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The characterization of generalized Jordan centralizers on algebras ∗

Quanyuan Chen, Xiaochun Fang and Changjing Li

abstract: In this paper, it is shown that if A is a CSL subalgebra of a von
Neumann algebr and φ is a continuous mapping on A such that (m + n + k +
l)φ(A2)− (mφ(A)A+nAφ(A)+kφ(I)A2 + lA2φ(I)) ∈ FI for any A ∈ A, where F is
the real field or the complex field, then φ is a centralizer. It is also shown that if φ
is an additive mapping on A such that (m+n+k+ l)φ(A2) = mφ(A)A+nAφ(A)+
kφ(I)A2 + lA2φ(I) for any A ∈ A, then φ is a centralizer.
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1. Introduction

Thoughout the paper, F will denote the real field or the complex field. Let H
be a complex Hilbert space and L be a subspace lattice of H . Denote by AlgL
the algebra of all bounded operators in B(H) which leave every subspace in L

invariant. Dually, for a subalgebra A of B(H), denote by LatA the lattice of all
closed subspaces left invariant under every operator in A. For convenience we
shall disregard the distinction between a closed subspace of H and the orthogonal
projection onto it. A totally ordered subspace lattice is called a nest. If each pair
of projections in L commutate, then the subspace lattice L is called a commutative
subspace lattice, or a CSL. If L is a CSL, whose projections are contained in a von
Neumann algebra N acting on the Hilbert space H , then A = N ∩AlgL is called a
CSL subalgebra of the von Neumann algebra N.

Let R be a ring or an algebra and φ be an additive mapping on R. If φ(AB) =
φ(A)B (resp. φ(AB) = Aφ(B)) for any A,B ∈ R, then φ is called a left centralizer
(resp. a right centralizer). A centralizer of R is an additive mapping which is a left
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as well as a right centralizer. An additive mapping φ : R → R is called a left (resp.
right) Jordan centralizer, if φ(A2) = φ(A)A (resp. φ(A2) = Aφ(A)) for any A ∈ R.
A Jordan centralizer of R is an additive mapping which is a left Jordan as well as
a right Jordan centralizer. An (m,n)− Jordan centralizer is defined in ( [16]) as
follows: An additive mapping φ : R → R is called an (m,n)− Jordan centralizer if
(m+n)φ(A2) = mφ(A)A+nAφ(A) for any A ∈ R, where m,n ∈ N with m+n 6= 0.
Obviously, every centralizer is a Jordan centralizer and any Jordan centralizer is
an (m,n)− Jordan centralizer, but the converse is not true in general.

The characterization of centralizers on algebras or rings is a subject in various
areas. Bresar and Zalar ( [2]) have proved that if R is a prime ring and φ is an
additive mapping on R such that φ(A2) = φ(A)A (resp. φ(A2) = Aφ(A)) for
any A ∈ R, then φ is a left (resp. a right) centralizer. Zalar( [23]) generalized
the result to 2-torsion free semi-prime rings as follows: if R is a 2-torsion free
semi-prime ring and φ is an additive mapping on R such that φ(A2) = φ(A)A
(resp. φ(A2) = Aφ(A)) for any A ∈ R, then φ is a left (resp. a right) centralizer.
Vukman( [15]) has proved that if R is a 2-torsion free semi-prime ring and φ is an
additive mapping on R such that 2φ(A2) = φ(A)A+Aφ(A) for any A ∈ R, then φ
is a centralizer. Benkovic and Eremita ( [1]) proved that if R is a prime ring with
Ch(R) = 0 or Ch(R) ≥ n, where n is a fixed positive integer and n ≥ 2, and φ
is an additive mapping on R such that φ(An) = φ(A)An−1 for any A ∈ R, then φ
is a centralizer. Vukman and Kosi-Ulbl ( [17]) proved that if X is a Banach space
over the field F, and A is a standard subalgebra of B(X) and φ : A → B(X) is
an additive mapping such that φ(Am+n+1) = Amφ(A)An for any A ∈ A, where
m,n ∈ Z

+ and then φ is a centralizer. Qi etc. ( [14]) proved that if A is a standard
subalgebra of B(X) with the identity I and φ : A → B(X) is an additive mapping
such that φ(Am+n+1)−Amφ(A)An ∈ FI for any A ∈ A, where X is a Banach space
over the field F and m,n ∈ Z

+, then φ is a centralizer. Yang and Zhang ( [22])
proved that, if φ : τ (N) → τ (N) is an additive mapping on a nest algebra τ(N),
such that (m + n)φ(Ap+1) = mφ(A)Ap + nApφ(A) or φ(Am+n+1) = Amφ(A)An

for any A ∈ τ (N), where N is a non-trivial nest on H , τ(N) is the corresponding
nest algebra, and m,n, p ∈ Z

+, then φ is a centralizer. J. Vukman ( [16]) proved
that an (m,n)− Jordan centralizer on a prime ring with Ch(R) 6= 6mn(m+ n) is
a centralizer. Li etc. ( [12]) proved that a Jordan centralizer on a CSL subalgebra
of a von Neumann algebra is a centralizer.

