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A Takeuchi-Yamada type equation with variable exponents ∗
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abstract: We prove continuity of the flows and upper semicontinuity of global
attractors for a Takeuchi-Yamada type equation with variable exponents.
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1. Introduction

The study of the continuity with respect to initial conditions and parameters
is important to verify the stability of a PDE model. Currently, some researchers
investigated in which way the parameter p(x) affects the dynamic of problems in-
volving the p(x)-Laplacian, analyzing the continuity properties of the flows and of
the global attractors with respect to the parameter p(x). B. Amaziane, L. Pankra-
tov and V. Prytula studied homogenization of pǫ(x)-Laplacian elliptic equations
(see [2]) and B. Amaziane, L. Pankratov and A. Piatnitski studied nonlinear flow
through double porosity media in variable exponent Sobolev spaces (see [1]) where
the authors considered the following initial boundary value problem





ωǫ(x)∂u
ǫ

∂t (t)− div(kǫ(x)∇uǫ|∇uǫ|pǫ(x)−2) = g(t, x) in Q

uǫ = 0 on ]0, t[×∂Ω,
uǫ(0, x) = u0(x) in Ω,

where Ω ⊂ R
n (n = 2, 3) is a bounded domain, Q denotes the cylinder ]0, T [×Ω,

T > 0 is given, g ∈ C([0, T ];L2(Ω)) and u0 ∈ H2(Ω) are given functions. They
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studied the minimization problem for functionals in the limit of small ǫ and obtained
the homogenized functional. We considered in [11] the following nonlinear PDE
problem

{
∂us

∂t (t)−
∂
∂x

(
|∂us

∂x (t)|ps(x)−2 ∂us

∂x (t)
)
= B(us(t)), t > 0

us(0) = u0s,

under Dirichlet homogeneous boundary conditions, where u0s ∈ H := L2(I), I :=
(c, d), B : H → H is a globally Lipschitz map with Lipschitz constant L ≥ 0,
ps(x) ∈ C1(Ī), p−s := ess inf ps > 2 for all s ∈ N, and ps(·) → p in L∞(I) (p > 2
constant) as s → ∞. We proved continuity of the flows and upper semicontinuity
of the family of global attractors {As}s∈N as s goes to infinity.

In this work we consider the nonlinear perturbation |u|ps(x)−2u of the p(x)−La-
placian, i. e., we consider the following nonlinear PDE problem
{

∂us

∂t (t)− div(|∇us(t)|
ps(x)−2∇us(t)) + |us(t)|

ps(x)−2us(t) = B(us(t)), t > 0,
us(0) = u0s,

(1.1)
under homogeneous Neumann Boundary conditions, where u0s ∈ H := L2(Ω),
Ω ⊂ R

n (n ≥ 1) is a smooth bounded domain, B : H → H is a globally Lipschitz
map with Lipschitz constant L ≥ 0, ps(·) ∈ C1(Ω̄), p−s := ess inf ps ≥ p, p+s :=
ess sup ps ≤ a, for all s ∈ N, and ps(·) → p in L∞(Ω) as s → ∞ (p > 2 and a

are constants). We prove continuity of the flows and upper semicontinuity of the
family of global attractors {As}s∈N as s goes to infinity for the problem (1.1).

In [5], Chafee and Infante considered the equation

(P1) ut = λuxx + u− u3,

and Takeuchi and Yamada considered in [14] the following more general equation
involving the p-Laplacian operator

(P2) ut = λ(|ux|
p−2ux)x + |u|q−2u(1− |u|r),

where p > 2, q ≥ 2, r > 0 and λ > 0 are constants. Note that taking p = q = r = 2,
problem (P2) becomes problem (P1). The authors in [4] proved the continuity of
the flows and upper semicontinuity of a family of global attractors for the problem
(P2) when p = q and p → 2.

Considering the problem

ut = λdiv(|∇u|p(x)−2∇u) + |u|q−2u(1− |u|r(x)),

with q ≡ 2 and r(x) := p(x)− 2 > 0, we obtain

(P3) ut = λdiv(|∇u|p(x)−2∇u) + u(1− |u|p(x)−2).

Note that the problem
{

ut = λdiv(|∇u|p(x)−2∇u) + u(1− |u|p(x)−2), t > 0,
u(0) = u0,
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can be seen as

{
ut − λdiv(|∇u|p(x)−2∇u) + |u|p(x)−2u = u, t > 0,
u(0) = u0,

(1.2)

and B̃(u) := u is a globally Lipschitz map. So, all the results developed in this
paper for an abstract globally Lipschitz external forcing term can be applied to
the Takeuchi-Yamada type equation (1.2). The bifurcation studies of solutions to
problem (1.2) with respect to the parameter λ remains an open problem.

