q,w) and

/Q [a(x, Vuy,) — a(z, Vu)]V(uy — u)dz — 0. (3.1)

Then u,, — u strongly in Wol’p(z)(Q,w).
Proof. Let D,, = [a(x,Vuy) — a(z, Vu)|V(uy, — u). We have D,, is a positive
function, and by (3.1) D,, — 0 in L*(2). Extracting a subsequence, still denoted
by u,, we can write u,, — u in Wol’p(x)(ﬂ, w) which implies u,, — u a.e. in €, and
since D,, — 0 a.e. in (), there exists a subset B of €2, of zero measure, such that
for x € Q\ B, |u(x)] < oo, |Vu(z)| < 0o, k(z) < 00, up(z) = u(z), Dp(z) — 0.
Defining §,, = Vu,(z), £ = Vu(x), we have
Dy (z) = [a(z,§,) — a(@,8)] (€, =€)
a(:z:, €n)€n + a(x, 6)5 - a(:z:, €n)€ - a(:z:, €)€n
aw(@)|E, PP + aw(@)|e[F®) — fuw(z) 7 (k(z) + [€,[7D el (3.2)
1 )
— (@) 7 (k(x) [P €, |
€, [P — O [1+ €, P71+ [,.]],

Y

Y

where C,, is a constant depending on x, without dependence on n. Since u,(z) —
u(z) we have |u,(z)| < M,, where M, is some positive constant. Then by the
standard argument [£,,| is bounded uniformly with respect to n, then we deduce

that o o o
Da(z) > |6, P@ (0 — —2 T2 Yr_ 3.3
@02 &I hm ] T g pe ) 33
If |€,,| = oo (for a subsequence), which is absurd since Dy, (z) — co. Let now &
be an accumulation point of &,,, we have |€*] < oo and by the continuity of a we

obtain

[a(x,£7) — a(z,](E" — &) =0. (3.4)
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In view of (1.4), we have £* = £, which implies that
Vun(x) = Vu(z) a.e. in . (3.5)

Since the sequence a(x, Vu,) is bounded in (L") (Q,w*))N and a(z, Vu,) —
a(x,Vu) a.e. in , by Lemma 3.1, we can establish that

a(z, Vuyp) — a(z, Vu) in (LP @ (Q,w*)N ae. in Q. (3.6)
We set g, = a(z, Vu,)Vu, and § = a(z, Vu)Vu. We can write
Un — 7 in LY(Q).

We have
a(®, Vug) Vi, > aw(z)|Vu, [P

Let 2, = w(z)|Vu,[P®), z = w(z)|Vul[P®), y,, = L= and y = L. Then by Fatou’s
Lemma,
/ 2y dx §1iminf/ Y+ Yn — |20 — 2| du, (3.7)
o) n—roo O
ie., 0 < —limsup [, |z, — z|dz. Then
n—oo
0< hrninf/ |z, — z|dx < 1imsup/ |z, — z|dx <0, (3.8)
n—oo [ n—00 Q
this implies
Vu, — Vu in (LP@(Q,w)V. (3.9)
Hence u, — u in Wol’p(x)(Q,w), which completes the proof. O

Lemma 3.3 ([4]). Let F': R — R be a uniformly Lipschitz function with F(0) =0
and p € C.(Q). Ifu € Wol’p(m)(Q,w), then F(u) € Wol’p(z)(ﬂ,w), moreover, if D

is the set of discontinuous points of F' is finite, then

d(Fou) F’(u)g—; a.e. in{x€N:u(x)¢ D}
Ox; 0 a.e. in{x € Q:u(zr) € D}.
The following Lemma is a direct deduction from Lemma 3.3.