Motivated by these results, we are concerned with an additive mapping φ on A,
a CSL subalgebra of a von Neumann algebra, which is not a semi-prime ring. It is
shown that if φ is a continuous mapping on A such that (m + n + k + l)φ(A2) −
(mφ(A)A + nAφ(A) + kφ(I)A2 + lA2φ(I)) ∈ FI for any A ∈ A, then φ is a cen-
tralizer (Theorem 3.1). It is also shown that if φ is an additive mapping on A

such that (m+ n+ k+ l)φ(A2) = mφ(A)A+ nAφ(A) + kφ(I)A2 + lA2φ(I) for any
A ∈ A, then φ is a centralizer (Theorem 3.2). It follows that an (m,n)− Jordan
centralizer on A is a centralizer (Corollary 3.1). Furthermore, it is shown that if φ
is an additive mapping on A such that (m+n)φ(Ap+1) = mφ(A)Ap +nApφ(A) or
φ(Am+n+1) = Amφ(A)An for any A ∈ A, then φ is a centralizer (Theorem 3.3 and
Theorem 3.4).
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2. Preliminaries: some lemmas

In this section, let A be a unital algebra. We discuss an additive mapping φ on
A such that

(m+ n+ k + l)φ(A2)− (mφ(A)A+ nAφ(A) + kφ(I)A2 + lA2φ(I)) ∈ FI, (2.1)

that is, for any A ∈ A, there is µA ∈ F (depending on A) such that

(m+ n+ k + l)φ(A2) = mφ(A)A + nAφ(A) + kφ(I)A2 + lA2φ(I) + µAI,

where m > 0, n > 0, k ≥ 0, l ≥ 0.

Lemma 2.1. Suppose that φ is an additive mapping on A as above. Then, for any

A,B ∈ A,

(1)

(m+ n+ k + l)φ(AB +BA) = mφ(A)B + nAφ(B) +mφ(B)A
+nBφ(A) + kφ(I)AB + kφ(I)BA+ lABφ(I) + lBAφ(I)
+(µA+B − µA − µB)I;

(2) (m+ n+ 2k + 2l)φ(A) = (m+ 2k)φ(I)A+ (n+ 2l)Aφ(I) + (µA+I − µA)I.

Proof: For any A,B ∈ A,

(m+ n+ k + l)φ(A+B)2 = mφ(A+B)(A +B) + n(A+B)φ(A+B)

+ kφ(I)(A +B)2 + l(A+B)2φ(I) + µA+BI

= mφ(A)A +mφ(A)B +mφ(B)A+mφ(B)B

+ nAφ(A) + nAφ(B) + nBφ(A) + nBφ(B)

+ kφ(I)A2 + kφ(I)BA+ kφ(I)AB + kφ(I)B2

+ lA2φ(I)+lABφ(I)+lBAφ(I)+lB2φ(I)+µA+BI.

On the other hand,

(m+ n+ k + l)φ(A+B)2 = (m+ n+ k + l)φ(A2 +AB +BA+B2)

= mφ(A)A + nAφ(A) + kφ(I)A2 + lA2φ(I) + nBφ(B)

+mφ(B)B + kφ(I)B2 + lB2φ(I)

+ (m+ n+ k + l)φ(AB +BA) + µAI + µBI.

Comparing above two equalities, we obtain that

(m+ n+ k + l)φ(AB +BA) = mφ(A)B + nAφ(B) +mφ(B)A + nBφ(A)
+kφ(I)AB + kφ(I)BA + lABφ(I)
+lBAφ(I) + (µA+B − µA − µB)I.

(2.2)
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Putting in (2.2) B = I, it follows from µI = 0 that

(m+ n+ 2k + 2l)φ(A) = (m+ 2k)φ(I)A + (n+ 2l)Aφ(I) + (µA+I − µA)I. (2.3)

✷

Lemma 2.2. Let φ be an additive mapping on A as above. If A0 ∈ A with A0 /∈ FI
such that A0φ(I) = φ(I)A0, then µA0+I −µA0

= 0 and φ(A0) = A0φ(I) = φ(I)A0.

Proof: Since A0φ(I) = φ(I)A0, A
2
0φ(I) = φ(I)A2

0 = A0φ(I)A0. By (2.3), we have
that

φ(A0) = φ(I)A0 +
1

m+ n+ 2k + 2l
(µA0+I − µA0

)I

and

φ(A2
0) = φ(I)A2

0 +
1

m+ n+ 2k + 2l
(µA2

0
+I − µA2

0

)I.

Hence

(m+ n+ k + l)φ(A2
0) = (m+ n+ k + l)φ(I)A2

0 +
m+ n+ k + l

m+ n+ 2k + 2l
(µA2

0
+I − µA2

0

)I.

On the other hand,

(m+ n+ k + l)φ(A2
0) = mφ(A0)A0 + nA0φ(A0) + kφ(I)A2

0 + lA2
0φ(I) + µA0

I

= m(φ(I)A0 +
1

m+ n+ 2k + 2l
(µA0+I − µA0

)I)A0

+ nA0(φ(I)A0 +
1

m+ n+ 2k + 2l
(µA0+I − µA0

)I)

+ kφ(I)A2
0 + lA2

0φ(I) + µA0
I.

Comparing the two equalities, we have that m+n
m+n+2k+2l

(µA0+I − µA0
)A0 ∈ FI.

Since A0 /∈ FI and m+ n > 0, µA0+I − µA0
= 0 and φ(A0) = A0φ(I) = φ(I)A0. ✷

Lemma 2.3. Let φ be an additive mapping on A as above. If P ∈ A with P 2 = P ,

then (1) φ(P ) = Pφ(I) = φ(I)P = φ(P )P = Pφ(P );
(2) µP+I = µP = 0.

