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abstract: In this paper, we define the concept of α − β-contractive mapping in
probabilistic Menger space and prove some fixed point theorems for such mapping.
Some examples are given to support the obtained results.
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1. Introduction

Probabilistic metric spaces were introduced in 1942 by Menger [10]. In such
spaces, the notion of distance between two points x and y is replaced by a distri-
bution function Fx,y(t). Sehgal, in his Ph.D.thesis [13], extended the notion of a
contraction mapping to the setting of the Menger probabilistic metric spaces.
Then Sehgal and Bharuch-Reid in 1972 followed a generalization of Banach con-
traction principle on a complete Menger space [14]. In 1984 Khan et al, introduced
the concept of altering distance functions [9]. This concept is extended to Menger
spaces by Choudhury and Das in [5]. This extension of altering distance function,
has been further used by many authors [6], [7] and [11]. In 2009 a probabilistic
contraction mapping principle has been proved in G-complete Menger spaces [7].
Babacev defined nonlinear generalized contractive type condition involving altering
distance in Menger spaces [3]. The existence of fixed points for mappings satisfying
generalized contractive type conditions, defined on various spaces, studied by many
authors [1], [2].
In this paper, we give a generalization of the concept contractive mapping and in-
troduce the notion of α−β-contractive mapping. Also we compare it with previous
results in Menger space and prove some fixed point theorems for such contractive
mapping. Our results generalize and improve the previous results in fixed point.
We first bring notion, definitions and known results, which are related to our work.
For more details, we refer the reader to [8].
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Definition 1.1. A distribution function is a function F : (−∞,∞) → [0, 1],
that is non-decreasing and left continous on R, moreover, inft∈R F (t) = 0 and
supt∈R

F (t) = 1.

The set of all the distribution functions is denoted by D, and the set of those
distribution functions such that F (0) = 0 is denoted by D+. We will denote the
specific distribution function by

H(t) =

{

1 if t > 0

0 if t ≤ 0.

Definition 1.2. A probabilistic metric space (briefly, PM-space) is an ordered pair
(X,F ), where X is a nonempty set and F is a mapping from X ×X into D+ such
that, if Fx,y denotes the value of F at the pair (x, y), the following conditions hold:

(PM1) Fx,y(t) = H(t) if and only if x = y,

(PM2) Fx,y(t) = Fy,x(t),

(PM3) If Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,z(t + s) = 1, for all x, y, z ∈ X and
s, t ≥ 0.

Definition 1.3. A binary operation T : [0, 1]×[0, 1] → [0, 1] is a continuous t-norm
if the following conditions hold:

(a) T is commutative and associative,

(b) T is continuous,

(c) T (a, 1) = a for all a ∈ [0, 1],

(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, for a, b, c, d ∈ [0, 1].

The following are three basic continuous t-norms.
(i) The minimum t-norm, say TM , defined by TM (a, b) = min{a, b}.
(ii) The product t-norm, say Tp, defined by Tp(a, b) = a.b.
(iii)The Lukasiewicz t-norm, say TL, defined by TL(a, b) = max{a+ b− 1, 0}.
These t- norms are related in the following way: TL ≤ TP ≤ TM .

Definition 1.4. A Menger space is a triple (X,F, T ), where (X,F ) is a PM-space
and T is a continuous t-norm such that for all x, y, z ∈ X and s, t ≥ 0

Fx,y(t+ s) ≥ T (Fx,z(t), Fz,y(s)).

Definition 1.5. Let (X,F, T ) be a Menger space. Then

(i) A sequence xn in X is said to be converge to x if, for every ǫ > 0 and
0 < λ < 1, there exists a positive integer N such that Fxnx(ǫ) > 1 − λ,
whenever n ≥ N .
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(ii) A sequence xn in X is called Cauchy sequence if, for every ǫ > 0 and λ > 0,
there exists a positive integer N scuh that Fxnxm

(ǫ) > 1−λ whenever n,m ≥
N .

(iii) A Menger space is said to be complete if and only if every Cauchy sequence
in X is converge to a point in X.

(iv) A sequence xn is called G-Cauchy if lim
n→∞

Fxnxn+m
(t) = 1, for each m ∈ N

and t > 0.

(v) The space (X,F, T ) is called G-complete if every G-Cauchy sequence in X is
convergent.

It follows immediately that a Cauchy sequence is a G-Cauchy sequence. The
convers is not always true. This has been established by an example in [16].

According to [12], the (ǫ, λ)-topology in Menger PM-space (X,F, T ) is intro-
duced by the family of neighborhoods Nx of a point x ∈ X given by

Nx = {Nx(ǫ, λ) : ǫ > 0, λ ∈ (0, 1)},

where

Nx(ǫ, λ) = {y ∈ X : Fx,y(ǫ) > 1− λ}.

The (ǫ, λ) -topology is a Hausdorff topology. In this topology, a function f is
continuous in x0 ∈ X if and only if f(xn) → f(x0), for every sequence xn → x0.