The study of continuity properties with respect to initial conditions and expo-
nent parameters for the problem ut = λ(|ux|

p(x)−2ux)x + u were already contem-
plated in the papers [10,11].

The paper is organized as follows. In Section 2 we present properties on the
operator and we guarantee existence of global solution and global attractor for
problem (1.1). In Section 3 we obtain uniform estimates for solutions of (1.1). In
Section 4 we prove that the solutions {us} of (1.1) go to the solution u of the limit
problem (4.1) and, after that, we obtain the upper semicontinuity of the global
attractors for the problem (1.1).

2. Properties on the operator

The authors in [13] proved that the operator

Au := −div(|∇u|p(x)−2∇u) + |u|p(x)−2u

where p(·) is continuous in Ω and p− > 2, is the realization of the operator A1 :
X → X∗, X := W 1,p(x)(Ω),

A1u(v) :=

∫

Ω

|∇u(x)|p(x)−2∇u(x) · ∇v(x)dx +

∫

Ω

|u(x)|p(x)−2u(x)v(x)dx,

i.e., A(u) = A1u, if u ∈ D(A) := {u ∈ X ; A1u ∈ H} and it is a maximal
monotone operator in H. Besides, A is the subdifferential of the proper, convex
and lower semicontinuos function ϕp(x) : H → R ∪ {+∞} defined by

ϕp(x)(u) :=





[∫

Ω

1

p(x)
|∇u|p(x)dx+

∫

Ω

1

p(x)
|u|p(x)dx

]
, if u ∈ X,

+∞, otherwise.
(2.1)

Moreover, we have the following properties on the operator

Lemma 2.1. [13]

〈Au, u〉X∗,X ≥





1

2p+−1
||u||p

+

X , if ||u||p(x) ≤ 1 and ||∇u||p(x) ≤ 1,
1

2p−−1
||u||p

−

X , if ||u||p(x) ≥ 1 and ||∇u||p(x) ≥ 1,

||∇u||p
−

p(x) + ||u||p
+

p(x) , if ||u||p(x) ≤ 1 and ||∇u||p(x) ≥ 1,

||∇u||p
+

p(x) + ||u||p
−

p(x) , if ||u||p(x) ≥ 1 and ||∇u||p(x) ≤ 1.
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By Consequence 3 in [13], it follows that the equation (1.1) determines a con-
tinuous semigroup of nonlinear operators {Ts(t) : H → H, t ≥ 0}, where for each
u0s ∈ H , t 7→ Ts(t)u0s is a weak global solution of (1.1) beginning at u0s. This
semigroup is such that R

+ × H ∋ (t, u0s) 7→ Ts(t)u0s ∈ H is a continuous map
and, if u0s ∈ D(A), then us(·) := Ts(·)u0s is a Lipschitz continuous strong solution
of (1.1).

Considering h ≡ 0 and f : R → R Lipschitz in [7] we get F = B : H → H

globally Lipschitz. So, by Theorem 3.3 in [7] we have that problem (1.1) has a
global attractor As.

In order to prove the continuity of the flows (in Section 4) for problem (1.1) we
need the following result:

Theorem 2.2. If p ∈ C1(Ω), then C∞
0 (Ω) ⊂ D(A).

Proof: If p ∈ C1(Ω) and u ∈ C∞
0 (Ω), then by Theorem 2.6 in [12] we have that

−div(|∇u|p(x)−2∇u) ∈ L2(Ω). The result follows observing that |u|p(x)−2u ∈ L2(Ω)
if u ∈ C∞

0 (Ω). ✷

3. Uniform estimates

Recall that we are considering ps(·) ∈ C1(Ω̄) such that 2 < p ≤ p−s ≤ p+s ≤ a,

for all s ∈ N, and ps(·) → p in L∞(Ω) as s → ∞. From now on, we denote
Xs := W 1,ps(x)(Ω) and X := W 1,p(Ω). It is a known result that Xs ⊂ H with
continuous and dense embedding (see [9]). Moreover,

Lemma 3.1. There exists a constant K = K(|Ω|) > 0, independent of s, such that
if us ∈ Xs, s ∈ N, then

‖us‖H ≤ K‖us‖Xs
, ∀s ∈ N.