Lemma 3.4. Let u € Wol’p(z)(Q,w) then ut = max(u,0) and u~ = max(—u,0)
lie in Wol’p(m)(Q). Moreover

"0 ifu<o0, Ox | -2% ifu<o.

out g—; ifu>0 odu~ O ifu>0
azi - oz,

Remark 3.5. We feel that the techniques needed to obtain the proofs of Lemma
3.1 and Lemma 3.3 can be done by a slight modifications of the corresponding ones

in [7] and [4].
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4. Existence result of entropy solutions

In this section, we study the existence of entropy solutions to problem (1.1)
when the right-hand side f € L1().
We first recall some notations. In the following let 7} denotes the truncation
function at height k > 0: Tj(r) = min(k, max(r, —k)), and define

Ty P, w) = {u measurable in Q : Ty (u) € W@ (Q,w), V k> 0}.
Let us first define the entropy solution of our problem.

Definition 4.1. A measurable function v € Tol’p(z)(Q,w) is called an entropy
solution of the obstacle problem (1.1) for {f,¢} if u > ¢ a.e. in Q and for every
k>0,

/ a(z, Vu)VTi (o — u)dzx + / H(x,u,Vu)Ti(p — u)dx > / fTi(p —u)de
Q Q Q

for every ¢ € Ky N L*>(Q).
Now we shall prove the following existence theorem.

Theorem 4.2. Assume that (1.2)—(1.7) and (H1)-(H3) hold. Then there exists at
least one entropy solution of the problem (1.1).

4.1. Approximate problem

To prove existence of a solution to (1.1) we introduce approximating problems
for which existence is easy to prove. To this end, let €2,, be a sequence of compact
subsets of 2 such that 2, is increasing to Q as n — oo, and let (f,,) be a sequence
of smooth functions such that f, — fin L'(Q) and || ful 1) < [|fll21(0)- Then
we consider the following approximate problems

up € Ky
/ a(x, Vup)V(uy, — v)dx +/ Hy(z, upn, V) (u, —v)de < / fn(ty —v)dx
Q Q Q (4.1)
for all v € K, where
H(x,s,£)

Hn(x,S,f) = X,

L+ 2 |H(z, 5,¢)]

with xq,  is the characteristic function of €2,,. Note that |H,(z,s,§)| < [H(z,s,&)|
and |H, (z,s,£)| < n.

Theorem 4.3. For fized n, the approzimate problem (4.1) has at least one solution.

Proof. Let X = K, we define the operator G,, : X — X* by

(Gru,v) = [ Hp(z,u, Vu) vdz.
Q
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We have for all u,v € X,

’/Hn(x,u,Vu)vdac’ S’/n|v|d$’
Q )

< nfjv][L(q)
< O]l o @)-
Hence the operator G, is bounded.
We may adopt the same procedure as in [21] to deduce that the operator B,, =

A+ G, is pseudo-monotone.
Next, for the coerciveness of B,,, we want to show that

(Bpv,v —vg)
H'UHLp(z) w

For this, let vy € Ky, we use Holder inequality and the growth condition to have

— 400 if [|v|1 pea),w — 00 for v, v € Ky.

(Av, vp) :/a(x,Vv)Vvodz
Q
Z/a(x,VU)w(x)%Vvow(x)ﬁdx
Q

) /
< C - + — / la(z, Vo) [P @w(z) “ar ) H'UOHWULP(I)(QM)

/

1 6
< Oz + =l o ([ BE @D + 907 s(a)

< Co(Cy + L,(V)”,

where

1 .
9/ _ pl{ lf Ha’( )HLP @) (Q,w*) > 1 (42)
L i oz, o)l < 1.
Relation (1.5), gives

(Av,v) B (Av, vg)

H'UHLp(z),w HUHLP(I)M - HUHLP(I)M
1,(Vv)
GHUHl,p(I),w o
Since S OnbY 2 ng SEeh > bounded, then we can write

[0ll1.p(@).0 [0]]1,p(a)
(Bpv,v —vo)  (Av,v —vg)  (Gpo,v) (Gpv,vp)

= + - — 00 as ||v]|1,p(z),w — 00
HUHl,p(m),w H'UHLp(z),w HUHl,p(m),w H'UHLp(z) w p(@)

(al,(Vv) — Co(Cy + I, (Vo). (4.3)

Therefore — 00 as ||UHLP(I)M 00

Finally, we conclude that B,, is pseudo-monotone and coercive. As a consequence
of [16, Theorem 8.2], there exists at least one solution of the approximate problem
(4.1). O
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4.1.1. A priori estimates.

