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Non-linear Elliptic Unilateral Problems in Musielak-Orlicz spaces with
L! data
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ABSTRACT: We prove an existence result of solutions for nonlinear elliptic unilateral
problems having natural growth terms and L' data in Musielak-Orlicz-Sobolev space
WLy, under the assumption that the conjugate function of ¢ satisfies the Ao-
condition.
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1. Introduction

Let Q be an open bounded subset of RY (N > 2). Consider the following
non-linear Dirichlet problem

A(u)—i—g(:v,u,Vu):f, (1.1)

where A(u) = —div a(z,u, Vu) is a Leray-Lions operator defined on D(A) C
W3 L,() — WL, () with ¢ and ¢ are two complementary Musielak-Orlicz
functions, and ¢ is a non-linearity with sign condition and satisfying, for all s €
R, ¢ € RV and almost all € €, the following natural growth condition:

l9(z, 5, )| < b(|s])(ao(x) + ¢ (, [€])),

where b : R — R is a continuous and non-decreasing function and ag(.) is a given
non-negative function in L*().
The right-hand side f is assumed to belongs to L(Q).
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On Orlicz spaces and in the variational case, it is well known that Gossez and
Mustonen solved in [20] the following obstacle problem

u e Kd>
(A(u),u—v)+/g(m,u)(u—v)d$§ (fyu—o) (1.2)
for all v € Ky r%zLOO(Q).

where K is a convex subset in Wi Ly () given by Ky = {v € WLy (Q) : v >
¢ a.e in Q}, with ¢ is a measurable function satisfying some regularity condition.
An existence result has been proved in [2] by Aharouch, Benkirane and Rhoudaf
where the nonlinearity g depend on x, v and Vu and without assuming the As-
condition on the N-function.

In the case where f € L1(Q), the unilateral problem corresponding to (1.1) has
been studied in [3] by Aharouch and Rhoudaf and in [16] by Elmahi and Meskine
without assuming the As-condition on the N-function.

In the framework of variable exponent Sobolev spaces, Azroul, Redwane and
Yazough have shown in [6] the existence of solutions for the unilateral problem
associated to (1.1) where the second member f is in L(£).

In the setting of Musielak-Orlicz spaces and in variational case, Benkirane and
Sidi El vally [12] proved the existence of solutions for the obstacle problem (1.2),
they generalized the work of Gossez and Mustonen in [20].

The purpose of this paper is to prove, in the setting of Musielak spaces, an
existence result for unilateral problem corresponding to (1.1) in the case where
f € LY(Q) under the assumption that the conjugate function of the Musielak-
Orlicz function ¢ satisfies the As-condition and by assuming

/ (pzjw(l) dt = oo for a.e. x € Q. (1.3)
1 tN

This assumption (1.3) allows us to use a Poincaré type inequality in the proof
of the main result of this work (Theorem 3.3). Remark that this condition cor-
responds, in the classical Sobolev spaces WP to the case p < N, which is the
interesting case in these spaces.

Further works for the unilateral problem corresponding to (1.1) in the LP case can
be found in [13,14,15].

2. Preliminaries

Musielak-Orlicz function. Let © be an open subset of RY (N > 2), and let ¢
be a real-valued function defined in 2 x R and satisfying the following conditions:

i) ¢(z,.) is an N-function for a.a. x € Q (i.e. convex, nondecreasing, continuous,
— ; (z,t) _ i i (z,t) _
o(x,0) =0, (z,t) >0 Vt>0, thm sup £2% =0 and lim inf S22 =

HOLEEQ t—o00 zEN
00);
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i1) ¢(.,t) is a measurable function for all ¢ > 0 .

A function ¢ which satisfies the conditions ) and i7) is called a Musielak-Orlicz
function.

For a Musielak-Orlicz function ¢ we put ¢, (t) = ¢(z,t) and we associate
its nonnegative reciprocal function ¢!, with respect to t, that is ¢, 1 (p(x,t)) =
(p(.%', (pz_l(t)) =t.

The Musielak-Orlicz function ¢ is said to satisfy the Ay—condition if for some
C > 0, and a non negative function h, integrable in €2, we have

o(x,2t) < Cp(z,t) + h(x) forall z € Qandallt>0. (2.1)

when (2.1) holds only for ¢ > tg > 0, then ¢ is said to satisfy the As—condition
near infinity.

Let ¢ and v be two Musielak-Orlicz functions, we say that ¢ dominate v, and
we write v < ¢, near infinity (resp. globally) if there exists two positive constants
¢ and to such that for almost all © € Q : y(x,t) < p(z,ct) for all t > to (resp. for
all t >0 ie. to=0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity),
and we write 7 << ¢, if for every positive constant ¢, we have

ing (sup 20 ) 0 resp. i (sup 220 ) o)

t—0 zeQ (p(‘rat) t—o0 zeQ QD(ZC,t)

Remark 2.1. [12] If v << ¢ near infinity, then Ve > 0 there exists k(g) > 0 such
that for almost all x € Q we have y(z,t) < k(e) p(x,et) for all t > 0.

Musielak-Orlicz space. For a Musielak-Orlicz function ¢ and a measurable func-
tion
u : ) — R we define the functional

0p0(t) = / (. Ju(z)) d.

Q

The set K, () = {u: @ — R measurable : g, o(u) < oo} is called the Musielak-
Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (or generalized
Orlicz space) L, (€2) is the vector space generated by K, (), that is, L, () is the
smallest linear space containing the set K, (€2). Equivalently

L,(Q) = {u : 2 — R measurable : g, ¢ (%) < oo for some A > 0} .

For a Musielak-Orlicz function ¢ we put ¢(z, s) = sup;sq(st — ¢(x, 1)), 9 is called
the Musielak-Orlicz function complementary to ¢ (or conjugate of ).