Proof. If P = 0 or P = I, the result is trivial.
Let P be a non-trivial idempotent, that is, P 6= 0 and P 6= I. By (2.1),

(m+ n+ k + l)φ(P ) = mφ(P )P + nPφ(P ) + kφ(I)P + lPφ(I) + µP I. (2.4)

By (2.3),

(m+ n+ 2k + 2l)φ(P ) = (m+ 2k)φ(I)P + (n+ 2l)Pφ(I) + (µP+I − µP )I, (2.5)

Multiplying (2.4) by P from the left and the right sides, gives that

(k + l)Pφ(P )P = (k + l)Pφ(I)P + µPP. (2.6)
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Multiplying (2.5) by P from the left and the right sides, we have that

Pφ(P )P = Pφ(I)P +
1

m+ n+ 2k + 2l
(µP+I − µP )P. (2.7)

By comparing (2.6) with (2.7),

(m+ n+ 2k + 2l)µP = (k + l)(µP+I − µP ). (2.8)

Multiplying (2.4) by P from the left side gives that

(m+ n+ k + l)Pφ(P ) = mPφ(P )P + nPφ(P ) + kPφ(I)P + lPφ(I) + µPP,

that is,

(m+ k + l)Pφ(P ) = mPφ(P )P + kPφ(I)P + lPφ(I) + µPP.

It follows from (2.7) that

(m+k+l)Pφ(P ) = (m+k)Pφ(I)P+lPφ(I)+(
m

m+ n+ 2k + 2l
(µP+I−µP )+µP )P.

(2.9)
Thus

(m+ n+ 2k + 2l)(m+ k + l)Pφ(P ) = (m+ k)(m+ n+ 2k + 2l)Pφ(I)P
+l(m+ n+ 2k + 2l)Pφ(I) + (m(µP+I − µP ) + (m+ n+ 2k + 2l)µP )P.

(2.9)′

Multiplying (2.5) by P from the left side, yields that

(m+n+2k+2l)Pφ(P ) = (m+2k)Pφ(I)P +(n+2l)Pφ(I)+(µP+I−µP )P, (2.10)

Comparing (2.9)′ and (2.10), we obtain that

(m+k+l)(m+2k)Pφ(I)P+(n+2l)(m+k+l)Pφ(I)+(m+k+l)(µP+I − µP )P
= (m+ k)(m+ n+ 2k + 2l)Pφ(I)P + l(m+ n+ 2k + 2l)Pφ(I)
+(m(µP+I − µP ) + (m+ n+ 2k + 2l)µP )P.

It follows from (2.8) that (m+ k + l)(µP+I − µP )P = (m(µP+I − µP ) + (m+ n+
2k + 2l)µP )P and

Pφ(I) = Pφ(I)P. (2.11)

It follows from (2.9) that

Pφ(P ) = Pφ(I)P +
1

m+ n+ 2k + 2l
(µP+I − µP )P. (2.12)

Similarly,
φ(I)P = Pφ(I)P (2.13)

and

φ(P )P = Pφ(I)P +
1

m+ n+ 2k + 2l
(µP+I − µP )P. (2.14)



230 Quanyuan Chen, Xiaochun Fang and Changjing Li

(2.11) and (2.13) yield that φ(I)P = Pφ(I). And

φ(P )P = Pφ(P ) = Pφ(P )P (2.15)

by (2.12) and (2.14). By Lemma 2.2 and φ(I)P = Pφ(I), it follows that φ(P ) =
φ(I)P = Pφ(I) and µP+I − µP = 0. And by (2.8), µP = 0 and µP+I = µP = 0.
Identity (2.4) yields that

φ(P ) = φ(I)P = Pφ(I) = Pφ(I)P = Pφ(P )P = φ(P )P = Pφ(P ).

✷

Lemma 2.4. Let φ be an additive mapping on A as above. If A,P ∈ A with

P 2 = P , then (1) φ(AP ) = φ(A)P + µ(AP )I − µ(A)P ,

(2) φ(PA) = Pφ(A) + µ(PA)I − µ(A)P , where µ(A) = 1

m+n+2k+2l
(µA+I − µA).

Proof: By (2.3),

φ(AP ) = m+2k
m+n+2k+2l

φ(I)AP + n+2l
m+n+2k+2l

APφ(I) + 1

m+n+2k+2l
(µAP+I − µAP )I

= ( m+2k
m+n+2k+2l

φ(I)A+ n+2l
m+n+2k+2l

Aφ(I))P + 1

m+n+2k+2l
(µAP+I − µAP )I

= φ(A)P + µ(AP )I − µ(A)P

Similarly, φ(PA) = Pφ(A) + µ(PA)I − µ(A)P . ✷

Lemma 2.5. Let φ be an additive mapping on A as above. If A,P ∈ A with

P 2 = P , then

φ(PAP ) = φ(PAP )P = Pφ(PAP ) = Pφ(PAP )P.

Proof: If P = 0 or P = I, the result is trivial.
Let P be a non-trivial idempotent, that is, P 6= 0 and P 6= I. It follows from

Lemma 2.4 that

φ(PAP ) = φ(PAPP ) = φ(PAP )P + µ(PAP )I − µ(PAP )P, (2.16)

φ(PAP ) = φ(PPAP ) = Pφ(PAP ) + µ(PAP )I − µ(PAP )P. (2.17)

Comparing (2.16) and (2.17), we have that

Pφ(PAP ) = φ(PAP )P, (2.18)

It follows from Lemma 2.1(2) that

(m+n+2k+2l)φ(PAP )=(m+2k)φ(I)PAP+(n+2l)PAPφ(I)+(µPAP+I−µPAP )I.
(2.19)
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By Lemma 2.3, we have that φ(I)PAP = φ(P )PAP , PAPφ(I) = PAPφ(P ) and
µP = 0. Putting PAP for A and P for B in (2.2), we have that

2(m+ n+ k + l)φ(PAP ) = (m+ n+ k + l)φ((PAP )P + P (PAP ))
= mφ(PAP )P + nPφ(PAP ) + nPAPφ(P ) +mφ(P )PAP
+2kφ(I)PAP + 2lPAPφ(I) + (µPAP+P − µPAP − µP )I

= (m+ n)Pφ(PAP ) + (m+ 2k)φ(I)PAP
+(n+ 2l)PAPφ(I) + (µPAP+P − µPAP )I.