Proof: We know that if p(x) > q(x) then Lp(x)(Ω) ⊂ Lq(x)(Ω) with ‖u‖q(x) ≤

2(|Ω|+1)‖u‖p(x) for all u ∈ Lp(x)(Ω) (see [6]). Thus, if us ∈ Xs ⊂ X ⊂ H we have

‖us‖H ≤ 2(|Ω|+ 1)‖us‖p

≤ 4(|Ω|+ 1)2‖us‖ps(x)

≤ 4(|Ω|+ 1)2(‖us‖ps(x) + ‖∇us‖ps(x)) = K‖us‖Xs
,

where K = K(|Ω|) := 4(|Ω|+ 1)2. ✷

We have the following uniform estimates on the solutions of (1.1):

Lemma 3.2. Let us be a solution of (1.1) with us(0) = u0s ∈ H. Given T0 > 0,
there exists a positive number r0 such that ‖us(t)‖H ≤ r0, for each t ≥ T0 and
s ∈ N. Furthermore, given a bounded set B ⊂ H, there exists D1 > 0 such that
‖us(t)‖H ≤ D1 for all t ≥ 0 and s ∈ N such that u0s ∈ B.
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Proof: It is enough to consider u0s ∈ D(A). Let τ > 0, multiplying the equation
in (1.1) by us(τ ) we have

〈
d

dt
us(τ ), us(τ )

〉
−〈∆ps(x)(us(τ ))+ |us(τ )|

ps(x)−2us(τ ), us(τ )〉=〈B(us(τ )), us(τ )〉.

Given T0 > 0, if ||us(τ )||ps(x) ≥ 1 and ||∇us(τ )||ps(x) ≥ 1 then by Lemma 2.1, we
obtain

1

2

d

dt
‖us(τ )‖

2
H ≤ −

1

2p
−

s −1
‖us(τ )‖

p−

s

Xs
+ ‖B(us(τ ))‖H‖us(τ )‖H

≤ −
1

2a−1
‖us(τ )‖

p
Xs

+ L‖us(τ )‖
2
H + C0‖us(τ )‖H

≤ −
1

2a−1
‖us(τ )‖

p
Xs

+ C1‖us(τ )‖
2
Xs

+ C2‖us(τ )‖Xs
,

where C0 = ‖B(0)‖H ≥ 0, C1 = LK2 and C2 = C0K, with K the constant
independent of s of Lemma 3.1. We have C2 = 0 if, and only if, C0 = 0.

Now, we consider ǫ > 0 arbitrary, α := p
2 ,

1
α + 1

α′
= 1 and 1

p + 1
p′

= 1. Then
using Young’s inequality we obtain

1

2

d

dt
‖us(τ )‖

2
H ≤

(
−

1

2a−1
+
1

α
ǫα+

1

p
ǫp
)
‖us(τ )‖

p
Xs

+
( 1

α′
(
C1

ǫ
)α

′

+
1

p′
(
C2

ǫ
)p

′

)
.

Now, choose ǫ0 > 0 sufficiently small so that 1
αǫ

α
0 + 1

pǫ
p
0 <

1

2a
in the case

B(0) 6= 0 (C0 6= 0) and for the case B(0) = 0, choose ǫ0 > 0 sufficiently small so

that 1
αǫ

α
0 <

1

2a
. So, in both cases, we obtain

1

2

d

dt
‖us(τ )‖

2
H ≤ −

1

2a
‖us(τ )‖

p
Xs

+ C3,

where C3 = C3(L,K, ǫ0) > 0 is a constant. So,

1

2

d

dt
‖us(τ )‖

2
H ≤ −

1

2a
K−p‖us(τ )‖

p
H + C3.

Let Is := {τ ∈ (0,∞); ||us(τ )||ps(x) ≥ 1 and ||∇us(τ )||ps(x) ≥ 1} and ys : Is →
R, ys(τ ) := ‖us(τ )‖

2
H satisfies the differential inequality

y′s(τ ) ≤ −
K−p

2a−1
[ys(τ )]

p

2 + 2C3.