Proposition 4.4. Assume that (1.3)~(1.7) and (H1)-(H3) hold, and let u,, be a
solution of the approximate problem (4.1). Then, there exists a constant C' (which
does not depend on n and k) such that

/ VT () [PDw(z)de < Ck ¥V k> 0.
Q

Proof. Let v = u, — nexp(G(un))Tk(u) — ™) where G(s) = [ %dt and 1 > 0.
As a consequence v belongs to € Wol’p( )(Q,w), and for n small enough we obtain
v > 1) and then it is an admissible test function in (4.1). It follows that

/ a(x, Vun)V(exp(G(un))Tk(u;r - 1/)+))d:c
Q
+/QHn(z,un,Vun) exp(G (un )T (uf — T )dx
< [ foesp(Glun)Tutu — v*)da
Q
which implies

exp(G (un)) Tk (u,h — Y )dx

/ a(zx, Vun)Vung(un)
Q «Q

+/ a(x, Vu,) VT (uh — ) exp(G(uy,))dx
Q
< —/ Hn(x,un,Vun)exp(G(un))Tk(u:{ - 1/)+)dz
Q
+ [ dexp(Glun)Ti(uf v
Q
< [+ 21 exp(Glun ) Tl 0
+ / 9| Vn PP w(z) exp(G(un ) Ti(uh — ) da.
Q
From (1.5) and the fact that || fu|/L1(0) < || f[l1(0) and v € L'(Q), we deduce that
/ a(x,Vun)VTk(u:g - 1/)+)exp(G(un))d:c
Q
< / frexp(Gun)) Ty (uf — ) da +/ v(x) exp(G(un))Th(uy, — ™) da
Q Q

e
< (1) + Il @) exp(-==E)k < Cik,
(4.4)
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where C1 is a positive constant. Consequently,

/{ v en a(z, Vu,)Vu, exp(G(uy,))dw

< / a(x, Vu,) VT exp(G(uy,))dz + Crk.
{luk =+ <k}
Using Young’s inequality together with assumption (1.5) yield
/ |Vu PP w(x)de < Cok. (4.5)
{lun —vF|<k}

Since {z € Q, [uf| <k} C{x € Q Juf — 7| <k + [T ||}, it follows that
/ VT3 (u]) |P®w(z)de = / |Vu |P@w(z)dz < / |Vt [P@w(x)da

Q {lut |<k}

{ludt =t | <k+19H oo

Moreover, (4.5) implies
/ VT () PPw(@)de < Clk + [0t ), VE>0,  (4.6)
{unzo}
where C5 is a positive constant.
On the other hand, taking v = u,, + exp(—G(uy))Tk(u,, ) as a test function in
(4.1), we obtain
- / a(x, Vu,)V(exp(—G(un)) Tk (u,, ))dx
Q
- / Hy,(z, upn, Vuy,) exp(—G(un)) Tk (u,, )dz
Q
< = | fnexp(=G(un))Ti(u, )dz.

Q
Using (1.6), we have

/Q a(zx, Vun)Vun@ exp(—G(un)) Tk (u,, )dz

f/a(z,Vun)VTk(u;)exp(fG(un))dz

Q

< [ ) expl=Glun Tetuz e + [ ) VP 0) xp( Gl T o
Q

Q
— /Q fnexp(—G(up)) Tk (u,, )dz.

By the same way as in (4.4), we get
—/a(x,Vun)VTk(u;)exp(fG(un))dz
Q

= / a(x, Vun) VT (un) exp(—G(uy))dz < Csk.
{’U.TLSO}
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Using again (1.5), we deduce that
/ VT4 (wn) PP wo(x)de < Cak, (@7)
{un§0}
where Cy is a constant positive. Combining (4.6) and (4.7), we conclude that
VT (1) PP w(z)dz < Ck with  C > 0. (4.8)
Q

The above inequality implies that

IV T ()| oo 0y < (CR)P (4.9)
with
9 = 1/p7 lf Hka(u")HLP(m)(Q,w) >1 (410)
1/pt i VT (un) | o) () < 1-

4.1.2. Strong convergence of truncations.

Proposition 4.5. There exist a measurable function u such that
Tr(upn) — Tk(u) strongly in Wol’p(z)(Q,w).