We say that a sequence of functions u, € L,(£2) is modular convergent to
u € Ly () if there exists a constant A > 0 such that lim,, 050 (“";“) = 0, this
implies convergence for o(IIL,,IILy) (Lemma 4.7 of [12]).
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In the space L, (£2) we define the Luxemburg norm by:

fulle =it > 0+ [ (e U a0 <1y,
Q

and the Orlicz norm by

lulllgn = sup /|u )l da.

llvlly<1

where 1) is the Musielak-Orlicz function complementary to ¢. These two norms are
equivalent [22]. K,(f2) is a convex subset of L (12).

The closure in L, (€2) of the set of bounded measurable functions with compact
support in €2 is denoted by E, (). It is a separable space and (Ey(2))* = L,(Q)
[22]. We have E,(Q) = K,(Q) if and only if K,(Q2) = L,(Q2) if and only if ¢
satisfy the As-condition (2.1) for large values of ¢ or for all values of ¢, according
to whether 2 has finite measure or not.

We define

WIL,(Q) = {u € Ly(Q) : D € L,(Q), V]a| <1}
WE,(Q) = {u € E,(Q): D € E,(Q), Vl|a| <1},

where o = (a1, ...,an), |a| = |a1|+ - + |an| and D%u denote the distributional
derivatives. The space WL, (Q) is called the Musielak-Orlicz-Sobolev space. Let

Q<PQ Z Q(pQ (D%u) and HUHWQ = 1nf{)\ >0:0,0 (%) < 1} for u € WlLW(Q)_

laf<1

These functionals are convex modular and a norm on WL, () respectively.
The pair (W' Ly (Q), [|lull}, o) is a Banach space if ¢ satisfies the following condition
[22]:
there exists a constant ¢ > 0 such that insf2 o(x,1) > c (2.2)
1SS

The space WL, () is identified to a subspace of the product ITj, <1 Ly () =
IIL,, this subspace is o(IIL, I1Ey) closed.

We denote by D(€2) the Schwartz space of infinitely smooth functions with
compact support in Q and by D(Q) the restriction of D(RY) on Q. The space
W3 L, () is defined as the o(IIL,, IIEy) closure of D(2) in WL, (Q) and the
space Wi E,(Q) as the (norm) closure of the Schwartz space D(£2) in WL, (Q).

For two complementary Musielak-Orlicz functions ¢ and v, we have [22]:

i)  The Young inequality:
ts < @(x,t) +(x,s) forall t,s >0, € Q. (2.3)
7))  The Holder inequality:

|/ x)dz| < 2||ullp0 ||v|lp.o, for all u € L,(2),v € Ly(Q). (2.4)
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We say that a sequence of functions u,, converges to u for modular convergence in

WL, (Q) (respectively in Wi L, (Q)) if, for some A > 0, lim 9, <“" N “> = 0.
n—00 ’

The following spaces of distributions will also be used:

WLy(Q) = {f €D (Q): f= ) (-1)*ID*f, where fo € Ly(Q)}

laf<1

WEL(Q) ={f €D (Q): f= > (-1)*Df, where f, € E,(Q)}.

laf<1

Lemma 2.2. [11] Let Q be a bounded Lipschitz domain in RY and let ¢ and 1
be two complementary Musielak-Orlicz functions which satisfy the following condi-
tions:

(1) There ezists a constant ¢ > 0 such that inggp(x, 1) > ¢ [(2.2)]
ze

1
(i7) There exists a constant A > 0 such that for all z,y € Q with |z —y| < 5 we have

(z,1)
(y,t
(#i1) /(p(x, 1) dx < oo;

Q
(iv) There exists a constant C > 0 such that ¥(x,1) < C a.e in .

©

A
< t(l‘)g(\riy‘)) forall t>1;

S

Under these assumptions, D(Q) is dense in L,(Q), D(Q) is dense in Wi Ly(Q)
and D(Q) is dense in WL, () for the modular convergence.

Consequently, the action of a distribution S in W~1L,(2) on an element u of
Wi L,(9) is well defined. It will be denoted by (S, u).

Lemma 2.3. [12] Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Let
¢ be a Musielak-Orlicz function and let w € W Ly(2). Then F(u) € Wi Ly(9).
Moreover, if the set D of discontinuity points of F' is finite, we have

0 {F’(u)g—“i a.ein {re€Q:ulx) ¢ D}

axiF(“): 0 acin {z € Q:u(zx) € D}.

Lemma 2.4. [/] (The Nemytskii operator) Let Q) be an open susbset of RY
with finite measure and let ¢ and ¢ be two Musielak-Orlicz functions. Let f :
Q X RP — R? be a Carathéodory function such that for a.e. x € Q and all s € RP

f(2,9)] < @) + ar ¢ " p(x, azls])

where an, ag are real positive constants and c(.) € Ey(Q).
Then the Nemytskii operator Ny defined by Ny(u)(z) = f(x,u(z)), is continuous

(2.5)
(2.6)

(2.7)
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from (P(E, (), aiz))p =1I{u € L,(Q) : d(u, E,(Q)) < 0%2} into (Ly(Q))? for the
modular convergence.

Furthermore if ¢ € E,(Q) and v << 1 then Ny is strongly continuous from
(P(E(R), L)) into (B, (Q))".

Lemma 2.5. Let f,, f € L'(Q) such that
i) fn>0  aeinQ;

Then f, — f strongly in L*(9).
The following theorem has already been treated in [5] but we think it is useful

to give it again in order to facilitate the reading of this work, it is a Poincaré type
inequality in Musielak spaces, for more details see [5].

Theorem 2.6. [5] Let Q be a bounded Lipschitz domain of RY, and let ¢ be a
Musielak-Orlicz function satisfying (1.3) and the conditions (i), (i), (i) and (iv)
of Lemma 2.2 then there exists a constant C (€2, ) > 0 such that

lulle < CIVull, — Vue WyLy(Q)

Proof:
Suppose, by contradiction, that for every n € N*, there exists w,, € W} L,(€2) such
that

lwally > nl Ve,

define the sequence u,, € W3 L,(Q2) by u,, = v/n T We have
1

funlle = Vi and [V ]lp <

then Vu, — 0 strongly in L,(2), which imply that
Vu, — 0in D'(Q). (2.8)

Since (uy,) is bounded in W L, (), there exists a subsequence, denoted by (uy, ),
weakly convergent in W L, () for the weak* topology o (IIL, I1Ey).