(2.20)

By (2.19) with (2.20),

2(m+ n+ k + l)(m+ n+ 2k + 2l)φ(PAP )
= (m+ n)P ((m+ 2k)φ(I)PAP + (n+ 2l)PAPφ(I) + (µPAP+I − µPAP )I)
+(m+ 2k)(m+ n+ 2k + 2l)φ(I)PAP + (n+ 2l)(m+ n+ 2k + 2l)PAPφ(I)
+(m+ n+ 2k + 2l)(µPAP+P − µPAP )I

= 2(m+ 2k)(m+ n+ k + l)φ(I)PAP + 2(n+ 2l)(m+ n+ k + l)PAPφ(I)
+(m+ n+ 2k + 2l)(µPAP+P − µPAP )I + (m+ n)(µPAP+I − µPAP )P.

(2.21)
It follows from (2.19) that

2(m+ n+ k + l)(m+ n+ 2k + 2l)φ(PAP )
= 2(m+ 2k)(m+ n+ k + l)φ(I)PAP + 2(n+ 2l)(m+ n+ k + l)PAPφ(I)
+2(m+ n+ k + l)(µPAP+I − µPAP )I.

(2.22)
Comparing (2.21) and (2.22), we have that

(m+ n+ 2k + 2l)(µPAP+P − µPAP )I + (m+ n)(µPAP+I − µPAP )P
= 2(m+ n+ k + l)(µPAP+I − µPAP )I.

(2.23)

Multiplying (2.19) by P from the left and the right sides gives that

(m+n+2k+2l)Pφ(PAP )P = (m+2k)φ(I)PAP+(n+2l)PAPφ(I)+(µ
PAP+I

−µ
PAP

)P.

(2.24)

Multiplying (2.20) by P from the left side yields that

2(m+ n+ k + l)Pφ(PAP )P = (m+ n)Pφ(PAP )P + (m+ 2k)φ(I)PAP
+(n+ 2l)PAPφ(I) + (µPAP+P − µPAP )P.

It follows that

(m+ n+ 2k + 2l)Pφ(PAP )P = (m+ 2k)φ(I)PAP
+(n+ 2l)PAPφ(I) + (µPAP+P − µPAP )P.

(2.25)
Comparing (2.24) and (2.25), we have that

µPAP+P − µPAP = µPAP+I − µPAP . (2.26)
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It follows from (2.23) and (2.26) that (m+n)(µPAP+P−µPAP ) = 0. Since m+n > 0,
µPAP+P − µPAP = 0 and

µPAP+P − µPAP = µPAP+I − µPAP = 0. (2.27)

By (2.20) and (2.27),

2(m+ n+ k + l)φ(PAP ) = (m+ n)Pφ(PAP ) + (m+ 2k)φ(I)PAP
+(n+ 2l)PAPφ(I).

(2.28)

By (2.19) and (2.27),

(m+ n+ 2k + 2l)φ(PAP ) = (m+ 2k)φ(I)PAP + (n+ 2l)PAPφ(I). (2.29)

Combating it with (2.28), we have that (m+ n)φ(PAP ) = (m+ n)Pφ(PAP ) and

φ(PAP ) = Pφ(PAP ) = φ(PAP )P = Pφ(PAP )P. (2.30)

✷

3. Generalized Jordan centralizers on CSL subalgebras of von

Neumann algebras

In this section, we discuss an additive mapping φ on A, a CSL subalgebra of
a von Neumann algebra, such that (m+ n+ k + l)φ(A2)− (mφ(A)A+ nAφ(A) +
kφ(I)A2 + lA2φ(I)) ∈ FI for any A ∈ A, where F is the real field or the complex
field. The main result is as follows:

Theorem 3.1. Let N be a von Neumann algebra on a Hilbert space H, and let L

be a CSL, whose projections are contained in N, and A = N ∩ AlgL be the CSL

subalgebra of the von Neumann algebra N. If φ : A → A is a continuous mapping

on A such that

(m+ n+ k + l)φ(A2)− (mφ(A)A+ nAφ(A) + kφ(I)A2 + lA2φ(I)) ∈ FI

for any A ∈ A, where m,n, k, l ≥ 0 with mn 6= 0, then φ is a centralizer. That is,

φ(A) = φ(I)A = Aφ(I) for any A ∈ A.

The proof of Theorem 3.1 will proceed through several lemmas, in each of which
we maintain the same notation.

Proposition 3.1 ( [12]). Suppose that A = N ∩ AlgL is a CSL subalgebra of

the von Neumann algebra N. Let Q1(H), or Q1 simply, be the orthogonal projec-

tion onto the linear span of the set
{

PAP⊥x : P ∈ L, A ∈ A, x ∈ H
}

; and let

Q2(H), or Q2 simply, be the orthogonal projection onto the linear span of the set
{

P⊥A∗Px : P ∈ L, A ∈ A, x ∈ H
}

, and Q = Q1(H) ∨Q2(H). Then

(1) Q1, Q2 and Q ∈ L′ ∩ N ⊆ A, where L′ is the commutant of L. And Q1

commutes with Q2, and Q, Q1 ∈ LatA. Furthermore, Q⊥AQ = QAQ⊥ = 0 for

any A ∈ A, so that A = QAQ⊕Q⊥
AQ⊥.