The proof of the above proposition is done in two steps.

Step 1. First we will show that (u,), is a Cauchy sequence in measure. Let
k > 0 be large enough and Bpr a ball. Combining the generalized Holder inequality
and Poincaré inequality, one has

k meas({|un| > k} N Br) = / | T3 (wn,)|dx
({lun|>k}NBR)
< C\IVTk(un)|| o) (0
< CIVTi(un) 1000 o
e[ ()P a)e)’
Q
< CEY,
where
— 1/pjr lf HVTk(un)”LP(m)(Q,w) =1 (412)
1/p* i [[VTi(un)|l oo @y < 1.
Which yields,
1
meas({|un| >k} N Br) < C——= =0 as k — oo. (4.13)

k>
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Moreover, we have, for every § > 0,

meas({|u, — Upm| > 0} N Br) < meas({|u,| > k} N Bgr) + meas({|un| > k} N Bgr)
+ meas({|Tx(un) — Ti(um)| > 6} N Br).

By (4.13), we deduce that for all £ > 0, there exists kg > 0 such that

meas({|u,| > k}NBg) <

< % and meas({|un| > k}NBg) < VEk > ko. (4.14)

Wl ™

Since (4.8), Tk(uy) is bounded in Wol’p(z)(ﬂ,w), then there exists a subsequence

still denoted Ty (u,) such that Tj(u,) converges to 1, weakly in Wy 7" (Q, w), as
n goes to oo, strongly in LP(®*)(Q) (because p(x) < p*(z)), and a.e. in Q. Thus,
we can assume that Ty (u,,) is a Cauchy sequence in measure, then there exists ng
which depend on ¢ and € such that

meas({|Tx(un) — Tk (um)| > 0} N Bg) < % Vm,n >ng and k > kg.  (4.15)

Let € > 0. Then, by combining(4.14) and(4.15), we obtain
meas({|un — um| >0} N Br) <e ¥n, m > ng(ko,d, R).

Then wu, is a Cauchy sequence in measure, thus, there exists a subsequence still
denoted u,, which converges almost everywhere to some measurable function u, and
by Lemma 3.1, we obtain

Tio(un) — Ti(u) weakly in WaP™ (Q, w) and strongly in LP(™) (). 4.16
0

Step 2. In order to prove the strong convergence of truncation Tj(uy), let
show the following intermediate result which is proved in the appendix.

Lemma 4.6. There exist a subsequence of u, solution of problem (4.1) satisfies,
for any k >0,
Assertion (i):

lim lim a(x, Vuy)Vuydr = 0. (4.17)

Ie0 0 S i< un | <j+1}

Assertion(ii):

]llglo nhﬂn;o a(x, VI (un)) — alz, VI (w) (VT (un) — VI (u))hj(u,)dz = 0.
. (4.18)

Assertion(iii):

lim lim [ a(z, VIg(un))VTk(un)(1 — hj(uy))dz = 0. (4.19)

Jj—oon—oo fo
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Note that h; (j is a nonnegative real parameter) is a real variable function
defined by

1 if |s| < j,
hj(s) =40 if |s| > j +1, (4.20)
JH1—s| ifj<|[s|[<j+1.

We can write
/Q(a(z, VT(up)) — alx, VT () (VT (uy,) — VTi(u))dx
= /Q(a(:c, VT (un)) — al(z, VI (w)) (VT (un) — VT (u))hj(u,)dx

+ /Q(a(z, VT (un)) — alz, VIE(w))) (VI (un) — VI (w)(1 — hj(un))da.