Lemma 1.6. [17] If (X,F, T ) is a Menger space and T is continuous, then prob-
abilistic distance function F is a low semi continuous function of points, i.e. for
every fixed point t > 0, if pn → p and qn → q then lim inf Fpn,qn(t) → Fp,q(t).

Φ-functions in Menger space introduced by Choudhury and Das in [5].

Definition 1.7. A function φ : [0,∞) → [0,∞) is said to be a Φ-function if it
satisfies the following conditions:

(i) φ(t) = 0 if and only if t = 0,

(ii) φ(t) is strictly monotone increasing and φ(t) → ∞ as t → ∞,

(iii) φ is left continuous in (0,∞),

(iv) φ is continuous at 0.

In the sequel, the class of all Φ-functions will be denoted by Φ.
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2. Fixed point theorems for generalized α− β-contractive mappings

In this section we introduce the notions of generalizd α−β-contractive mapping
in probabilistic Menger spaces.

Lemma 2.1. [3] Let (X,F, T ) be a complete Menger space and ϕ : [0,∞) → [0,∞)
be a Φ-function. Then the following statement holds:
If for x, y ∈ X, c ∈ (0, 1), we have Fx,y(ϕ(t)) ≥ Fx,y(ϕ(

t
c
)) for all t > 0, then

x = y.

Theorem 2.2. [3] Let (X,F, T ) be a complete Menger space with continuous t-
norm T which satisfies T (a, a) ≥ a for each a ∈ [0, 1]. Let c ∈ (0, 1) be fixed. If for
a Φ-function ϕ and a self-mapping f on X, we have

Ffx,fy(ϕ(t)) ≥ min
{

Fx,y(ϕ(
t

c
)), Fx,fx(ϕ(

t

c
)), Fy,fy(ϕ(

t

c
)),

Fx,fy(2ϕ(
t

c
)), Fy,fx(2ϕ(

t

c
))
}

, (2.1)

for all x, y ∈ X and for all t > 0, then f has a unique fixed point in X.

Now, we introduce the following definitions:

Definition 2.3. Let (X,F, T ) be a Menger PM -space and f : X → X be a given
mapping and α, β : X ×X × (0,∞) → [0,∞), be two functions, we say that f is
α− β-admissible if

(i) x, y ∈ X, for all t > 0, α(x, y, t) ≥ 1 ⇒ α(fx, fy, t) ≥ 1,

(ii) x, y ∈ X, for all t > 0, β(x, y, t) ≤ 1 ⇒ β(fx, fy, t) ≤ 1.

Definition 2.4. Let (X,F, T ) be a Menger space and f : X → X be a given
mapping. We say that f is a generalized α− β- contractive mapping if there exist
two functions α, β : X ×X × (0,∞) → (0,∞) such that

β(x, y, t)Ffx,fy(ϕ(t)) ≥ α(x, y, t)min
{

Fx,y(ϕ(
t

c
)), Fx,fx(ϕ(

t

c
)), (2.2)

Fy,fy(ϕ(
t

c
)), Fx,fy(2ϕ(

t

c
)), Fy,fx(2ϕ(

t

c
))
}

,

for all x, y ∈ X and for all t > 0, where ϕ ∈ Φ and c ∈ (0, 1).

Remark 2.5. If α(x, y, t) = β(x, y, t) = 1 for all x, y ∈ X and for all t > 0, then
the condition (2.2) reduce to condition (2.1), but the converse is not true always,
(see Example 2.7).

Theorem 2.6. Let (X,F, T ) be a complete Menger space with continuous t-norm
T which satisfies T (a, a) ≥ a with a ∈ [0, 1], let f : X → X be a generalized α− β-
contractive mapping satisfyings the following conditions:

(i) f is α− β-admissible,
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(ii) there exists x0 ∈ X such that α(x0, fx0, t) ≥ 1 and β(x0, fx0, t) ≤ 1 for all
t > 0,

(iii) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1, α(xn, xn+1, t) ≥ 1
for all n ∈ N and for all t > 0, and xn → x as n → ∞, then β(xn, x, t) ≤ 1
and α(xn, x, t) ≥ 1 for all n ∈ N and for all t > 0,
then f has a fixed point.

Proof: Since T is continuous and T (a, a) ≥ a, for all a ∈ [0, 1], then we have

T (a, a) ≥ T (min{a, b},min{a, b}) ≥ min{a, b}

and by (PM3), we write Fx,y(2t) ≥ min{Fx,z(t), Fz,y(t)}, for all x, y, z ∈ X. Now,
Let x0 ∈ X be such that (ii) holds and define a sequence {xn} in X such that
xn+1 = fxn, for all n ∈ N. First, we suppose xn 6= xn+1 for all n ∈ N, otherwise f
has trivially a fixed point. Now, since f is α− β-admissible, we have

β(x0, fx0, t) = β(x0, x1, t) ≤ 1 =⇒ β(x1, x2, t) = β(fx0, fx1, t) ≤ 1
and

α(x0, fx0, t) = α(x0, x1, t) ≥ 1 =⇒ α(x1, x2, t) = α(fx0, fx1, t) ≥ 1.