By using the compact imbedding W L, (2) << L, () (see Theorem 3 of [10]),
there exists a function v € L, (£2), and a subsequence, still denoted by (uy, ), such
that w,, — v strongly in L,(Q), thus u,, — v in D’(Q2), and so

Vi, — Vo in D'(Q). (2.9)

By combining (2.8) and (2.9), we obtain Vv = 0, and this imply that v is a constant
function because 2 is connected. Consequently u,, — « strongly in L, (€2), where
« is a constant.

A contradiction, since ||u, ||, = /n. O
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3. Main result

Let © be a bounded Lipschitz domain in RY (N > 2), and let ¢ and v be two
Musielak-Orlicz functions such that v << ¢ and ¢ satisfies the assumption (1.3)
and conditions of Lemma 2.2.

Given an obstacle measurable function A : €2 — R and consider the set

Ky={ue Wole(Q) cu>Aaein Q}

This convex set is sequentially o (II1L,, I1E,) closed in WL, (£2) ( see [12]).
Let A: D(A) C WyLy(2) = WLy (Q) be a mapping (not everywhere defined)
given by: A(u) = —diva(z,u, Vu) where v is the Musielak function complementary
to ¢ which satisfies the As-condition and a : 2 x R x RY — R¥ is a Carathéodory
function satisfying, for a.e z € Q and for all s € R and all £ ,&, € RN, £ # ¢,

la(@, s, )| < ki (c(x) + 97" (v, ka|s))) + 95" (ol k3l€]) (3.1)
(a(x757§> 70’(:67575*)) (575*) >0 (32)
a(z,s,€) (£ — Vo) = ap(a,[¢]) — d(z) (3.3)

with vg € KANWG E,(Q)NL>(Q),(.) € LY(Q), o, k1, ka, ks > 0 and ¢(.) € Ey ().
Let g : 2 x R x RV — R be a Carathéodory function such that, for a.e x € Q
and for all s € R, £ € RN

g(x,8,6)s >0 (3.4)

l9(,5,€)| < b(]s]) (ao(x) + (2, [£])) (3-5)

where b : R — R is a continuous and non-decreasing function and ag(.) is a given
non-negative function in L!(€2).
Now, assume that

Ky NW3Ey(Q) N L®(Q) is dense in K N L>(1) (3.6)
for the modular convergence in W L., (£2).

Remark 3.1. [12] If A € Wi E,(Q)NL> () or if there exists A € KxNWg E, ()N
L>(Q) such that A — A is continuous then (3.6) is satisfied.

Example 3.2. Consider the following Dirichlet problem

Vu

—div (a(m, wym(z, |Vul) Yl

) T gluym(e, [Vu)|Vul = f in Q.

where a(z,u) is a Carathéodory function such that 0 < p < a(x,u) < v, m is
the derivative of the Musielak function ¢ with respect to t and g is a continuous
function satisfying g(s)s > 0. Then the assumptions (3.1)-(3.5) hold true. (see
Remark 3.2 of [16])
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Finally, we assume that
ferL(). (3.7)
Define T, #(Q) to be the set of measurable functions u : Q — R such that Ty (u) €
W L, (), where Tk(.) is the truncation at height k& > 0, defined by

s it |s| <k,

L) =9\ &2 i |s| >k
5]

We shall prove the following existence theorem.

Theorem 3.3. Assume that (5.1)-(5.7) hold true, then there exists at least one
solution of the following unilateral problem

weTy?(Q), u>AaeinQ, g(z,u Vu)eL(Q)
(Pa) /“(M’ Vu)VTi(u =) da + /g(z, u, V) Tp,(u — v) da < /f Ty (u — v) da,

Q Q Q
for allv € Ky N L>(Q) and for all k > 0.
Proof:
Step 1: A priori estimates.
For k > ||lvo|loc, let 6 = (2(—?)2 and ¢(s) = sexp(ds?). It is well known that
b(k 1
#5) - Wig > 1 vacr (3.5

Let (f,) be a sequence of smooth functions which converges strongly to f in L*(9)

and set gn(2,5,¢) = Ta(g(x, s,£))-
Consider the approximate unilateral problems

u, € KA N D(A),

(P,) (A(up), un —v) + /gn(x,un, V) (ty — v) de < /fn(un —v)dx
Q Q
for all v € Kjy.

where (., .) means the duality between Wi L,(Q) and W 1L, ().

Note that gn(xa SaE) s >0, |gn($a SaE)' < |g($a Sa€)| and |gn(l‘,8,§)| <n.

Since g, is bounded for any fixed n > 0, there exists at least one solution u,, €
Ka N D(A) of (Py). (see Proposition 5 of [20] and Theorem 8 of [12])

Taking u, — 8, ¢(T,(un, — vo)) as test function in (P,), where n = k + ||vo||oc and
B1 = exp(—dn?) we obtain

a(x, un, V) (Vu, — Vvo)qb'(Tn(un — 1)) dx
{lun—vo|<n}

+/%mww%wmmwwmmz/nwm%—WMx
Q

Q
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Since gn (2, Un, V) (T (un — vo)) > 0 on the set {z € Q: |u,| > k}, we have

a(@, un, V) (Vun, — Vg)d' (T (un — vo)) da
{lun—vol<n}

+ / Gn (T, Un, V) &(Ty)(upn — vo)) do
{lun|<k}

< [ 9T un — w0)) d
Q
and by using (3.5), one easily has

a(@, U, V) (Vun, — Vg)d' (T (un — vo)) dx
{lun—vol<n}

< b(k) / 16Ty (1 — v0))|(a0(z) + (V) dc
{lun|<k}

+ fn d)(Tn(un - 'UO)) dJE,
/

from (3.3) and by using the fact that {z € Q : Ju,| <k} C {x € Q: |u, —vo| < n}
and ag(.), (), fn € L' () we get

o Funl) (T3 = 10)) = 21007, 0~ w0 ) o <

{lun—vol<n}
where (), is a positive constant depending on 7,
thanks to (3.8), we have
oz, |Vuy|)de < C,, Vn,
{lun—vo|<n}
consequently
oz, |Vuy|)de < C,, Vn. (3.9)
{lun|<k}

Now, the use of v = u, — Ty (un, — vo) as test function in (P,,) yields

a(l‘, U, vun) (vun_VUO) dx+ / dn (m, Un,, vun)Tk (un_UO) dx

{|un—vo|<k} {lun|<|lvolleo

}
S/fnTk(un_UO)d‘T
Q
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then from (3.5) and (3.9), we get

a(x, Un, Vuy) (Vu, — Vog)de < C k, (3.10)
{lun—vol <k}
where C' is independent of k.
Hence, by using (3.3) we obtain

o(x, |[Vuy|)de < C k.