Thanks to (4.18), the first integral of the right-hand side converges to zero as n
and j tend to infinity. Concerning the second term, we have

/Qa(:r, VT (un)) — alz, VI(w) (VT (un) — VI (u))(1 — hj(un))de,
= /Qa(x,VTk(un))VTk(un)(l — hj(uy)) dx,
—/Qa(x,VTk(un))VTk(u)(l — hj(uy)) dx,

_ /Q o, V(W) (VT () — V() (1 — b (1))

According to (4.19), the first integral of the right-hand side approaches zero as n
and j tend to infinity, and since a(z, VT (uy,)) in (LP @) (Q, w*))N and VT (u)(1 -
hj(un)) converges to zero, then the second integral converges to zero. For the third
integral, it converges to zero because VT (u,) — VTi(u) weakly in (LP®)(Q,w))V.
Finally we conclude that,

lim (a(:c, VTi(un)) — afz, VTk(u))) (VTh(un) — VTi(u))dz = 0.

Using (4.19) and Lemma 3.2, we deduce

Tk (un) = T (u) strongly in Wol’p(z)(ﬂ, w) as n tends to + oo, (4.21)
Vu, - Vu ae. in Q. (4.22)

4.1.3. Passing to the limit. In this step we claim that

H,(z,un, Vu,) — H(x,u, Vu) strongly in L'(€). (4.23)
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Let v = uy, + exp(—G(uy,)) ffﬂ 9(8)X {s<—nyds. Since v € Wol’p(z)(Q,w) and v > 1,
then v is an admissible test function in (4.1). Therefore,

0

/Q a(x, VUn)V( — exp(*G(un))/ 9(8)X (s< 1) ds) de

Un

0

/ H (&, tn, Viuy)(— exp(—Gl(un) / 9(5)X o1 d5)de

< [ fat-emn-Glu) [ O toerny o

This implies that

0

exp(—G(un))( / 9(5)X o1 d5)de

Un

+ /Q a(x, Vup)Vuy, eXp(—G(un))g(un)X{un<_h}d:13

/ a(x, Vun)Vung(u")
Q «

0
< / () exp(~G(un)) / N s
0

4 /Q (1) |Vt PP () exp(—Gi(tn) / 9(5)X {scny ds dz

Un

0
B /Q Fnexp(—G(un)) / )X ey s

Using the initial condition (1.5) and the fact that f 9(8)Xs<—nyds < f::; g(s)ds,
we obtain

| 4o V) Vi exp (=G )10, <y

< ”gHLl(R) —h

< GXP(T) g(8)ds(|Vll 1) + I fnllLr))
< ”gHLl(R) —h

< eXP(T) g(s)ds(|[VllLr ) + 1fll i),

we also have, by (1.5)

—h
/ 9(tn) |V, PP w(z)de < c/ g(s)ds (4.24)
{un<—nh} —o0

and since g € L*(R), we deduce that

lim sup/ 9(un) |V, PP w(x)de = 0. (4.25)
{un<—=h}

h—400 n
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On the other hand, let
+oo
M = exp( 20 [T )0
« 0
and h > M + ||t || c(q). Consider
0=t~ exp(Glun) [ 96y
0

Since v € Wol’p(z)(ﬂ, w) and v > 1), v is an admissible test function in (4.1). Then,
similarly to (4.25), we obtain

lim sup/ 9(un) |V, PP w(z)de = 0. (4.26)
h—+00 neN {un>h}

Combining (4.21), (4.25), (4.26) and Vitali’s theorem, we conclude (4.23). Now,
let p € Ky N L>®(Q) and take v = w,, — T(u, — @) as a test function in (4.1). We
obtain

Up € Kw
/ a(m, vun)VTk(un —p)dx + / Hn(l', Un, vun)Tk(un - (p)d.%‘ (4 27)
Q Q :

< / foTk(un —@)dx Yo € Ky NL®(Q), Vk > 0.
Q

Finally, from (4.21) and (4.23), we can pass to the limit in (4.27). This completes
the proof of Theorem 4.2.