Consequently, by induction, we get β(xn, xn+1, t) ≤ 1, and α(xn, xn+1, t) ≥ 1
for all t > 0. From the properties of function ϕ and by (i), (iv) we can find r > 0
such that t > ϕ(r) and therefore we have

Fxn,xn+1(t) ≥ Ffxn−1,fxn
(ϕ(r)) ≥ β(xn−1, xn, r)Ffxn−1,fxn

(ϕ(r))

≥ α(xn−1, xn, r)min
{

Fxn−1,xn
(ϕ(r/c)), Fxn−1,xn

(ϕ(r/c)),

Fxn,xn+1(ϕ(r/c)), Fxn−1,xn+1(2ϕ(r/c)), Fxn,xn
(2ϕ(r/c))

}

≥ min
{

Fxn−1,xn
(ϕ(r/c)), Fxn−1,xn

(ϕ(r/c)),

Fxn,xn+1(ϕ(r/c)), Fxn−1,xn+1(2ϕ(r/c)), Fxn,xn
(2ϕ(r/c))

}

= min
{

Fxn−1,xn
(ϕ(r/c)), Fxn,xn+1(ϕ(r/c)), Fxn−1,xn+1(2ϕ(r/c))

}

≥ min
{

Fxn−1,xn
(ϕ(r/c)), Fxn,xn+1(ϕ(r/c)),min{Fxn−1,xn

(ϕ(r/c)),

Fxn,xn+1(ϕ(r/c))}
}

= min{Fxn−1,xn
(ϕ(r/c)), Fxn,xn+1(ϕ(r/c))}.

We shall prove that

Fxn,xn+1(ϕ(r)) ≥ Fxn−1,xn
(ϕ(

r

c
)). (2.3)

If we assume that Fxn,xn+1(ϕ(
r
c
)) is the minimum, that from Lemma 2.1, we get

that xn = xn+1, which leads to contradiction with the assumption xn+1 6= xn and
so Fxn−1,xn

(ϕ( r
c
)) is the minimum and therefore (2.3) holds true. Since ϕ is strictly

increasing, we have

Fxn,xn+1(t) ≥ Fxn,xn+1(ϕ(r)) ≥ Fxn−1,xn
(ϕ(

r

c
)) ≥ ... ≥ Fx0,x1(ϕ(

r

cn
)),
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that is, Fxn,xn+1(t) ≥ Fx0,x1(ϕ(
r
cn
)) for arbitrary n ∈ N. Next, Let m,n ∈ N with

m > n, then by (PM3) we have

Fxn,xm
((m− n)t) ≥ min{Fxn,xn+1(t), ..., Fxm−1,xm

(t)}

≥ min{Fx0,x1(ϕ(
r

cn
)), ..., Fx0,x1(ϕ(

r

cm−1
))}.

Since ϕ is strictly increasing and ϕ(t) → ∞ as t → ∞, then fixed ǫ ∈ (0, 1), so
there exists n0 ∈ N such that Fx0,x1(ϕ(

r
cn
)) > 1− ǫ, whenever n ≥ n0. This implies

that, for every m > n ≥ n0, we get Fxn,xm
((m − n)t) ≥ 1 − ǫ. Since t > 0 and

ǫ ∈ (0, 1) is arbitrary, we deduce that {xn} is a Cauchy sequence in the complete
Menger space (X,F, T ). Then, xn → u as n → ∞ for some u ∈ X . We will show
that u is a fixed point of f . By (PM3), we have

Ffu,u(t) ≥ T (Ffu,xn
(ϕ(r)), Fxn,u(t− ϕ(r)))

≥ min{Ffu,xn
(ϕ(r)), Fxn ,u(t− ϕ(r))}.

Notice that, if xn = fu for infinitely many values of n, then u = fu and hence
the proof finishes. Therefore, we assume that xn 6= fu for all n ∈ N. Thus,
since limn→∞ xn = u, for any arbitrary ǫ ∈ (0, 1) and n large enough, we get
Fxn,u(t − ϕ(r)) > 1 − ǫ and hence, we have Fu,fu(t) ≥ min{Ffu,xn

(ϕ(r)), 1 − ǫ}.
Since ǫ > 0 is arbitrary, we can write Ffu,u(t) ≥ Ffu,xn

(ϕ(r)). Next, we get

Ffu,u(t) ≥ Ffu,xn
(ϕ(r)) = Ffu,fxn−1(ϕ(r)) ≥ β(u, xn−1, r)Ffu,fxn−1(ϕ(r))

≥ α(u, xn−1, r)min
{

Fu,xn−1(ϕ(
r

c
)), Fxn−1,xn

(ϕ(
r

c
)),

Ffu,u(ϕ(
r

c
)), Ffu,xn−1(2ϕ(

r

c
)), Fu,xn

(2ϕ(
r

c
))
}

≥ min
{

Fu,xn−1(ϕ(
r

c
)), Fxn−1,xn

(ϕ(
r

c
)), Ffu,u(ϕ(

r

c
)),

Ffu,xn−1(2ϕ(
r

c
)), Fu,xn

(2ϕ(
r

c
))
}

≥ min
{

Fu,xn−1(ϕ(
r

c
)), Ffu,u(ϕ(

r

c
)), Fxn−1,xn

(ϕ(
r

c
))
}

.