{lun —vo| <k}

Finally, since k is arbitrary we obtain

[ ewmivmbas [ e ITuhdr <0 6 el
{lun|<k} {|un—vo|<k+llvol oo }
thus
/(p(x, VT (un)]) dz < C (k + vo]loc). (3.11)
Q

On the other hand, since ¢ (the conjugate of @) satisfies the Ay-condition then,
from proposition 2.1 of [17], there exists ¥ > 0 and ¢ > 0 such that

@(x,t) > ct** for all t > some to > 0. (3.12)

We have
meas{|u,| > k} = meas{|Ti(un)| > k},

then by the Chebyshev, the Poincaré inequality, (3.12) and (3.11) we obtain

|Tk |1+1/
meas{|u,| >k} < / kl-i-u

< / VT ) [ d

CV,N
< G / ol [V Ty (1)

Q

C, n

= k1+u (k+||UOHoo Vn, Vk >0,

where C, n is a constant from the Poincaré inequality in VVO1 Aty
For any p > 0, we have

meas{|u,—um| > u} < meas{|u,| > k}+meas{|un,| > k}+meas{|Ti(wn)—Tk(twm)| > p}
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then

20, v (k+ |lvollo)
kl-‘,—l/

meas{|un — um| > p} < + meas{|Ti(un) — Tk(um)| > n}.

(3.13)
From (3.11) and by using Theorem 2.6, we deduce that (T%(uy)), is bounded in
Wi L,(€) and then we can assume that (7 (uy))n is a Cauchy sequence in measure
in Q.
Let € > 0, then by (3.13) and the fact that ’Hk”l%”‘” — 0 as k — oo, there exists
k(e) > 0 such that

meas{|u, — u,| > p} <e forall m,m > ng (k(e), 1.

This proves that (u,) is a Cauchy sequence in measure in {2, and then converges
almost everywhere to some measurable function u.
Finally, by Lemma 4.4 of [19], we obtain for all k£ > 0

Ty (un) — Ty (u) weakly in Wy Ly, () for o(I1L,, IIEy),
strongly in E,(Q) and a.e. in . (3.14)

Now, we shall prove that (a(z, Tk (un), VTk(un)))n is bounded in Ly (Q)Y for all
k> 0.
Let ¥ € E,(2)Y arbitrary. By using (3.2), we have for every k > 0,

¥
a(x, Up, Vg ) (———Vug) de < / a(x, Un, Vig)(Vup,—Vg) dz

k3
{lun—vo|<k} {lun—vo|<k}
9.0
+ a(ac,un,k—g)(k—3 — Vu,) dz
{lun—vo|<k}

where k3 is defined in (3.1),
which gives by (3.10)

9 9., 0

a(x, up, V) (——Vug) de < C k+ a(x, Uy, —)(——Vuy,) dz.

ks k3’ ks

{lun—vo|<k} {lun—vo|<k}

Since ¥ is arbitrary in E,(Q)", choose w = ,% — Vo in the last inequality with

HWHLv(Q)N = 1 and we find

a(x, Up, Vuy) wde < C k+ a(x, up,

{lun—vo|<k} {lun—vo|<k}
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On the other hand, for 3 large enough, we have by using (3.1)

(@, un, )|

¥z, 3

{lun—vo|<k}

k1
o < 5 / (e, e(x)) d + / (. ]9]) da
Q Q
+ / (. ks + o oo) dz),

{lun—vo[<k}

thanks to Remark 2.1, there exists ((k) > 0 such that y(z, ka(k + |Jvo]|ec)) <
C(k)p(x,1) then

(@, un, )|

Uz, 5

{lun—vol<k}

) dr < C]wjo

consequently

a(x, Un, Vy) wdr < Ck .y,
{lun—vo|<k}
where C}, ., is a constant which depends on k and vy but not on n.
Hence, using the dual norm, one has (a(z, un, Vun)X{|u, —ve|<k})n 18 bounded in

Ly (M.
Then, for £ > 0 we have

/a(x,Tk(un),VTk(un)) wdx < /|a(z,un, vu")|X{|un,—vo\§k+|\vo|\x} wdx
Q Q

which gives by Holder inequality
/a(ac, Ti(un), VT (un)) wde < 2||a(x, y, Vun)x{‘unﬂo‘gkﬂ‘vo”w}HLw(Q)N
Q

so that (a(z, Tk (un), VIi(un)))n is bounded in Ly ()N,
which implies that, for all k£ > 0 there exists a function Iy € Ly (Q)", such that

a(z, Ty (un), Vg (un)) — U, weakly in Ly (Q)Y for o(TILy, TIE,). (3.15)

Step 2: Almost everywhere convergence of the gradients.
For k > ||vgl|so, let Q. = {a € Q,|VTi(u(x))| < r} and denote by y, the charac-
teristic function of €2,.. Clearly, 2, C Q,4+1 and |Q\Q,| — 0 as r — oo.
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Let s > r, we have