Therefore, from Lemma 5.1, p. 163 in [15], we get

‖us(τ )‖
2
H ≤

(
2aC3K

p
)2/p

+
[ 1

2aKp
(p− 2)T0

] −2
(p−2)

:= K1, ∀ τ ≥ T0.
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Similarly for each of the cases: ||us(τ )||ps(x) ≥ 1 and ||∇us(τ )||ps(x) ≤ 1;
||us(τ )||ps(x) ≤ 1 and ||∇us(τ )||ps(x) ≥ 1; ||us(τ )||ps(x) ≤ 1 and ||∇us(τ )||ps(x) ≤ 1,
we obtain constants, K2, K3 and K4 such that

‖us(τ )‖
2
H ≤ Ki, ∀ τ ≥ T0,

for i = 2, 3, 4 respectively. So, taking r0 := max{K
1/2
1 ,K

1/2
2 ,K

1/2
3 ,K

1/2
4 } we obtain

‖us(τ )‖H ≤ r0, ∀ τ ≥ T0, s ∈ N,

and the first part of the lemma is proved.
The second part of the lemma follows from the Gronwall-Bellman Lemma. ✷

Remark 3.3. The constants r0 and D1 in the Lemma 3.2 depend neither on the
initial data nor on s.

Corollary 3.4. There exists a bounded set B0 in H such that As ⊂ B0 for all
s ∈ N.

Lemma 3.5. Let us be a solution of (1.1). Given T1 > 0, there exists a positive
constant r1 > 0, independent of s, such that

‖us(t)‖Xs
< r1,

for every t ≥ T1 and s ∈ N.

Proof: Let us be a solution of (1.1) and consider T1 > 0. Take T0 ∈ (0, T1).
Considering ϕps(x) as in (2.1), using the definition of subdifferential and Uniform
Gronwall Lemma (see [15]), we obtain

ϕps(x)(us(τ )) ≤ r̃1,

for all τ ≥ T1 and s ∈ N, where r̃1 = r̃1(T1, T0, L, r0), with r0 as in Lemma 3.2.
Therefore

∫

Ω

1

ps(x)

∣∣∣∇us(τ , x)
∣∣∣
ps(x)

dx+

∫

Ω

1

ps(x)

∣∣∣us(τ , x)
∣∣∣
ps(x)

dx ≤ r̃1,

for all τ ≥ T1 and s ∈ N. So, considering ρs(v) :=
∫
Ω
|v(x)|ps(x)dx, we have

ρs (∇us(τ )) + ρs (us(τ ))≤ar̃1, (3.1)

for all τ ≥ T1 and s ∈ N. If τ ≥ T1 and ‖us(τ )‖Xs
> 1 then we have four cases to

analyze:
Case 1: If ‖∇us(τ )‖ps(x) ≥ 1 and ‖us(τ )‖ps(x) ≥ 1 then we know that

‖∇us(τ )‖
p−

s

ps(x)
≤ ρs(∇us(τ )) ≤ ‖∇us(τ )‖

p+
s

ps(x)
,
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and
‖us(τ )‖

p−

s

ps(x)
≤ ρs(us(τ )) ≤ ‖us(τ )‖

p+
s

ps(x)
.

Since p ≤ p−s ≤ p+s ≤ a, we obtain by (3.1)

‖us(τ )‖Xs
≤ (ar̃1)

1/p.

Case 2: If ‖∇us(τ )‖ps(x) ≥ 1 and ‖us(τ )‖ps(x) ≤ 1 then we know that

‖∇us(τ )‖
p−

s

ps(x)
≤ ρs(∇us(τ )) ≤ ‖∇us(τ )‖

p+
s

ps(x)
,

and
‖us(τ )‖

p+
s

ps(x)
≤ ρs(us(τ )) ≤ ‖us(τ )‖

p−

s

ps(x)
.

Using (3.1) we obtain in this case

‖us(τ )‖Xs
≤ (ar̃1)

1/p + (ar̃1)
1/a.

Case 3: If ‖∇us(τ )‖ps(x) ≤ 1 and ‖us(τ )‖ps(x) ≥ 1 then we know that

‖∇us(τ )‖
p+
s

ps(x)
≤ ρs(∇us(τ )) ≤ ‖∇us(τ )‖

p−

s

ps(x)
,

and
‖us(τ )‖

p−

s

ps(x)
≤ ρs(us(τ )) ≤ ‖us(τ )‖

p+
s

ps(x)
.

Then, by (3.1) we have that

‖us(τ )‖Xs
≤ (ar̃1)

1/a + (ar̃1)
1/p.

Case 4: If ‖∇us(τ )‖ps(x) ≤ 1 and ‖us(τ )‖ps(x) ≤ 1, then

‖∇us(τ )‖
p+
s

ps(x)
≤ ρs(∇us(τ )) ≤ ‖∇us(τ )‖

p−

s

ps(x)
,

and
‖us(τ )‖

p+
s

ps(x)
≤ ρs(us(τ )) ≤ ‖us(τ )‖

p−

s

ps(x)
.