It follows that

Ffu,u(t) ≥ lim inf
n→∞

Ffu,xn
(ϕ(r))

≥ lim inf
n→∞

min
{

Fu,xn−1(ϕ(
r

c
)), Ffu,u(ϕ(

r

c
)), Fxn−1,xn

(ϕ(
r

c
))
}

≥ min{1− ǫ, Ffu,u(ϕ(
r

c
)), 1− ǫ}.

Finally, since ǫ ∈ (0, 1) is arbitrary, we have Ffu,u(ϕ(r)) ≥ Ffu,u(ϕ(
r
c
)) and so, by

Lemma 2.1, we deduce that u = fu. This completes the proof. ✷

The following examples show the usefulness of Definition 2.4.
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Example 2.7. Let X = [ 14 ,∞), T (a, b) = min{a, b} for all a, b ∈ [0, 1] and
Fx,y(t) =

t
t+|x−y| for all x, y ∈ X and for all t > 0. Clearly (X,F, T ) is a complete

Menger space. Define the mapping f : X → X by

fx =

{

1 x ∈ [ 14 , 1]
2 otherwise

and two functions α, β : X ×X × (0,∞) → (0,∞) by

β(x, y, t) =

{

1 x, y ∈ [ 14 , 1]
2(t+1)

2t+|x−y| otherwise
, α(x, y, t) =

{

1 x, y ∈ [ 14 , 1]
0 otherwise,

for all t > 0. Now, consider ϕ : [0,∞) → [0,∞) defined by ϕ(t) = t. Let
c = 1

2 . We show that f satisfies the hypotheses of Theorem 2.6. At first we
prove f is α − β-admissible. If β(x, y, t) ≤ 1, this implies x, y ∈ [ 14 , 1], so by the
definitions of f and β, we have β(fx, fy, t) = 1. Similarly when α(x, y, t) ≥ 1,
then α(fx, fy, t) ≥ 1. Hence f is α− β-admissible. On the other hand for x0 = 1

2
we have α(12 , f(

1
2 ), t) = 1 and β(12 , f(

1
2 ), t) = 1. Finally we show that f satisfies

(2.2).
If x, y ∈ [ 14 , 1], then β(x, y, t)Ffx,fy(t) = 1 and hence the inequality is true. If
x, y /∈ [ 14 , 1], then α(x, y, t) = 0 and hence the inequality is obviously true. If
x ∈ [ 14 , 1] and y /∈ [ 14 , 1], then we have α(x, y, t) = 0 and hence the inequality is
obviously true. Thus all the conditions of Theorem 2.6 hold and f has two fixed
points, x = 1 and x = 2.
On the other hand, f does not satisfy (2.1). Indeed for x = 1 and y = 2, we get

t

t+ 1
≥ min

{ t

t+ c
, 1, 1,

t

t+ c
2

,
t

t+ c
2

}

=
t

t+ c
,

which gives c ≥ 1, a contradiction.

Corollary 2.8. Let (X,F, T ) be a complete Menger space with continuous t-norm
T which satisfies T (a, a) ≥ a with a ∈ [0, 1], let there exists a function β : X×X×
(0,∞) → (0,∞) such that f : X → X satisfies the following conditions:

(i) β(x, y, t)Ffx,fy(ϕ(t)) ≥ min
{

Fx,y(ϕ(
t
c
)), Fx,fx(ϕ(

t
c
)), Fy,fy(ϕ(

t
c
)),

Fx,fy(2ϕ(
t
c
)), Fy,fx(2ϕ(

t

c
))
}

,

for all x, y ∈ X and for all t > 0, where ϕ ∈ Φ and c ∈ (0, 1),

(ii) x, y ∈ X, for all t > 0, β(x, y, t) ≤ 1 ⇒ β(fx, fy, t) ≤ 1,

(iii) there exists x0 ∈ X such that β(x0, fx0, t) ≤ 1 for all t > 0,

(iv) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N and for
all t > 0, and xn → x as n → ∞, then β(xn, x, t) ≤ 1 for all n ∈ N and for
all t > 0,
then f has a fixed point.
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Example 2.9. Let X = [ 14 ,
5
4 ] ∪ { 3