0 < /[a(m,Tk(un),VTk(un))—a(:c,Tk(un),VTk(u))][VTk(un)—VTk(u)]dm

IN

Il
e P P—_ P

[a(x, Tk (un), VI (un)) —a(x, Tk (un), VI (u)] [V (uy) — VT (u)] da
la(@, Tk (un), VT (un)) —alz, T(un), V()X )V Tk(un) = VT (w)x,] dz
[a(x, Tk (un),VTi(un)) —a(z, Ti(tn), VT (W) x )V Tk (un) — VT (u)x,] daf3.16)

By assumption (3.6) there exists a sequence v; € Ky N W} E,(Q) N L>(2) which
converges to T (u) for the modular convergence in Wy L, (€2).
Let h > 2k > 0, and define

wzyj = Top(un —vo — Th(un — o) + Tk (un) — Tk(v)))
w? = Top(u —vo — Th(u — vo) + Th(u) — Tr(v)))
Wl = Top(u — vo — Th(u — v,)).
Taking v,’;j = up, — By (b(wfw») as test function in (P,), where 3, = exp(—40k?) we
obtain
h h h
(Alun). 0 ) + [ (o, V) 0 o < [ £ 04t ) i
Q Q

which implies that

/a’(‘rﬂunavun)vwz,] qﬁ/(w,}i,])dx—i—/gn(x,un,Vun) ¢(Wz,g)d$
Q Q

< [ fu o)z, (3.17)
/

Set m = h+5k, and denote by €(n, j, h) any quantity such that hlim lim lim e(n,j,h) =
—00 j—00 N—00

0 and by € (n,j) any quantity such that lim lim e,(n,j) =0, for h fixed.
j—r00 n—00
Observe that Vw! = 0 on the set {z € Q: [u,| > m}, then we have from (3.17)

/a(xaTm(Un)aVTm(un))sz,j ¢/(w2,j)d$ +/gn($aunavun) ¢(Wz,j)d$
Q

Q
!
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using (3.14), we have ¢(wl! ;) = ¢(w) weakly in L°°(Q) as n — 400, and then
/fn ¢(WZJ) dx — /f d)(w?) dx as n — 400,
Q Q

letting j and A to infinity and using Lebesgue theorem we get

/ fn S ) dz = e(n, j, h).
Q

Since gn (&, un, Vg)p(wl ;) dz >0 on the set {z € Q : |u,(x)| > k}, we have from
(3.17)

/ (2, T (1), Vo () )V, &' (W) dt

Q
4 / (1, Vi) Gl ;) dx < e(n, . h). (3.18)
{lunlgk}

On the other hand, we have

/ (2, Ty (), VT (1)) Ve, ' () da
Q
- / 02, T (1), Vo (1)) (VT (1) — VTi(03)) &' (@) dac

{lun|<k}

n,J

+ / a(@, T (un), Vi (un)) Vet - ¢ (wh ;) da. (3.19)
{lun|>k}

The first term of the right hand side of the last equality can write as

a(, T (tn), VT (un)) (VT (un) — VT (vy)) ¢/ (W0 ) da

n,j

{lun|<k}
> [ o Tiwn), VL)) (VL) = VTi(03)) 0/ )
Q
— ¢'(2k) / la(z, T (un),0)|| VT, (vj)| dx.  (3.20)
{lun|>k}

Since |a(x, Tk (un), 0)[X{ju, >k} converges to [a(x, Tk (u), 0)[X {ju|>k} strongly in Ly($2),
and |VTj(vj)| modular converges to |VTj(w)|, then

—¢'(2k) / |a(z, Tk (un), 0)[[VTx(v;)| dz = €(n, j)-

{lun|>k}
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The second term of the right hand side of (3.19) can write as, using (3.2)

a(x, T (un), VTm(un))VwZJ- (b’(wzﬁj)dx
{lun|>k}
> ¢ [ falo Tlun), VI @) VT do
{lun|>k}
82k / (@) dr. (3.21)
{|wn—vo|[>h}

Using (3.15) and modular convergence of (v;), it is easy to see that

— § 2k / (@, Ty (1), VT ()| VTe ()| do = en(ms §). (3.22)
{lun|>k}

and since ¢/(.) € L' () we have

—§ 2k / ¢(z) dz = €(n, h). (3.23)
{|un—vo|>h}

Combining (3.19)-(3.23), we deduce

/ 0, Ty (), VT (1)) Ve, ' () da
Q

> /a(x,Tk(un), VT (un)) (Vg (un) — VIr(v5)) qﬁ’(w%ﬂ dx
Q
+ €(n, h) + €(n, j) + en(n, §),
it follows that

/ 0, T (t0n), VT (1)) Ve, o (W) da
Q

> / la(z, T (un), Vi (un)) — a(m,Tk(un),VTk(Uj)Xg)]
Q

X [VTh(un) — VTk(v;)x.] ¢ (Wh ) da

+ /a(x,Tk(un),VTk(vj)xg). [VTk(un) — VTk(vj)Xﬂ qﬁ'(wzﬁj) dx
Q
~ / o, T (), V(). VTk(v) &' (! ) da
Q\Q
+ e(nv h) + e(n;j) =+ eh(n;j)a (324)
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where 7 is the characteristic function of the set O = {z € Q : |[VT)(v;)| < s}.
Since VT (v;)X o001 ¢ (wh ) — VTk(vj)Xon\0i ¢’ (wh) strongly in E,(Q)N, we get
from (3.15)

J

- / a2, Th(tun), VT (1)) VT (07) &' () dex — / VT (v;) ¢/ (W) da
o\ O\

as n tends to infinity.
Using the modular convergence of v;, one has

/lk.VTk(vj)xQ\Qg (b/(w?) dx — / 1. VTi(u) ¢' (W) dx as j — oo,
Q o\l

consequently

— / a(z,Tk(un),VTk(un)).VTk(vj)(b/(wzﬂj)d:c
o\
=— / 1.VTi(u) ¢ (W) dx + en(n, 7). (3.25)
o\