Using (3.1), we obtain
‖us(τ )‖Xs

≤ (ar̃1)
1/a.

So considering r1 := max{1, (ar̃1)
1
p + (ar̃1)

1/a} we conclude that

‖us(τ )‖Xs
≤ r1 for all τ ≥ T1 and s ∈ N.

✷

Corollary 3.6. a) There exists a bounded set Bs
1 in Xs such that As ⊂ Bs

1.
b) Let us be a solution of problem (1.1). Given T1 > 0 there exists a positive
constant r2, independent of s, such that

‖us(t)‖X < r2

for all t ≥ T1 and s ∈ N.
c) A :=

⋃
s∈N

As is a compact subset of H.
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Proof: a) It follows from Lemma 3.5.

b) By Lemma 3.5 there exists r1 > 0 such that

‖us(t)‖Xs
< r1 ∀ t ≥ T1, s ∈ N.

Thus

‖us(t)‖X = ‖∇us(t)‖p + ‖us(t)‖p≤2(|Ω|+ 1)
(
‖∇us(t)‖ps(x) + ‖us(t)‖ps(x)

)

= 2(|Ω|+ 1)‖us(t)‖Xs
≤ 2(|Ω|+ 1)r1

for all t ≥ T1 and s ∈ N and the result follows with r2 := 2(|Ω|+ 1)r1.

c) By b) there exists a bounded set B1 in X such that As ⊂ B1 for all s ∈ N.
Since X ⊂ H with continuous and compact embedding, the result is proved. ✷

Proposition 3.1. Let us be a solution of (1.1) with initial value u0s. If there is
C > 0 such that ‖u0s‖Xs

≤ C for all s ∈ N, then given T1 > 0 there exists a
positive constant R1 such that ‖us(t)‖Xs

≤ R1, for all t ∈ [0, T1] and s ∈ N. In
this case we can consider T1 = 0 in Lemma 3.5.

Proof: Given T1 > 0, if us is a solution of (1.1) then using the identity

d

dt
ϕps(x)(us(t)) = 〈∂ϕps(x)(us(t)),

∂us

∂t
(t)〉

and Lemma 3.2, we obtain

ϕps(x)(us(τ )) ≤ ϕps(x)(u0s) + C1T1, for all τ ∈ [0, T1], s ∈ N,

where C1 > 0 is a constant. Now, as ‖u0s‖Xs
≤ C for all s ∈ N we obtain that

ϕps(x)(u0s) ≤ C̃ for all s ∈ N. So, the result follows as in the proof of Lemma 3.5.
✷

Corollary 3.7. Let us be a solution of (1.1) with initial value u0s. If there is
C > 0 such that ‖u0s‖Xs

≤ C for all s ∈ N, then given T1 > 0 there exists a

positive constant R̃1 such that

‖us(t)‖X ≤ R̃1,

for all t ∈ [0, T1] and s ∈ N.

Proof: Since ‖us(τ )‖X ≤ 2(|Ω|+1)‖us(τ )‖Xs
for all s ∈ N, the result follows from

Proposition 3.1. ✷
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4. Continuity with respect to the initial values and upper

semicontinuity of attractors

In this section we prove that, given T > 0, the solutions us of (1.1) go to the
solution u of

{
∂u
∂t (t)− div(|∇u(t)|p−2∇u(t)) + |u|p−2u = B(u(t)), t > 0,
u(0) = u0,

(4.1)

in C([0, T ];H) and, after that, we obtain the upper semicontinuity on s in H of
the family of global attractors {As ⊂ H ; s ∈ N} of (1.1) at p.

Lemma 4.1. Given T > 0, M := {us : s ∈ N, us is a solution of (1.1) with
us(0) = u0s and u0s → u0 in H, as s → +∞} is relatively compact in C([0, T ];H).

Proof: We observe that it holds:
i) For each s ∈ N the function [0, T ] ∋ t 7→ B(us(t)) ∈ H is in L1(0, T ;H).
Moreover, {B(us(t))}s∈N is uniformly bounded in L1(0, T ;H) and consequently
uniformly integrable in L1(0, T ;H).