(2) If Q 6= I, then Q⊥AQ⊥ is a von Neumann algebra on Q⊥H.
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In the sequel of this section, let A be a CSL subalgebra of a von Neumann
algebra N. We choose an arbitrary non-trivial projection P in (A ∩ Lat(A))(⊇
L ∪ {Q,Q1}). And let P1 = P, P2 = P⊥, then P1, P2 ∈ A and P2AP1 = 0 for
any A ∈ A. So A = P1AP1 + P1AP2 + P2AP2. Let A11 = P1AP1, A12 = P1AP2,
A22 = P2AP2. Then A = A11 ⊕ A12 ⊕ A22 is the Pierce decomposition of A. Let
φ be an additive mapping on A such that

(m+ n+ k + l)φ(A2)− (mφ(A)A + nAφ(A) + kφ(I)A2 + lA2φ(I)) ∈ FI,

that is, for any A ∈ A, there exists µA ∈ F, depending on A, such that

(m+ n+ k + l)φ(A2) = mφ(A)A + nAφ(A) + kφ(I)A2 + lA2φ(I) + µAI,

where m > 0, n > 0, k ≥ 0, l ≥ 0.

Lemma 3.1. (1) If Aij ∈ Aij, then φ(Aij) ∈ Aij, where 1 ≤ i ≤ j ≤ 2;
(2) φ(A12) = A12φ(I) = φ(I)A12 = A12φ(P2) = φ(P1)A12.

Proof: By (2.30),

φ(Aii) = φ(PiAiiPi) = Piφ(PiAiiPi)Pi ∈ Aii.(i = 1, 2)

Let A12 = PAP⊥. Since A12 = P − (P − PAP⊥) is the difference of two idempo-
tents, it follows from Lemma 2.3 that

φ(A12) = φ(I)A12 = φ(I)P1A12 = φ(P1)A12 ∈ A12,

φ(A12) = A12φ(I) = A12P2φ(I) = A12φ(P2) ∈ A12.

✷

Lemma 3.2. For any A ∈ A, B ∈ A, Aij ∈ Aij , Bij ∈ Aij (1 ≤ i ≤ j ≤ 2),
(1) φ(A11B12) = φ(A11)B12 = A11φ(B12).
(2) φ(A12B22) = φ(A12)B22 = A12φ(B22).
(3) φ(AB12) = φ(A)B12 = Aφ(B12) = φ(I)AB12 = AB12φ(I) = Aφ(I)B12.

(4) φ(A12B) = φ(A12)B = A12φ(B) = φ(I)A12B = A12Bφ(I) = A12φ(I)B.

Proof: (1) By (2.2),

(m+ n+ k + l)φ(A11B12 +B12A11) = mφ(A11)B12 + nA11φ(B12)
+mφ(B12)A11 + nB12φ(A11) + kφ(I)A11B12 + kφ(I)B12A11

+lA11B12φ(I) + lB12A11φ(I) + (µA11+B12
− µA11

− µB12
)I.

(3.1)

Since B12A11 = 0, φ(B12)A11 ∈ A12A11 = 0 and B12φ(A11) ∈ B12A11 = 0, it
follows that

(m+ n+ k + l)φ(A11B12) = mφ(A11)B12 + nA11φ(B12)
+kφ(I)A11B12 + lA11B12φ(I) + (µA11+B12

− µA11
− µB12

)I.
(3.2)
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Multiplying (3.2) by P1 from the right sides, using the fact that φ(B12), φ(A11B12) ∈
A12. yields (µA11+B12

−µA11
−µB12

)P1 = 0 and µA11+B12
−µA11

−µB12
= 0. Since

B12 ∈ A12, it follows from Lemma 3.1(2) that

φ(B12) = φ(I)B12 = B12φ(I). (3.3)

Since A11B12 ∈ A12,

φ(A11B12) = φ(I)A11B12 = A11B12φ(I) = A11φ(B12), (3.4)

Combining it with (3.2), we have that mφ(A11B12) = mφ(A11)B12. Since m 6= 0,

φ(A11)B12 = A11B12φ(I) = φ(A11B12) = A11φ(B12) = φ(I)A11B12. (3.5)

(2) By (2.1),

(m+ n+ k + l)φ(A12B22 +B22A12) = mφ(A12)B22 + nA12φ(B22)
+mφ(B22)A12 + nB22φ(A12) + kφ(I)A12B22 + kφ(I)B22A12

+lA12B22φ(I) + lB22A12φ(I) + (µA12+B22
− µA12

− µB22
)I,

Using the fact that φ(B22)A12, B22φ(A12) ∈ A22A12 = 0, yields that

(m+ n+ k + l)φ(A12B22) = mφ(A12)B22 + nA12φ(B22)
+kφ(I)A12B22 + lA12B22φ(I) + (µA12+B22

− µA12
− µB22

)I.
(3.6)

Multiplying (3.6) by P1 from the right side, we have that (µA12+B22
− µA12

−
µB22

)P1 = 0 and µA12+B22
− µA12

− µB22
= 0. It follows from Lemma 3.1(2) that

φ(A12) = φ(I)A12 = A12φ(I) and

φ(A12B22) = A12B22φ(I) = φ(I)A12B22 = φ(A12)B22.

Combining it with (3.6), we have that nφ(A12B22) = nA12φ(B22). Since n 6= 0,

φ(A12B22) = φ(A12)B22 = A12φ(B22) = φ(I)A12B22 = A12B22φ(I). (3.7)

(3) Let B12 = PBP⊥. Then AB12 = PAPBP⊥ ∈ A12. It follows from Lemma
3.1(2) that φ(AB12) = φ(I)AB12 = AB12φ(I) = Aφ(B12). It follows from (1) that

φ(AB12) = φ(PAPPBP⊥) = φ(PAP )PBP⊥.