2}, T (a, b) = min{a, b} for all a, b ∈ [0, 1] and
Fx,y(t) =

t
t+|x−y| for all x, y ∈ X and for all t > 0. Clearly (X,F, T ) is a complete

Menger space. Define the mapping f : X → X by

fx =







1
4 x = 1

4
1 x ∈ (14 , 1]
3
2 x ∈ (1, 54 ] ∪ { 3

2}

and two functions α, β : X ×X × (0,∞) → (0,∞) by

β(x, y, t) =















1
3 x = y = 1
1 x = y = 1

4
1
2 x, y ∈ (14 , 1)
4 otherwise

, α(x, y, t) =







0 x or y ∈ (14 , 1)
1
3 x = y = 1
1 otherwise,

for all t > 0. Now, consider ϕ : [0,∞) → [0,∞) defined by ϕ(t) = t and
let c = 1

2 . We show that f satisfies the hypotheses of Theorem 2.6. At first we
prove f is α − β-admissible. If β(x, y, t) ≤ 1, this implies x, y ∈ [ 14 , 1], so by the
definitions of f and β, we have β(fx, fy, t) ≤ 1. Similarly when α(x, y, t) ≥ 1,
then α(fx, fy, t) ≥ 1. Hence f is α− β-admissible. On the other hand for x0 = 1

4
we have α(14 , f(

1
4 ), t) = 1 and β(14 , f(

1
4 ), t) = 1. Finally we show that f satisfies

inequality (2.2).
If x = 1 and y ∈ (1, 5

4 ], then we get

4t

t+ 1
2

≥ min
{ t

t+ y−1
2

, 1,
t

t+
3
2−y

2

,
t

t+ 1
8

,
t

t+ y−1
4

}

=
t

t+
3
2−y

2

,

that is true for all t > 0. If x = 3
2 and y ∈ (1, 5

4 ), then we have

4 ≥ min
{ t

t+
3
2−y

2

, 1,
t

t+
3
2−y

2

, 1,
t

t+
y− 3

2

4

}

=
t

t+
3
2−y

2

,

that is true for all t > 0. If x, y ∈ (14 , 1), then β(x, y, t) = 1
2 and α(x, y, t) = 0,

hence the inequality holds trivially. If x ∈ (14 , 1) and y /∈ (14 , 1), then α(x, y, t) = 0,
hence the inequality holds trivially. For the other cases inequality is also true. Thus
all the conditions of Theorem 2.6 hold and f has three fixed points, x = 1, x = 3

2
and x = 1

4 .
We show that f does not satisfy condition (i) of corollary 2.8. Indeed if x = y = 1,
then β(x, y, t)Ffx,fy(t) =

1
3 , hence we have 1

3 ≥ 1, that is not true.

We prove, with next theorem, uniqueness of the fixed point.

Theorem 2.10. With the same hypotheses of Theorem 2.6, if for all u ∈ Fix(f)
(The set of fixed point of f ) and for all t > 0 there exists z ∈ X such that
β(z, fz, t) ≤ 1 with β(u, z, t) ≤ 1 and α(z, fz, t) ≥ 1 with α(u, z, t) ≥ 1, then f has
a unique fixed point.
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Proof: Let u, v ∈ X such that fu = u and fv = v. From hypotheses, there exists
z ∈ X such that

β(z, fz, t) ≤ 1, with β(u, z, t) ≤ 1 and β(v, z, t) ≤ 1

and
α(z, fz, t) ≥ 1, with α(u, z, t) ≥ 1 and α(v, z, t) ≥ 1.

Since f is α− β-admissible, then we have β(fz, f2z, t) ≤ 1, α(fz, f2z, t) ≥ 1. Also

β(u, fz, t) ≤ 1 and β(v, fz, t) ≤ 1, α(u, fz, t) ≥ 1 and α(v, fz, t) ≥ 1.

By induction, for all t > 0 we get

β(zn, zn+1, t) ≤ 1, β(u, zn, t) ≤ 1, β(v, zn, t) ≤ 1

and
α(zn, zn+1, t) ≥ 1, α(u, zn, t) ≥ 1, α(v, zn, t) ≥ 1,

where zn = fnz.
From the properties of function ϕ, we can find r > 0 such that t > ϕ(r) and
therefore we have

Fu,zn+1(t) ≥ Fu,fzn(ϕ(r)) = Ffu,fzn(ϕ(r)) ≥ β(u, zn, r)Ffu,fzn(ϕ(r))

≥ α(u, zn, r)min {Fu,zn(ϕ(
r

c
)), Fu,fu(ϕ(

r

c
)), Fzn,zn+1(ϕ(

r

c
)),

Fu,zn+1(2ϕ(
r

c
)), Fzn,fu(2ϕ(

r

c
))
}

≥ min
{

Fu,zn(ϕ(
r

c
)), Fu,fu(ϕ(

r

c
)), Fzn,zn+1(ϕ(

r

c
)), Fu,zn+1(2ϕ(

r

c
)),

Fzn,fu(2ϕ(
r

c
))
}

,

which implies Fu,zn+1(t) ≥ min
{

Fu,zn(ϕ(
r
c
)), Fzn,zn+1(ϕ(

r
c
))
}

. Now, we have two
cases:
(i) We assume that Fzn,zn+1(ϕ(

r
c
)) is the minimum. Then, by applying (2.2), we

can write

Fu,zn+1(ϕ(r)) ≥ Fzn,zn+1(ϕ(
r

c
)) ≥ min

{

Fzn−1,zn(ϕ(
r

c2
)), Fzn,zn+1(ϕ(

r

c2
))
}

.