Indeed, as
∫ T

0
‖B(us(t))‖Hdt ≤

∫ T

0
(L‖us(t)‖H+‖B(0)‖H)dt the result follows from

Lemma 3.2.
ii) The operator As, Asu := −∆ps(x)u + |u|ps(x)−2u, is a maximal monotone
operator in H , Asu = ∂ϕps(x)(u) is the subdifferential of the convex, proper

and lower semi continuous non negative map ϕps(x) and ∩sD(ϕps(x)) = H since
Xa ⊂ Xs ⊂ X , for all s.
iii) For each u ∈ ∩sD(ϕps(x)) there exists a constant k = k(u, p, a, |Ω|) > 0 such
that ϕps(x)(u) ≤ k, ∀s ∈ N.
In fact, if u ∈ ∩sD(ϕps(x)) = ∩sXs then for all s

ϕps(x)(u) ≤





1
2

(
‖∇u‖

p−

s

ps(x)
+ ‖u‖

p−

s

ps(x)

)
, if ‖∇u‖ps(x) ≤ 1 and ‖u‖ps(x) ≤ 1

1
2

(
‖∇u‖

p+
s

ps(x)
+ ‖u‖

p−

s

ps(x)

)
, if ‖∇u‖ps(x) ≥ 1 and ‖u‖ps(x) ≤ 1

1
2

(
‖∇u‖

p−

s

ps(x)
+ ‖u‖

p+
s

ps(x)

)
, if ‖∇u‖ps(x) ≤ 1 and ‖u‖ps(x) ≥ 1

1
2

(
‖∇u‖

p+
s

ps(x)
+ ‖u‖

p+
s

ps(x)

)
, if ‖∇u‖ps(x) ≥ 1 and ‖u‖ps(x) ≥ 1

≤





1
2

(
‖∇u‖pps(x)

+ ‖u‖pps(x)

)
, if ‖∇u‖ps(x) ≤ 1 and ‖u‖ps(x) ≤ 1

1
2

(
‖∇u‖aps(x)

+ ‖u‖pps(x)

)
, if ‖∇u‖ps(x) ≥ 1 and ‖u‖ps(x) ≤ 1

1
2

(
‖∇u‖pps(x)

+ ‖u‖aps(x)

)
, if ‖∇u‖ps(x) ≤ 1 and ‖u‖ps(x) ≥ 1

1
2

(
‖∇u‖aps(x)

+ ‖u‖aps(x)

)
, if ‖∇u‖ps(x) ≥ 1 and ‖u‖ps(x) ≥ 1

≤





1
2 [2(|Ω|+ 1)]

p (
‖∇u‖pp + ‖u‖pp

)
1
2

{
[2(|Ω|+ 1)]a‖∇u‖ap + [2(|Ω|+ 1)]p‖u‖pp

}
1
2

{
[2(|Ω|+ 1)]p‖∇u‖pp + [2(|Ω|+ 1)]a‖u‖ap

}
1
2 [2(|Ω|+ 1)]a

(
‖∇u‖ap + ‖u‖ap

)
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So ϕps(x)(u) ≤ k for all s ∈ N, where k is the maximum between the values

2p−1(|Ω|+1)p
(
‖∇u‖pp + ‖u‖pp

)
, 2a−1(|Ω|+1)a‖∇u‖ap+2p−1(|Ω|+1)p‖u‖pp, 2

p−1(|Ω|+

1)p‖∇u‖pp + 2a−1(|Ω|+ 1)a‖u‖ap and 2a−1(|Ω|+ 1)a
(
‖∇u‖ap + ‖u‖ap

)
.

iv) Let M(t) := {us(t);us ∈ M} and let {Ss(t)} be the semigroup generated by
As in H . For each t ∈ (0, T ] and h > 0 such that t − h ∈ (0, T ], the operator
Th : M(t) → H defined by Thus(t) = Ss(h)us(t − h) is compact. Moreover, M(0)
is relatively compact in H once u0s → u0 in H.

Thus, by Theorem 3.2 in [8], M is relatively compact in C([0, T ];H). ✷

Theorem 4.2. For each s ∈ N let us be a solution of (1.1) with us(0) = u0s.
Suppose that there exists C > 0, independent of s, such that ‖u0s‖Xs

≤ C for all
s ∈ N and u0s → u0 in H as s → ∞. Then, for each T > 0, us → u in C([0, T ];H)
as s → ∞ where u is a solution of (4.1) with u(0) = u0.