By Lemma 3.1, φ(PBP⊥) ∈ A12, φ(PAP ) ∈ A11, φ(PAP⊥) ∈ A12, and
φ(P⊥AP⊥) ∈ A22. Therefore,

φ(A)B12 = φ(A)PBP⊥= φ(PAP )PBP⊥+φ(PAP⊥)PBP⊥+φ(P⊥AP⊥)PBP⊥

= φ(PAP )PBP⊥ = φ(APBP⊥) = φ(AB12)

It follows that

φ(AB12) = φ(A)B12 = Aφ(B12) = φ(I)AB12 = AB12φ(I) (3.8)

for any A,B ∈ A.
(4) The proof is similar to the proof of (3). ✷
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Lemma 3.3. For any A,B ∈ A,

(1) (φ(AB)−Aφ(B))Q1(H) = 0, (φ(AB) − φ(A)B)Q1(H) = 0.
(2) Q2(H)(φ(AB)−Aφ(B)) = 0, Q2(H)(φ(AB) − φ(A)B) = 0.

Proof: (1) Let T ∈ A, P ∈ L. It follows from Lemma 3.2 that

φ(AB)PTP⊥ = φ(APBPTP⊥) = φ(A)PBPTP⊥ = φ(A)BPTP⊥

= Aφ(PBPTP⊥) = Aφ(BPTP⊥) = Aφ(B)PTP⊥ (3.9)

for any A, B ∈ A. So that (φ(AB) − Aφ(B))PTP⊥ = 0 and (φ(AB) −
φ(A)B)PTP⊥ = 0. It follows that

(φ(AB)−Aφ(B))Q1(H) = 0, (φ(AB)− φ(A)B)Q1(H) = 0. (3.10)

(2) Similarly, for any T ∈ A, P ∈ L,

PTP⊥φ(AB) = φ(PTP⊥AB) = φ(PTP⊥AP⊥B) = PTP⊥AP⊥φ(B)
= PTP⊥Aφ(B) = φ(PTP⊥A)B = PTP⊥φ(A)B.

(3.11)

Thus PTP⊥(φ(AB)−Aφ(B)) = 0 and PTP⊥(φ(AB)− φ(A)B) = 0. Thus

Q2(H)(φ(AB) −Aφ(B)) = 0, Q2(H)(φ(AB)− φ(A)B) = 0. (3.12)

✷

Lemma 3.4. If Q1(H) ∨ Q2(H) = I, then φ is a centralizer, that is, φ(A) =
Aφ(I) = φ(I)A for any A ∈ A.

Proof: Let Q1 = Q1(H), Q2 = Q2(H) for simplicity. By lemma 3.2(3), for any
A ∈ A, T ∈ A, P ∈ L,

φ(APTP⊥) = φ(I)APTP⊥ = φ(A)PTP⊥ = APTP⊥φ(I) = Aφ(I)PTP⊥.

It follows that φ(I)AQ1 = φ(A)Q1 = Aφ(I)Q1. Since Q1 ∈ A is an idempotent, we
have that Aφ(I)Q1 = AQ1φ(I) and φ(I)AQ1 = AQ1φ(I). It follows from Lemma
2.2 that φ(AQ1) = φ(I)AQ1 = AQ1φ(I) for any A ∈ A. And

φ(Q1AQ1) = φ(I)Q1AQ1 = Q1AQ1φ(I). (3.13)

If Q1(H) ∨Q2(H) = I, then Q⊥
1 Q2 = Q⊥

1 and

Q⊥
1 (φ(AB) − φ(A)B) = Q⊥

1 Q2(φ(AB) − φ(A)B) = 0

and
Q⊥

1 (φ(AB)−Aφ(B)) = Q⊥
1 Q2(φ(AB) −A(φ(B))) = 0

for any A,B ∈ A. In particular, Q⊥
1 φ(A) = Q⊥

1 φ(AI) = Q⊥
1 Aφ(I), Q⊥

1 φ(A) =
Q⊥

1 φ(I)A = φ(I)Q⊥
1 A, so Q⊥

1 Aφ(I) = φ(I)Q⊥
1 A. By Lemma 2.2, φ(Q⊥

1 A) =
Q⊥

1 Aφ(I) = φ(I)Q⊥
1 A and

φ(Q⊥
1 AQ

⊥
1 ) = Q⊥

1 AQ
⊥
1 φ(I) = φ(I)Q⊥

1 AQ
⊥
1 . (3.14)
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Since Q1AQ
⊥
1 = Q1−(Q1−Q1AQ

⊥
1 ) is the difference of two idempotents, it follows

from Lemma 2.3 that

φ(Q1AQ
⊥
1 ) = Q1AQ

⊥
1 φ(I) = φ(I)Q1AQ

⊥
1 . (3.15)

By (3.13), (3.14) and (3.15),

φ(A) = φ(Q1AQ1 +Q1AQ
⊥
1 +Q⊥

1 AQ
⊥
1 )

= φ(Q1AQ1) + φ(Q1AQ
⊥
1 ) + φ(Q⊥

1 AQ
⊥
1 )

= Q1AQ1φ(I) +Q1AQ
⊥
1 φ(I) +Q⊥

1 AQ
⊥
1 φ(I)

= φ(I)Q1AQ1 + φ(I)Q1AQ
⊥
1 + φ(I)Q⊥

1 AQ
⊥
1

= Aφ(I) = φ(I)A.