Now, if Fzn,zn+1(ϕ(
r
c2
)) is the minimum for some n ∈ N, by Lemma 2.1, we deduce

that zn = zn+1 = u. Consequently, we deduce that β(v, u, t) ≤ 1 and α(v, u, t) ≥ 1
and so by (2.2) we have

Fu,v(ϕ(t)) ≥ min
{

Fu,v(ϕ(
t

c
)), Fv,v(ϕ(

t

c
)), Fu,u(ϕ(

t

c
)), Fv,u(2ϕ(

t

c
)),

Fu,v(2ϕ(
t

c
))
}

= Fv,u(ϕ(
t

c
)).
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Again, by Lemma 2.1, we conclude that u = v. On the other hand, if
Fzn−1,zn(ϕ(

r
c2
)) is the minimum, then

Fzn,zn+1(ϕ(
r

c
)) ≥ Fzn−1,zn(ϕ(

r

c2
)) ≥ ... ≥ Fz0,z1(ϕ(

r

cn+1
))

and, letting n → ∞, we get

Fzn,zn+1(ϕ(
r

c
)) → 1.

Therefore Fu,zn+1(t) → 1 as n → ∞, which implies zn+1 → u as n → ∞.
(ii) Suppose that Fu,zn(ϕ(

r
c
)) is the minimum, then we have

Fu,zn+1(ϕ(r)) ≥ Fu,zn(ϕ(
r

c
)) ≥ Fu,zn−1(ϕ(

r

c2
)) ≥ ... ≥ Fu,z0(ϕ(

r

cn+1
)).

Letting n → ∞, we obtain Fu,zn+1(ϕ(r)) → 1 as n → ∞, i.e, zn+1 → u as n → ∞.
A similar argument shows that zn+1 → v, for n → ∞. Now, uniqueness of the
limit, gives us u = v and the proof is complete. ✷

Theorem 2.11. Let (X,F,T) be a complete Menger space with continuous t-norm
T and f : X → X. Assume that there exist α, β : X ×X × (0,∞) → (0,∞) such
that

β(x, y, t)Ffx,fy(ϕ(t)) ≥ α(x, y, t)min
{

Fx,y(ϕ(
t

c
)), Fx,fx(ϕ(

t

c
)),

Fy,fy(ϕ(
t

c
)), Fy,fx(ϕ(

t

c
))
}

, (2.4)

for all x, y ∈ X and for all t > 0, where ϕ ∈ Φ and c ∈ (0, 1). Also suppose that
the following conditions hold:

(i) f is α− β-admissible,

(ii) there exists x0 ∈ X such that α(x0, fx0, t) ≥ 1 and β(x0, fx0, t) ≤ 1,

(iii) for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1, α(xn, xn+1, t) ≥ 1
for all n ∈ N and t > 0, there exists k0 ∈ N such that β(xm−1, xn−1, t) ≤ 1
and α(xm−1, xn−1, t) ≥ 1 for all m,n ∈ N with m > n ≥ k0 and for all t > 0,

(iv) if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1, α(xn, xn+1, t) ≥ 1
for all n ∈ N and t > 0, and xn → x as n → ∞, then β(xn, x, t) ≤ 1 and
α(xn, x, t) ≥ 1 for all n ∈ N and for all t > 0. Then f has a fixed point.

Proof:

Let x0 ∈ X be such that α(x0, fx0, t) ≥ 1 and β(x0, fx0, t) ≤ 1 for all t > 0.
Define a sequence {xn} in X so that xn+1 = fxn, for all n ∈ N. If xn = xn+1

for some n ∈ N then u = xn is a fixed point of f . Assume that xn 6= xn+1 for all
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n ∈ N. Then, by using the fact that f is α− β- admissible, we write

α(x0, fx0, t) = α(x0, x1, t) ≥ 1 ⇒ α(x1, x2, t) = α(fx0, fx1, t) ≥ 1.

Similarly, we write

β(x0, fx0, t) = β(x0, x1, t) ≤ 1 ⇒ β(x1, x2, t) = β(fx0, fx1, t) ≤ 1.

By induction, it follows that α(xn, xn+1, t) ≥ 1 and β(xn, xn+1, t) ≤ 1, for all
n ∈ N.
From the properties of function ϕ, we can find r > 0 such that t > ϕ(r) and
therefore we have

Fxn,xn+1(t) ≥ Fxn,xn+1(ϕ(r)) ≥ β(xn−1, xn, r)Ffxn−1,fxn
(ϕ(r))

≥ α(xn−1, xn, r)min
{

Fxn−1,xn
(ϕ(r/c)), Fxn−1,xn

(ϕ(r/c)),

Fxn,xn+1(ϕ(r/c)), Fxn,xn
(ϕ(r/c))

}

≥ min
{

Fxn−1,xn
(ϕ(r/c)), Fxn−1,xn

(ϕ(r/c)), Fxn,xn+1(ϕ(r/c)),

Fxn,xn
(ϕ(r/c))

}

= min{Fxn−1,xn
(ϕ(r/c)), Fxn,xn+1(ϕ(r/c))}.