Proof: By Lemma 4.1 M is relatively compact in C([0, T ];H). So, {us} converges
in C([0, T ];H) to a function u : [0, T ] → H . Proposition 3.6 in [3] implies that

1

2
‖us(t)− φ‖2H ≤

1

2
‖us(τ )− φ‖2H (4.2)

+

∫ t

τ

〈B(us(t
′)) + ∆ps(x)(φ)− |φ|ps(x)−2φ, us(t

′)− φ〉dt′

for every φ ∈ D(As) and 0 ≤ τ ≤ t ≤ T .
Now, the idea is to take the limit as s → ∞ (ps → p) on the last inequality.
Since us → u in C([0, T ];H) and B is globally Lipschitz, we have that us → u

and B ◦ us → B ◦ u in C([τ , t];H) and, consequently us → u and B ◦ us → B ◦ u
in L2(τ , t;H), ∀ 0 ≤ τ ≤ t ≤ T. Then,

〈B ◦ us − h, us − θ〉L2(τ,t;H) → 〈B ◦ u− h, u− θ〉L2(τ,t;H)

for all θ, h ∈ H.

Now consider θ ∈ C∞
0 (Ω) ⊂ D(As) ⊂ H arbitrarily fixed and let h := −∆p(θ)+

|θ|p−2θ ∈ H . From (4.2)

1

2
‖ us(t)− θ ‖2H ≤

1

2
‖ us(τ )− θ ‖2H

+

∫ t

τ

〈B(us(t
′)) + ∆ps(x)(θ)− |θ|ps(x)−2θ, us(t

′)− θ〉dt′

=
1

2
‖ us(τ )− θ ‖2H +

∫ t

τ

〈B(us(t
′))− h, us(t

′)− θ〉dt′ (4.3)

+

∫ t

τ

〈h+∆ps(x)(θ)− |θ|ps(x)−2θ, us(t
′)− θ〉dt′.

We claim that
∫ t

τ
〈h+∆ps(x)(θ)− |θ|ps(x)−2θ, us(t

′)− θ〉dt′ → 0 as s → +∞. In
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fact, for each t′ > 0

|〈h+∆ps(x)(θ)− |θ|ps(x)−2θ, us(t
′)− θ〉|

= |〈h, us(t
′)− θ〉 − 〈−∆ps(x)(θ) + |θ|ps(x)−2θ, us(t

′)− θ〉|

≤

∫

Ω

(∣∣∣
∣∣∇θ

∣∣p−1
−
∣∣∇θ

∣∣ps(x)−1
∣∣∣
)
|∇us(t

′)| dx+

∫

Ω

∣∣∣
∣∣∇θ

∣∣p −
∣∣∇θ

∣∣ps(x)
∣∣∣ dx

+

∫

Ω

(∣∣∣
∣∣θ
∣∣p−1

−
∣∣θ
∣∣ps(x)−1

∣∣∣
)
|us(t

′)| dx+

∫

Ω

∣∣∣
∣∣θ
∣∣p −

∣∣θ
∣∣ps(x)

∣∣∣ dx.

Since ps(x) → p for all x ∈ I it follows by Dominated Convergence Theorem
that ∫

Ω

∣∣∣
∣∣∇θ

∣∣p −
∣∣∇θ

∣∣ps(x)
∣∣∣ dx → 0 as s → ∞,

and ∫

Ω

∣∣∣
∣∣θ
∣∣p −

∣∣θ
∣∣ps(x)

∣∣∣ dx → 0 as s → ∞.

On the other hand, considering Ω̃ := {x ∈ Ω : θ(x) 6= 0}, Ω̃1 := {x ∈ Ω̃ :
|θ(x)| ≤ 1}, Ω̃2 := {x ∈ Ω̃ : |θ(x)| > 1}, and using the Mean Value Theorem we
obtain

∫

Ω

(∣∣∣
∣∣θ
∣∣p−1

−
∣∣θ
∣∣ps(x)−1

∣∣∣
)
|us(t

′)| dx =

∫

Ω̃

(∣∣∣
∣∣θ
∣∣p−1

−
∣∣θ
∣∣ps(x)−1

∣∣∣
)
|us(t

′)| dx

≤

∫

Ω̃

∣∣∣
∣∣θ
∣∣τ(s,x) ln

(∣∣θ
∣∣)
∣∣∣ (ps(x) − p) |us(t

′)| dx

≤

∫

Ω̃1

∣∣∣
∣∣θ
∣∣p−1

ln
(∣∣θ

∣∣)
∣∣∣ (ps(x) − p) |us(t

′)| dx

+

∫

Ω̃2

∣∣∣
∣∣θ
∣∣a−1

ln
(∣∣θ

∣∣)
∣∣∣ (ps(x) − p) |us(t

′)| dx

where p− 1 < τ (s, x) < ps(x)− 1 ≤ a− 1. As θ ∈ C∞
0 (Ω) there exist Kθ > 0 such

that |θ(x)| ≤ Kθ for all x ∈ Ω. So by the continuity of the functions gα : [0,Kθ] → R

given by

gα(w) =

{
wα lnw if w ∈ (0,Kθ]