For the second term on the right hand side of (3.24) we can write

/ a(@, T (un), VTk(0)X5)- [VTk(un) = VTk(v3)x3] ¢ (") da
Q

N /a(:v, T (un), VT (05)X3)V Tk (un) ¢' (@ ;) do
Q

- / oz, Te(uun), VT (0)x3) V Tk (o) 6/ (" ) da.
Q

Splitting the first integral on the right hand side of this equality where |u, —vg| > h
and |u, —vo| < h, and remark that VI (u,) = 0 on the set {z € Q : |u,, —vo| > h},
we get

/ (2, Ti (1), VTk(0)x3)V Tk (1) &' () e
Q
= / a(‘raTk(un)’ka(UJ)X?s)ka(un) ¢/(Tk(un) - Tk(vj)) dx
{|un—vo|<h}

= /a(xa Tk(un)a VTk(Uj)Xg)VTk(Un) (b/(Tk(un) - Tk(vj)) dx
Q
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then

/ o, To(tn), VT (0)0)- [VTk(tn) — VTk(v)x3] ¢ (W) ) do
Q

= /a(vak(un)vVTk(”j)X@VTk(un) ¢ (T (un) — Ti(vy)) dw
Q

f/a(z,Tk(un),VTk(vj)xg)VTk(vj)xg (b/(wzﬁj)d:c. (3.26)
Q

Since
a(x, T (un), Vi (v;)x2) ¢ (Tr(un) — Ti(vy))
— a(z, Tp(u), VIi(v;)x3) ¢ (Ti(w) — Ti(vy)),

strongly in Ey ()" by Lemma 2.4, and VT (u,) = Vg (u) weakly in L, (Q)V for
O’(HLW IIEy),
then, the first term on the right hand side of (3.26) tends to the quantity

/a(z, Ti(u), VT (0;)X2) VT (u) ¢' (T (u) — Ti(vj)) dz as n — oo.
Q

Concerning the second term on the right hand side of (3.26), it is easy to see that

/a(vak(un)vVTk(“j)XQVTk(Uj)Xg ¢I(wﬁ,j) dx
)

= [ ol T, V() VTeop)] o ) o
Q
as n — o0o. Consequently, we have

/ a2, Th(tn), VTi(07)2) [VTi(un) — VTi(05)x] ¢ (@) da

Q

- / ale, Te(w), VT (07)xE) [VTe(w) — VTu(oy)xd] ¢/ @) de + en(n)  (3.27)
Q

Now, since VT (v;)x?2 qb/(w;?) — VTi(u)x, ¢’ (wh) strongly in E,(Q)N as j — oo,
we have

/ (e, Ti(w), VT(07)2) [Tk () — VTi(07)xd] & () de
Q

— / a(z, Ty (u), 0)VTy(u) ¢ (W) dx

NQs
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as j — oo, then

/a(vak(un%VTk(Uj)Xg) [VTi(un) — VTk(vj)x2] ¢'(w

b de
9)

n,Jj

- / (e, T (1), 0)V Tk () &' (0) i + (. 7).

O\Q.

Finally, by combining (3.24), (3.25) and (3.27) we get

/ a(z, Ty (un), VI (u,)) V! o ¢/ (w

Q
2/[a(x,Tk(un),ka(Un>>*a(vak(un%VTk(’Uj)Xg)]
Q

X [VTy(un) = VTi(v;)x3] ¢'(w), ;) do+ / a(x, Ty (u), 0)V Ty (u) ¢'(0) dx
o\,

- / 1. VTi(u) ¢'(0)dz + €(n,j,h). (3.28)
O\

We now evaluate the second term on the left hand side of (3.18) by writing

| / g (s, V) () de
{lun|<k}

<b(8) [ (ao(z) + ol [VTu(un) ]t )| do

Q
<o(t) [ aofaliotut N do+ 22 [ @)loeh )l s
Q Q

+ @/a(l',Tk(Un)aVTk(un))VTk(un)|¢(wZ,j)|d‘r
Q

- @/a(z,Tk(un),VTk(un))Vv0|¢(wZ1j)|dz
< ctn.3.0) + " [ oo, Tulun), VT Vi) (e )
Q
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As regards the last term on the last side of this inequality, we have

b(k)

«

[ ol Tul), VL) VL) o)) d

_ @ / [a(, Tx(un), VT (un)) = a(z, Ti(un), VTi(v;)x2)]
Q

% [VTu(un) — VTi(0:)x2] [6(w) ;)| da

@ /a @, Tho(un), VTi(0;)x2) [VTk(un) = Vi (05)x3] [d(w); ;)] da

«

b(olj /a @, Ti () VTk(un))VTk(UJ)Xs|¢( )|dz,
Q

we argue as above to show that

ka) /a(z, Tk (uy), VTk(vj)xi) [VTk(un) - VTk(vj)xg] |¢(WZJ>| dz = €(n, j, h)
Q
@ /a(m,Tk(’U/n),VTk(’un))VTk(’Uj)Xg(b(wZJ)|dm = ¢(n, j,h).
Q
Then

| / G (2t Vi) (0l ) ]
{lun|<k}
L bk

«

[ Lol Tul), VL)) = (o, Tulun). VI (07)0)]
Q
X [VTi(un) = VTr(vj)x]] |p(wh Jldx+e(n,j,h). (3.29)

Combining (3.18), (3.28) and (3.29), we obtain

/ [, Te(n), YTk (tn)) — a(z, Ti(t), Vi (05)x0)]
Q

< [VTiun) = VTl (k) — “Lloth 1) ao

< / a(z, Ty (u),0)VTi(u) ¢'(0) dz+ / 1. VTy(u) ¢'(0) dr+e(n, 7, h)

Q\Q, o\
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thanks to (3.8), one has

/ [a(z, Th(un), VTk(un)) — a(@, T (un), VI (v:)x2)] [VTk(un) — VTi(vj)x2] dz
Q
<9 / oz, To(u), 0)VTk(u) ¢ (0) d + 2 / L. VTk(u) ¢'(0) dz + e(n, j, h).
Q\ Q. Q\a!
(3.30)