Next, if Fxn,xn+1(ϕ(r/c)) is the minimum, then

Fxn,xn+1(ϕ(r)) ≥ Fxn,xn+1(ϕ(r/c))

and, from Lemma 2.1, we have xn = xn+1, which leads to contradiction with the
assumption that xn 6= xn+1 for all n ∈ N .
On the other hand, if Fxn−1,xn

(ϕ(r/c)) is the minimum, then

Fxn,xn+1(t) ≥ Fxn−1,xn
(ϕ(r/c)) ≥ Fxn−2,xn−1(ϕ(r/c

2)) ≥ ... ≥ Fx0,x1ϕ(r/c
n),

which, letting n → ∞, gives us

Fxn,xn+1(t) → 1. (2.5)

Now, we claim that {xn} is a Cauchy sequence. Suppose {xn} is not a Cauchy
sequence, then for any ε > 0 and λ ∈ (0, 1) there are subsequences {xn(k)} and
{xm(k)} of {xn} such that m(k) < n(k) with

Fxm(k),xn(k)
(ε) ≤ 1− λ

and

Fxm(k),xn(k)−1
(ε) > 1− λ.

Since ϕ is continuous at 0 and strictly monotone increasing with ϕ(0) = 0, then
there exists ε1 > 0 such that ϕ(ε1) ≤ ε.
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Thus, by the above arguments it is possible to obtain increasing sequences of inte-
gers m(k) and n(k), with m(k) < n(k), such that

Fxm(k),xn(k)
(ϕ(ε1)) ≤ 1− λ (2.6)

and

Fxm(k),xn(k)−1
(ϕ(ε1)) > 1− λ. (2.7)

Since ε ∈ (0, 1) and ϕ ∈ Φ, we can choose η > 0 such that

0 < η < ϕ(ε1/c)− ϕ(ε1),

that is,

ϕ(ε1/c)− η > ϕ(ε1)

and so, from (2.7), we get

Fxm(k),xn(k)−1
(ϕ(ε1/c)− η)) > Fxm(k),xn(k)−1

(ϕ(ε1)) > 1− λ. (2.8)

Then, for any 0 < λ1 < λ < 1, by (2.5) it is possible to find a positive integer N1

such that, for all k > N1, we have

Fxm(k)−1,xm(k)
(ϕ(η)) > 1− λ1 (2.9)

and

Fxn(k)−1,xn(k)
(ϕ(η)) > 1− λ1. (2.10)

Now, by (PM3), we get

Fxm(k)−1,xn(k)−1
(ϕ(ε1/c)) ≥ T (Fxm(k)−1,xm(k)

(η), (2.11)

Fxm(k),xn(k)−1
(φ(ε1/c)− η)).

Let λ2 such that 0 < λ2 < λ1 < λ < 1 be arbitrary. Then by (2.5) there exists a
positive integer N2 such that for all k > N2, we have

Fxm(k)−1,xm(k)
(η) > 1− λ2. (2.12)

Now, using (2.8), (2.11) and (2.12), for all k > max{N1, N2} we have

Fxm(k)−1,xn(k)−1
(ϕ(ε1/c)) ≥ T (1− λ2, 1− λ).

Since λ2 is arbitrary and T is continuous, we get

Fxm(k)−1,xn(k)−1
(ϕ(ε1/c)) ≥ 1− λ. (2.13)
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By using the above inequalities, we have

1− λ ≥ Fxm(k),xn(k)
(ϕ(ε1)) ≥ Ffxm(k)−1,fxn(k)−1

(ϕ(ε1))

≥ β(xm(k)−1, xn(k)−1, ε1)Ffxm(k)−1,fxn(k)−1
(φ(ε1))

≥ min
{

Fxm(k)−1,xn(k)−1
(ϕ(ε1/c)), Fxm(k)−1,xm(k)

(ϕ(ε1/c)),

Fxn(k)−1,xn(k)
(ϕ(ε1/c)), Fxn(k)−1,xm(k)

(ϕ(ε1/c))
}

> min{1− λ, 1− λ, 1− λ, 1− λ} = 1− λ,

which is a contradiction, therefore {xn} is a Cauchy sequence in the complete
Menger space. Thus xn → u as n → ∞ for some u ∈ X .
Now, we show that u is a fixed point of f . Since ϕ ∈ Φ, we have that for all
x, y ∈ X and t > 0 there exists r > 0 such that t > ϕ(r) and therefore we have

Ffu,u(t) ≥ T (Ffu,xn
(φ(r)), Fxn ,u(t− φ(r))). (2.14)

Since t > ϕ(r), thus t − ϕ(r) > 0. Also, since u = limn→∞xn, for arbitrary
δ ∈ (0, 1) there exists n0 ∈ N such that for all n ≥ n0 we get

Fxn,u(t− ϕ(r)) ≥ 1− δ. (2.15)

Hence, from (2.14) and (2.15), we have

Ffu,u(t) ≥ T (Ffu,xn
(ϕ(r)), 1 − δ).