✷

Lemma 3.5. Let A1 be a von Neumann algebra and φ : A1 → A1 a continuous

mapping such that

(m+ n+ k + l)φ(A2)− (mφ(A)A+ nAφ(A) + kφ(I)A2 + lA2φ(I)) ∈ FI

for any A ∈ A1,where m,n, k, l ≥ 0 with mn 6= 0. Then φ is a centralizer, that is,

φ(A) = φ(I)A = Aφ(I) for any A ∈ A1.

Proof: Since a von Neumann algebra is the norm-closure of the subalgebra gener-
ated by the idempotents in it, the result follows from lemma 2.3. ✷

Proof of Theorem 3.1 By Proposition 3.1(1), we have that A = QAQ ⊕
Q⊥AQ⊥. Let φ1, φ2 be the restriction of φ on QAQ, Q⊥AQ⊥ respectively. By
Lemma 2.5, we have that φ(QAQ) = Qφ(QAQ)Q and φ(Q⊥AQ⊥) =
Q⊥φ(Q⊥AQ⊥)Q⊥. So that φ1 is an additive mapping from QAQ to itself, and
φ2 is an additive mapping from Q⊥AQ⊥ to Q⊥AQ⊥. Since QA2Q = QAQQAQ
and Q⊥A2Q⊥ = Q⊥AQ⊥Q⊥AQ⊥, φ1, φ2 both satisfy the equality: (m + n + k +
l)φi(A

2
i )− (mφi(Ai)Ai+nAiφi(Ai)+ kφi(Ii)A

2
i + lA2

iφi(Ii)) ∈ FI(i = 1, 2) for any
A1 ∈ QAQ and A2 ∈ Q⊥AQ⊥, where I1 = Q is the identity element of QAQ and
I2 = Q⊥ is the identity element of Q⊥

AQ⊥. Since

QAQ = {T ∈ QNQ : (Q−QP )TQP = 0 for any P ∈ L} = QNQ ∩ Alg(QL),

we have that QAQ is a CSL subalgebra of the von Neumann algebra QNQ. For
any P ∈ L, A ∈ A and x ∈ H , we have that QAQ⊥ = 0 and

PAP⊥x = QPAP⊥x = PQAP⊥x = PQA(Q−QP )x = QPA(Q−QP )x.

Since
Q1(H) = span

{

PAP⊥x : P ∈ L, A ∈ A, x ∈ H
}

and
Q1(QH) = span {QPA(Q−QP )x : P ∈ L, A ∈ A, x ∈ H} ,
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we have that Q1(H) = Q1(QH) and Q2(H) = Q2(QH). It follows that Q1(QH)∨
Q2(QH) = Q is the identity element of QAQ. All the conditions for Lemma 3.4
are satisfied, so we have that φ1 is a centralizer on QAQ.

Since φ2 is a continuous mapping on the von Neumann algebra Q⊥AQ⊥ such
that (m+n+ k+ l)φ2(A

2)− (mφ2(A)A+nAφ2(A)+ kφ2(I2)A
2+ lA2φ2(I2)) ∈ FI

for any A ∈ Q⊥AQ⊥, φ2 is a centralizer by Lemma 3.5. It follows that φ is a
centralizer, that is, φ(A) = φ(I)A = Aφ(I) for any A ∈ A. ✷

Theorem 3.2. Let N be a von Neumann algebra on a Hilbert space H, and L be

a CSL, whose projections are contained in N. And let A = N ∩ AlgL be the CSL

subalgebra of the von Neumann algebra N. If φ is an additive mapping on A such

that

(m+ n+ k + l)φ(A2) = mφ(A)A+ nAφ(A) + kφ(I)A2 + lA2φ(I)

for any A ∈ A, where m,n, k, l ≥ 0 with mn 6= 0, then φ is a centralizer. That is,

φ(A) = φ(I)A = Aφ(I) for any A ∈ A.

In order to prove Theorem 3.2, we need a Lemma.

Lemma 3.6. Let A be a unital C∗-algebra with the unity element I. If φ : A → A

is an additive mapping on A such that (m+n+k+ l)φ(A2) = mφ(A)A+nAφ(A)+
kφ(I)A2 + lA2φ(I) for any A ∈ A, where m,n, k, l ≥ 0 with mn 6= 0, then φ is a

centralizer. That is, φ(A) = φ(I)A = Aφ(I) for any A ∈ A.

Proof: By the condition of the Lemma,

(m+ n+ k + l)φ(A2) = mφ(A)A+ nAφ(A) + kφ(I)A2 + lA2φ(I) (3.16)

for any A ∈ A. Putting A+ I for A in (3.16), we have that

(m+ n+ 2k + 2l)φ(A) = (m+ 2k)φ(I)A + (n+ 2l)Aφ(I). (3.17)

By (3.16),

(m+ n+ k + l)(m+ n+ 2k + 2l)φ(A2)
= m(m+ n+ 2k + 2l)φ(A)A+ nA(m+ n+ 2k + 2l)φ(A)
+k(m+ n+ 2k + 2l)φ(I)A2 + l(m+ n+ 2k + 2l)A2φ(I).

(3.18)

By (3.17) and (3.18),

(m+ n+ k + l)(m+ n+ 2k + 2l)φ(A2)
= m((m+2k)φ(I)A+(n+2l)Aφ(I))A+nA((m+2k)φ(I)A+(n+2l)Aφ(I))
+k(m+ n+ 2k + 2l)φ(I)A2 + l(m+ n+ 2k + 2l)A2φ(I)
= (k(m+ n+ k + l) +m(m+ 2k))φ(I)A2 + (l(m+ n+ 2k + 2l)
+n(n+ 2l))A2φ(I) + (m(n+ 2l) + n(m+ 2k))Aφ(I)A.