Now, observe that

/[a(m, Ty (un), VT (un)) = ala, T (un), VT (u)x )] [VTk (un) = VT (u)x,] do
Q

= / [a(a, T (un), Vi (un)) = a(z, Ty (un), Vi (05)x2)] [VTk(un) = VTi(0j)x3] da
Q

+ /a(x,Tk(un),VTk(vj)xg) [VTk(un) — VTk(vj)Xg] dx
Q

— /a(x,Tk(un),VTk(u)xs) [VTi(un) — VT (u)x,] dx
Q

+ /a(z,Tk(un), VTi(un)) [VTk(vj)X] — VTi(u)x,] da.
%)

Passing to the limit in n and j in the last three terms of the right hand side of the
last equality gives

/a(‘raTk(un)’ ka(Uj)Xg) [ka(un) - ka(Uj)Xﬂ dx
Q

= / a(z, Ty(u),0)VTi(u) dx + €e(n, j),
2\Q,

/a(x,Tk(un), VTi(u)x,) [VTi(un) — VT (u)x,] dx
Q
= / a(x, Ty, (u),0)VTi(u) dox + e(n)
o\,
and

/ 0, Ti(tn), VT (n)) (VT (03X — VTx(u)x,) dz = e(n, ).
Q



NON-LINEAR ELLIPTIC UNILATERAL PROBLEMS IN MUSIELAK SPACES 71

Hence

/[a(m, Ty (un), VT (un)) = ala, T (un), VT (u)x,)] [VTk(un) = VT (u)x,] do
Q

= / [a(z, Ty (un), Vi (un)) —a(:c,Tk(un),VTk(vj)Xg)] X
Q

[VTi(un) — VTik(v;)x3] dx + e(n,j). (3.31)

Combining (3.16), (3.30) and (3.31) we deduce that

/[a(:z:, Ti(un), VT (un))—al(x, Ty (up), VT (w)][VTk (un) — VT (u)] d
Q.

< /[a(waTk(un),VTk(un)) — a(@, Ty, (un), VT3 (u)x,)] [VTk(un) — VTk(u)x,] dx
Q

<2 / a(z, T (u),0)VTi(u) ¢'(0) dx + 2 / 1. VTy(u) ¢'(0)dx + €(n, j, h).
Q\Q, O\ Qs
(3.32)

By passing to the lim sup over n, and letting j, h, s tend to infinity, we obtain

lim [ [a(z, Ty (un), VT (un))—alx, T (un), VT (0)][V Tk (un) — VT (u)] de = 0.

n—-+o0o
Q

As in [8], there exists a subsequence, still denoted by u,,, such that
Vu, — Vu a.e. in Q. (3.33)
Step 8 : Modular convergence of the truncations.

Since (3.15) and (3.33), we have I, = a(x, Ty (u), VTi(u)), which implies by using
(3.32)

/ [a(z, Ty (un), VTi(un))(VTi(un) — Vo) + ¢ ()] da
Q

= /[a(:z:, Ty (un), VT (1)) (VT (u)xs — Vo) + ¢ (2)] dz
Q

+ / (2, Ti(tn), VT (4) (VT 1tn) — VTi()x,) da
Q
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< /[a(m,Tk(un), VT (un)) (VT (u)xs — Vo) + ¢ (2)] dz
Q

+ [ ale, Tuln), VIL@X) (VT () ~ VTi(u)x,) do
Q
+2 / a(z, Tk (w), VT (w)) VT (u) ¢'(0) dz
O\Q.
+2 / a(x, Tx(u),0).VTk(u) ¢'(0) dz + €(n, j, h).
o\Q.

By using Fatou’s Lemma we obtain

/[a(:z:, Ty (u), VT (u)) (VT (u) — Vo) + ¢ (x)] da
o)

< lim inf / (@, T (), VT (1)) (V Tk () — Vo) + ¢ (2)] da

n—-+o0o
Q

< lim sup/ la(z, Tk (un), VTi(un)) (VT (un) — Vo) + ¢ (x)] da

n—-+o0o

<timsup [ fo(e. Te(un). VT ()} (VTu(u)x, = Voo) + ¢ (2)] do

n—-+oo

#limsup [ a(e. Tulun), VI, (VIk(un) ~ VIk(w)x,) da

n—-+oo

12 / e VT (u) &'(0) do-+2 / a(z, Te(w), 0).VTk(w) ¢ (0) dz—te(n, j, h).
Q\ Qg Q\ Qs
We proceed as above to get

imsup. [ o, i), VT4 ) (VTr(a)x, = Foo) + ¢ (2)] da

n—-+oo

= /[a(z, Ti(u), VT () (VT (u)x, — Vo) + ¢ (x)] da
Q

and

limsup/a(x,Tk(un),VTk(u)xs)(VTk(un) — VTi(u)x,) dx

n—-+oo

= / a(z, Tr(u),0). VT (u) dx.

2NQs
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It follows that

/[a(:z:, Ty (u), VT (u)) (VT (u) — Vo) + ¢ (x)] da
)

< lim inf/ [a(z, Tk (un), VTi(un)) (VT (un) — Vo) + ¢ (x)] da

n—-+o0o
Q

< lim sup/ [a(z, Tk (un), VTi(un)) (VT (un) — Vo) + ¢ (x)] da

n—-+o0o

< [ lafe Ti(w), VE@) (VT (@), ~ Voo) + ¢ (2)] da
Q
12 / L. VTe(u) ¢ (0) dz + / oz, T (), 0).V Ty (u) dz
Q\ Qg Q\ Qs
+2 / a(z, T (u),0) VT (u) ¢'(0) dx.
Q.