5. Appendix

Proof of Lemma 4.6.
Proof of Assertion (i):
Consider the function

0 =t — 7exp(Gun)) T (t, — Ty ()

For j large enough and 7 small enough, we can deduce that v > 1 and since
v e WyP™(Q,w), v is a admissible test function in (4.1). Then, we obtain

/Q a(x, Vun)V(exp(G(un))Tl(un - Tj(un))+) dx

+ [ Hy(z,un, Vuy,) exp(G(un))Ti(u, — Tj(un))erx
Q

ex U Wy — Ti(up)) T de.
sAn D(G(un))Ti (1t — T (1)) *d
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From the growth conditions (1.5) and (1.6), we have
/Q a(x, Vu, )V (T1 (u, — Tj(un))Jr) exp(G(uy,))dx
< [ 2() exp(G ) Ti (0 ~ Ty (1)) d (5.1)
Q

+ 5 Jrnexp(G(up))Th (u, — Tj(un))erx.

Since f,, converges to f strongly in L'(Q) and v € L(Q), by Lebesgue’s theorem,
the right-hand side approaches zero as n,j — oco. Therefore, passing to the limit
first in n, then in j, we obtain from (5.1)

lim lim a(x, Vuy,)Vuydr = 0. (5.2)

IO M0 Sl <un, <j+1}

On the other hand, consider the test function v = wu, + exp(—G(uy))Ti (U, —
T;(uy))” in (4.1). Similarly to (5.2), it is easy to see that

lim lim a(z, Vuy,)Vu,de =0 (5.3)
I J{—j—1<un<—j}

Finally, by (5.2) and (5.3) we obtain assertion (i).

Proof of Assertion (ii):
On one hand, let v = u, —nexp(G(un))(Tk (un) — Tk (w))Thj(u,) with h; is defined
in (4.20) and 7 small enough such that v € Ky, then we take v as test function in
(4.1), we obtain

/Q al, V)V (1exp(Glun)) (Ti(un) = Ti(w)*hy(un) ) da

+ /Q Hoy (2, i, Vi) (11€xp(G1n)) (T (1) = Th(1)) * By (1) )
< [ FnexplGun)) (Tulun) = i)y ()

Similarly, using (1.5) and (1.6), we deduce

/Qa(:c, Vun)V(Ti(upn) — Tr(u))™ exp(G(un))h;(uy,)dx

< /Q v(@) exp(G(un)) (Th(un) — Ti(u)) T hy(uy)da

+ / . a(x, Vi, ) Vg, exp(G(un)) (Tk (un) — Tr(u)) Tdx

{iun<j+1}

4 [ B exp(Glun)) (T (un) = Ti(w) ),
Q
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In view of (5.2), the convergence f,, to f in L'(Q) and v € L(Q), it is easy to see
that

lim  lim a(x, Vu,)V (Tk(un) — Tp(u)) ™
JTHoo MO0 T (un) T (w) 20} (5.4)

x exp(G(un))hj(un)dz < 0.

Moreover, (5.4) becomes

Jlim lim a(x, Vun )V (T (un) — Tk(u))
IO A ST (un) =T ()20, |un|<k}

X eXP(G(Un))hj (un)dx
— lim lim a(z, Vu,) VT (u)
J7400 =00 JUT (un ) ~Ti ()20, [un|>k}

x exp(G(un))h;(un)dz < 0.
Since h;(un) = 0 if |u,| > j + 1, we obtain

lim  lim a(z, V) VT (u) exp(G(uy))h; (uy)dx

I o0 N0 ST (un) = T (w) 20, Jun|>F}

= lim lim a(x, VTji1(upn)) VT (u)
J7r00 N0 JUTy (w )~ Tk (w) >0, [un|>k} ’
x exp(G(un))h; (un)dx

= lim X,;VTi(u) exp(G(u))hj(u)dx = 0,
77450 J(fuf> k)

where X is the limit of a(z, VTj41(uy)) in (L2 @) (Q,w))N as n goes to infinity
and VT (u) Xy >k = 0 a.e. in . Consequently,

lim (a(z, VTi(un)) — alz, VTk(u)))

Jm00 JUTy (un) — Tk (u) >0}

X (VT (upn) — VIg(uw)hj(uy) = 0.