(3.19)
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On the other hand, putting A2 for A in (3.17), we have that

(m+ n+ k + l)(m+ n+ 2k + 2l)φ(A2)
= (m+ n+ k + l)(m+ 2k)φ(I)A2 + (m+ n+ k + l)(n+ 2l)A2φ(I).

(3.20)

Comparing (3.19) with (3.20), we have that (mn+ml+ nk)φ(I)A2 + (mn+ml+
nk)A2φ(I) = 2(mn+ml+nk)Aφ(I)A. Since (mn+ml+nk) 6= 0, φ(I)A2+A2φ(I) =
2Aφ(I)A, that is, [[φ(I), A], A] = 0. Then we have that φ(I)A = Aφ(I).

Indeed, let ∆(A) = [φ(I), A] (A ∈ A), where [A,B] = AB − BA is the
commutator. Then ∆ is an inner derivation on A, and [∆(A), A] = 0 for any
A ∈ A. In particular, [∆(A + B), A + B] = 0 for any A,B ∈ A. It follows
that [∆(A), B] + [∆(B), A] = 0. In the identity, putting φ(I) for B, we get
that [∆(A), φ(I)] = 0, that is, ∆2(A) = 0 for any A ∈ A. For any A,B ∈ A,
∆2(AB) = ∆2(A)B+2∆(A)∆(B)+A∆2(B) and ∆2(AB) = ∆2(A) = ∆2(B) = 0.
So we have that ∆(A)∆(B) = 0 for any A,B ∈ A. Thus ∆(A)∆(DA) = 0 for
any D ∈ A, that is, ∆(A)∆(D)A + ∆(A)D∆(A) = 0. So that ∆(A)D∆(A) = 0.
Since D is arbitrary, we have that ∆(A)A∆(A) = 0. By the truth that every unital
C∗-algebra is a semi-prime ring, we have that ∆ = 0, that is, φ(I)A = Aφ(I) for
any A ∈ A. By (3.17), φ(A) = φ(I)A = Aφ(I) for any A ∈ A. ✷

Proof of Theorem 3.2 By Propositon 3.1(1), A = QAQ⊕Q⊥AQ⊥. Let φ1, φ2

be the restrictions of φ on QAQ, Q⊥AQ⊥ respectively. By Lemma 2.5, φ(QAQ) =
Qφ(QAQ)Q and φ(Q⊥AQ⊥) = Q⊥φ(Q⊥AQ⊥)Q⊥. So φ1 is an additive mapping
from QAQ to QAQ, and φ2 is an additive mapping from Q⊥AQ⊥ to Q⊥AQ⊥.
Since QA2Q = QAQQAQ and Q⊥A2Q⊥ = Q⊥AQ⊥Q⊥AQ⊥, φ1, φ2 both satisfy
the equality: (m+n+k+l)φi(A

2
i ) = mφi(Ai)Ai+nAiφi(Ai)+kφi(Ii)A

2
i +lA2

iφi(Ii)
for any A1 ∈ QAQ and A2 ∈ Q⊥AQ⊥, where I1 = Q is the identity element of
QAQ and I2 = Q⊥ is the identity element of Q⊥AQ⊥. Similar to the proof of
Theorem 3.1, φ1 is a centralizer on QAQ.

Since φ2 is an additive mapping on the von Neumann algebra Q⊥AQ⊥ such
that (m + n + k + l)φ2(A

2) = mφ2(A)A + nAφ2(A) + kφ2(I2)A
2 + lA2φ2(I2) for

any A ∈ Q⊥AQ⊥, it follows from Lemma 3.6 that φ2 is a centralizer. Therefore, φ
is a centralizer, that is, φ(A) = φ(I)A = Aφ(I) for any A ∈ A. ✷

Corollary 3.1. Let N be a von Neumann algebra on a Hilbert space H, and L

be a CSL, whose projections are contained in N, and A = N ∩ AlgL be the CSL

subalgebra of the von Neumann algebra N. If φ : A → A is an additive mapping on

A such that

(m+ n)φ(A2) = mφ(A)A + nAφ(A)

for any A ∈ A, where m,n > 0, then φ is a centralizer. That is, φ(A) = φ(I)A =
Aφ(I) for any A ∈ A.

The following theorems characterize the generalized Jordan centralizer. Zhang
etc. ( [22]) have proved them for the nest algebra. They are also true for the CSL
subalgebra of a von Neumann algebra.
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Theorem 3.3. Let N be a von Neumann algebra on a Hilbert space H, and L

be a CSL, whose projections are contained in N, and A = N ∩ AlgL be the CSL

subalgebra of the von Neumann algebra N. If φ : A → A is an additive mapping A

such that

(m+ n)φ(Ap+1) = mφ(A)Ap + nApφ(A)

for any A ∈ A, where m,n > 0, p ∈ Z
+, then φ is a centralizer. That is, φ(A) =

φ(I)A = Aφ(I) for any A ∈ A.

Theorem 3.4. Let N be a von Neumann algebra on a Hilbert space H, and L

be a CSL, whose projections are contained in N, and A = N ∩ AlgL be the CSL

subalgebra of the von Neumann algebra N. If φ : A → A is an additive mapping

such that

φ(Am+n+1) = Amφ(A)An

for any A ∈ A, where m,n are two positive integers, then φ is a centralizer. That

is, φ(A) = φ(I)A = Aφ(I) for any A ∈ A.
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