Taking into account that [a(z, Ty (uv), VT (u))(VTk(u)xs — Vo) + ¢ (2)], k. VTi(u) ¢'(0)
and a(z, Ty (u),0).VTy(u) ¢'(0) belongs to L(Q) and letting s — +o00, we get

/ [a(z, Ty (w), VTi(u)(VTk(u) — Vo) + ¢ (z)] dx
Q

< lim inf/ [a(z, T (un), VT (un)) (VTk(un) — Vo) + ¢ ()] d

n—-+o0o
Q

< lim sup/ [a(z, Tk (un), VTi(un))(VTk(un) — Vo) + ¢ (x)] dx
n—-+oo
< /[a(:z:, Ty (u), VT (u))(VTi(u) — Vo) + ¢ (x)] dx,
Q
consequently

lim [a(z, Ty (un), VT (un))(VTk(un) — Vo) + ¢ (x)] dx

n—-+o0o
Q

= /[a(:z:, Ty (u), VI(u))(VTi(u) — Vo) + ¢ (x)] dx.
o)

By Lemma 2.5, we conclude that

(a(a, T (un), Vo)) (VTi(tn) — Vo) + € ()]
— [a(z, T (u), VT (u)) (VT (u) — Vvg) + ' (z)]  (3.34)
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strongly in L(€). The convexity of the Musielak fonction ¢ and (2.7) allow us to
have

o (x, |VTk(un)2_ VTk(U)|) -

o [0, Ti(un), VT()) (V1) — F) + ¢/ ()]
+% [a(z, T (u), VT (u))(VTk(u) — Vvg) + ¢ (z)],
Then, by (3.34) we get

lim Sup/w <x7 VT (un) — VTk(U)|> da — 0
|E|—=0 n 2

So that, by Vitali’s theorem one has
Ti(un) — Ti(u) in WyLy(Q) for the modular convergence Vk > 0.  (3.35)

Step 4 : Equi-integrability of the non-linearities.
As a consequence of (3.14) and (3.33), one has

gn(x, Unp s vun) — g(-T,U, VU) a.e in Q,

so it suffices to show that g, (z,u,, Vu,) is uniformly equi-integrable in €.
Let E be a measurable subset of 2 and let m > 0. We have

/ (g0 (2 4y V)| d = / (9 (& 4, V)| it / (9 (& i, V)| di.
E En{|up—vo|<m} En{|un—vo|>m}

Taking u,, — T1 (un, — vo — T (un, — v9)) as test function in (P,,), we obtain

a(x, Up, Vi) (Vu, — Vug) de
{m<|up—vo|<m+1}
+ / gn (2, un, Vuy) T1(un — vo — T (tun — vo)) dx
{lun—vo[>m}
< fr T1(un, — vo — T (up, — vo)) dez,
{lun—vo|>m}

Then, assumption (3.3) gives
(o Vulde < [ (a4 ) da
{|un—vo|>m} {lun—vo|[>m}
For € > 0, there exists m = m(e) > 1 such that

|gn(zaunvvun>|d$< ga vn.

{lun—vo[>m}
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On the other hand, we use (3.3) and (3.5) to get

|gn(z,un,Vun)|dz§/|gn(:c,TQ(un),VTg(un))|d:c
E

En{|un—vo|<m}

0 / ao(z) dz + b(o) / (@, |V Ty (1)) dt

E

< o) / [a(z, Ty(un), VTp(un))(VTy(un) — Vo) + ' (x)] dx

(%

+ b(Q)/ao(x) dx

where ¢ = m + || vo]| co-
Then, by using (3.34) and the fact that ag(.) € L'(Q2) we obtain

lim sup / |gn (2, Un, Vuy,)| dr = 0,
|E|—0 n
En{|un—vo|<m}

where |E| denotes the Lebesgue measure of the subset E. Consequently

‘hm sup/|gn T, Up, V)| dx = 0.

Which shows that g, (x,un, Vu,) is uniformly equi-integrable in Q. By Vitali’s
theorem, we conclude that g(z,u, Vu) € LY(Q) and g, (2, upn, Vu,) — g(x,u, Vu)
strongly in L().

Step 5 : Passage to the limit.

Let v € Ky N W E,(Q) N L>(Q) and taking u,, — T (u, — v) as test function in
(P,), we obtain

/a(:z: Uy Vg ) VT (un—v) d:z:—i—/gn Xy Uy V) Te(up—v) de < /fn Tk (un—v)
Q Q

which implies that

a(x, un, Vuy) (Vu, — Vog) de
{lun—v|<k}

+ / a(m, TkJr”v”oo (’U,n), kaJ’,”U”w (un)) (VUO — V’U)

{lun—v|<k}

+ | gn(x, un, Vuy) Te(up —v))de < | fn Tk(uy —v) dz.
/ /

Q
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Using Fatou’s Lemma and the fact that

a(®, Ty o)) oo (Un)s VI u)oo (un)) = (@, Tig o)) (W)y Vg 0] o ()
weakly in Ly (Q)N for o(IILy, I1E,), we get

a(z,u, Vu) (Vu — Vug) dz

{lu—v|<k}

+ / a(ac, TkJ’,”rUHDO (u), kaJrHv”oo (u)) (VUO — V’U) dx

{lu—v|<k}
+ [ g(z,u, Vu) Tp(u —v))de < | fTr(u—v)dz.
/ /
Hence
/a(m,u,Vu) VTi(u—v) dm—i—/g(m,u,Vu) Ti(u—v))dx < /f Tr(u—v) du.
Q Q Q

(3.36)

Now, let v € Ky N L>(12), then by using (3.6) there exists v; € Ky N W3 E,(Q) N
L>(€) such that v; converges to v for the modular convergence. Let h > |[vo||oo
and taking v = T}, (v,) in (3.36), we obtain

/a(m,u, Vu) VT (u — Ty (v))) de + /g(m,u, V) Ti(u — T (vy)) dz
Q Q

< /f Ti(u — Th(vy)) dx
Q
letting j — 400, we obtain

/a(m,u, Vu) VI (u — Th(v)) de + /g(m,u, Vu) T (u — Ty (v)) dx
Q Q

< /f Ti(u —Th(v))dz Vv e KxnL>®(Q)
Q

Finally, letting h to the infinity we deduce

/a(:c, u, Vu) VT (u — v) dz + /g(:c, u, Vu) Ty (u — v) do
Q Q

g/ka(u—v)dx Vo e KaNL¥(Q) Vk>0.
Q

d

Thus the proof of the theorem 3.3 is complete.
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