0 if w = 0,

for α = p− 1, a− 1, we conclude that

∫

Ω

(∣∣∣
∣∣θ
∣∣p−1

−
∣∣θ
∣∣ps(x)−1

∣∣∣
)
|us(t

′)| dx ≤ ‖ps − p‖∞

∫

Ω

C |us(t
′)| dx

≤ ‖ps − p‖∞

[∫

Ω

1

qs(x)
Cqs(x)dx+

∫

Ω

1

ps(x)
|us(t

′)|
ps(x) dx

]

≤ ‖ps − p‖∞

[∫

Ω

Cqs(x)dx+
1

2

∫

Ω

|us(t
′)|

ps(x) dx

]
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where qs(·) is such that 1
ps(x)

+ 1
qs(x)

= 1, ∀ x ∈ Ω. By Proposition 3.1 there exists

a constant C > 0 such that
∫
Ω |us(t

′)|
ps(x) dx ≤ C for every t′ ∈ (τ , t) and s ∈ N.

As 1 < qs(x) < 2 we obtain that

∫

Ω

(∣∣∣
∣∣θ
∣∣p−1

−
∣∣θ
∣∣ps(x)−1

∣∣∣
)
|us(t

′)| dx ≤ ‖ps − p‖∞C̃ → 0

as s → ∞. Using the same arguments as above it follows that

∫

Ω

(∣∣∣
∣∣∇θ

∣∣p−1
−
∣∣∇θ

∣∣ps(x)−1
∣∣∣
)
|∇us(t

′)| dx → 0 as s → ∞.

Thus

∫ t

τ

〈h+∆ps(x)(θ)− |θ|ps(x)−2θ, us(t
′)− θ〉dt′ → 0 as s → +∞.

So, taking the limit in (4.3) as s → ∞, we obtain

1

2
‖u(t)− θ‖2H ≤

1

2
‖u(τ)− θ‖2H (4.4)

+

∫ t

τ

〈B(u(t′)) + ∆p(θ)− |θ|p−2θ, u(t′)− θ〉dt′

for every θ ∈ C∞
0 (Ω) and 0 ≤ τ ≤ t ≤ T .

Now, we use a density argument to conclude that u is a solution of (4.1). Let
θ ∈ D(Ap) ⊂ W 1,p(Ω), Apu := −∆pu + |u|p−2u. So, there exists a sequence
{θj}j∈N ⊂ C∞

0 (Ω) such that ‖θj − θ‖W 1,p(Ω) → 0 as j → ∞ and consequently

‖θj − θ‖H → 0 as j → ∞. By (4.4),

1

2
‖u(t)− θj‖

2
H ≤

1

2
‖u(τ)− θj‖

2
H

+

∫ t

τ

〈B(u(t′)) + ∆p(θj)− |θj |
p−2θj , u(t

′)− θj〉dt
′

for every j ∈ N and 0 ≤ τ ≤ t ≤ T . Obviously, 1
2‖u(t)− θj‖

2
H → 1

2‖u(t)− θ‖2H as

j → ∞ and 1
2‖u(τ) − θj‖

2
H → 1

2‖u(τ )− θ‖2H as j → ∞. With some computations
and using the Dominated Convergence Theorem we obtain

〈B(u(t′)) +∆p(θj)− |θj |
p−2θj, u(t

′)− θj〉 → 〈B(u(t′)) +∆p(θ)− |θ|p−2θ, u(t′)− θ〉

as j → ∞. So, taking the limit with j → ∞, we obtain

1

2
‖u(t)− θ‖2H ≤

1

2
‖u(τ)− θ‖2H

+

∫ t

τ

〈B(u(t′)) + ∆p(θ)− |θ|p−2θ, u(t′)− θ〉dt′
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for every θ ∈ D(Ap) and 0 ≤ τ ≤ t ≤ T . Thus, Proposition 3.6 in [3] implies that
u is a solution of (4.1). ✷

Thus, following the same arguments as in Theorem 6 in [11] we conclude:

Theorem 4.3. The family of global attractors {As; s ∈ N} associated with prob-
lem (1.1) is upper semicontinuous on s at infinity, in the topology of H.
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