Notice that, if xn = fu for infinitely many values of n, then u = fu and hence the
proof finishes. Therefore, we assume that xn 6= fu for all n ∈ N . Consequently,
since δ > 0 is arbitrary and the t−norm T is continuous, we get

Ffu,u(t) ≥ Fxn,fu(ϕ(r)) ≥ Ffxn−1,fu(ϕ(r))

≥ min
{

Fxn−1,u(ϕ(r/c)), Fxn−1,fxn−1(ϕ(r/c)),

Fu,fu(ϕ(r/c)), Fu,fxn−1(ϕ(r/c))
}

.

Letting n → ∞ in the above inequality and using the fact that T is continuous, we
have

Ffu,u(ϕ(r)) ≥ Ffu,u(ϕ(r/c))

and hence, by using Lemma 2.1, we get fu = u. This completes the proof. ✷

3. Application to integral equation

We give a typical application of fixed point methods to integral equations, by
using our results in Section 2. Precisely, we consider the following Volterra type
integral equation:

x(t) = g(t) +

∫ t

0

Ω(t, s, x(s))ds, ∀t ∈ [0, k], k > 0. (3.1)
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Let C([0,K],R) be the Banach space of all continuous functions defined on [0, k]
endowed with the sup norm

‖x‖∞ = maxt∈[0,k] | x(t) |, x ∈ C([0, k],R).

Alternatively the Banach space C([0,K],R) can be endowed with the Bielecki norm

‖x‖B = maxt∈[0,k](| x(t) | e
−Lt), x ∈ C([0, k],R), L > 0

and the induced metric dB(x, y) = ‖x− y‖B, for all x, y ∈ C([0, k],R), see [4]. We
know that the two norms above are equivalent [15].
Next, we define the mapping F : C([0, k],R)× C([0, k],R) → D by

Fx,y(t) = H(t− dB(x, y)), t > 0, x, y ∈ C([0, k],R).

V. M, Sehgal showed that the space (C([0, k],R, F, TM ) is the (ǫ, λ)-complete
Menger space induced by the Banach space C([0,K], R), See [14].
Now, we discuss the existence of solution for Volterra type integral (3.1).

Theorem 3.1. Let (C([0, k],R, F, TM ) be the Menger space induced by the Banach
space C([0,K],R) and let Ω ∈ C([0,K] × [0,K] × R,R) be an operator satisfying
the following conditions:

(i) ‖Ω‖∞ = supt,s∈[0,k],x∈c([0,k],R) |Ω(t, s, x(s))| < ∞,

(ii) there exists L > 0 such that for all x, y ∈ C([0,K],R) and all t, s ∈ [0,K] we
get

|Ω(t, s, fx(s))− Ω(t, s, fy(s))| ≤ L max
{

|x(s)− y(s)|, |x(s) − fx(s)|,

|y(s)− fy(s)|, |y(s)− fx(s)|
}

,

where f : C([0,K],R) → C([0,K],R) is defined by

fx(t) = g(t) +

∫ t

0

Ω(t, s, fx(s))ds, g ∈ C([0,K],R).

Then, the Volterra type integral equation (3.1) has a unique solution u∈C([0,K],R).

Proof: As mentioned above, (C([0, k], R, F, TM ) is a complete Menger space. Let
us consider the norm ‖x‖B = max(| x(t) | e−Lt), where L satisfies condition (ii).
Then, for all x, y ∈ C([0,K],R), we get

dB(fx, fy) ≤ max
t∈[0,k]

∫ t

0

|Ω(t, s, fx(s))− Ω(t, s, fy(s))|eL(s−t)e−Lsds

≤ Lmax{dB(x, y), dB(x, fx), dB(y, fy),

dB(y, fx)} max
t∈[0,k]

∫ t

0

eL(s−t)ds

≤ (1− e−Lk)max{dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)
}

.
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Putting c = 1− e−Lk, by using the definition of Fx,y, for any r ≥ 0 we have

Ffx,fy ≥ H(r − cmax{dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)})

= H(
r

c
−max{dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)})

= min{Fx,y(
r

c
), Fx,fx(

r

c
), Fy,fy(

r

c
), Fy,fx(

r

c
)},

for all x, y ∈ C([0,K],R). Therefore, by theorem 2.11 with ϕ(r) = r for all r ≥ 0
and β(x, y, r) = α(x, y, r) = 1 for all x, y ∈ C([0,K],R) and r > 0, we deduce
that the operator f has a unique fixed point u ∈ C([0,K],R), which is the unique
solution of the integral equation (3.1).

✷
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