On the other hand, taking v = u, + exp(—G(un))(Tk (un) — Th(w))” hj(un) as test
function in (4.1) and reasoning as in (5.5) we have

(5.5)

/Qa(iﬂa Vun) V(= exp(=G(un)) (T (un) — Ti(u) ™ hj(un))dz
+/ Hy (2, Uun, V) (—exp(—G(un)) (Tk (un) — T (w) " hj(uy))dz

/ Fu(xD(= G (1)) (T (ttn) — T ()~ ()

Similarly to (5.5), it is easy to see that

lim a(z, Vun)V(Tk(upn) — Tk(u)) exp(—G(uy))hj(uy)dx = 0.
S0 Ty, (un) —Tie (u) <0}
(5.6)
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Combining (5.5) and (5.6) we obtain the desired assertion (ii).

Proof of Assertion (iii):

Let v = up + exp(—G(un )Tk (un) (1 — hj(uy)) as test function in(4.1). Then we
have

/Qa(m, Vun)V( — exp(—G(un)) T (un) = (1 — hj(un)))dx
+/ Hn(x,un,vun>(fexp(fG(un))Tk(unrafhj(un)))dz

Q
< / fo eXD(— G (1)) Ti(t1n)~ (1 — (1))t
Q

Using(1.6) and (1.5), we deduce that

/{ o) a(z, Vun) VI (u,) exp(—G(un)) (1 — hj(uyn))dz
< —/ _ _ a(x, Vg ) Vg, exp(—G(un )Ty (u,) ~dz
{-1-j<u,<—j}
+ [ 90 exp(=Gu) i)~ (1= by )

- / fo €xD(— ()T (tan) ™ (1 — oy (1))l

In view of (4.17), the second integral tends to zero as n and j approach infinity.
By Lebesgue’s theorem, it is possible to conclude that the third and the fourth
integrals converge to zero as n and j approach infinity. Then

lim a(z, VI (un))VIk(un) (1 — hj(uy))dr = 0. (5.7)

J,n—00 {ungo}

On the other hand, we take v = u,, — 1 exp(G (un)) Tk (u; —*)(1 — h;(uy)) which
is an admissible test function in (4.1), we have

[ 0l )9 (nexp(Glun ) Tutuit =01 = by () ) da
[ (o, T (nexpl Glun) Tt = )1 = Iy ) ) do

< [t (nexp(Glun)Tituf = w1~ hi(u)))da
Q
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Which takes, by using (1.6) and (1.5), the form
/Qa(:c, YV, ) VT (u) — 1/)+) exp(G(un))(1 — hj(uy,))dz
< —/ a(x, Vg )V, exp(G(un ) T (uf — ) de
{i<un<j+1}
+ / a(x, Vi)V, exp(Glun )T (u,) — ¢ )de (5.8)
{—j—1<Zun<—j}
+ [ (@) expGlua)Tuluf =01 = hun)da
+ [ FuexplGln ) Tuluf = 0%)(1 = by (u)de = 1)

By (4.17) and Lebesgue’s theorem, we conclude that £1(j,n) converges to zero as
n and j approach infinity. From (5.8), we have

/ a(x, Vu,) V! exp(G(un)) (1 — hj(uy))dx
{luf —pt|<k}
< / a(z, Vu,) Vi exp(G(un) (1 — hj(un)))dz + €1(j,n)
{ud =yt |<k}
Thanks to (1.3) and Young’s inequality, it is possible to conclude that
/ i, V) Vi exp(@un) (1~ by (un)))dr < (5, m).
{luf =yt |<k}

where e2(j,n) converges to zero as n and j go to infinity. Since exp(G(uy)) is
bounded,

/ a(x, Vun)Vul (1 — hj(uy)))de < e3(j,n).
{lud —y <k}
Since {r € Q, |ut|<k}cC{zecQ, |uf —vT|<k+|]e}, hence
/ a(x, V) Vun (1 — hj(uy)))dz
{lui |<k}

<

/{I =t <kt |l }a(m, Vaun)Vtn(1 = hyun)))dz < €55, m)

Which, for all £ > 0, yields

lim a(z, VI (un)) VI (un)(1 — hj(uy))de = 0, (5.9)

J,n—00 {un 20}

Finally, using (5.7) and (5.9), we conclude assertion (iii). Which finish the proof
of Lemma 4.6.
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