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ABSTRACT: The main aim of this paper is to prove fixed point theorems via
notion of pairwise semi-compatible mappings and occasionally weakly compatible
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1. Introduction

The concept of Fuzzy sets was introduced initially by Zadeh [6]. Since then, to
use this concept in topology and analysis many authors have expansively developed
the theory of Fuzzy sets and applications. Especially, Erceg [8], Kramosil and
Michalek [12], Kaleva and Seikkala [13], Deng [29] have introduced the concept of
Fuzzy metric space in different ways.

The study of common fixed points of mapping, satisfying some contractive type
condition has been at the center of vigorous research activities; and a number of
interesting results have been obtained by various authors. Most of these results
deal either with commuting mappings or assume the notion of weak commutativity
of mappings introduced by Seesa [19]. In 1986, Jungck [5] introduced the notion
of compatible maps. This concept was frequently used to prove existence theorems
in common fixed point theory. In 2002, Aamir and Moutawakil [9] studied a prop-
erty for pair of maps namely the property E.A, which is the generalization of the
concept of non compatible maps. Further, Pant and Pant [28] studied the common
fixed points of a pair of non compatible maps and the property E.A in FM-space.
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The result obtained by us gives generalization of many important fixed point the-
orems and open up a wider scope for the study of common fixed points under
contractive type conditions.After these no fixed point theorems have been investi-
gated to find the fixed point in fuzzy metric spaces. (See [7] , [15,16,17,18], [22
23,24,25,26,27))

In this paper, our objective is to prove some common fixed point theorems by
removing the assumption of continuity and replacing the completeness of the space
with a set of three conditions for self mappings in Fuzzy metric space. Our result
generalizes the result of Tanmony Som [21].

2. Preliminaries

Definition 2.1. [14] A binary operation * : [0,1] x [0,1] — [0, 1] is a continuous
t-norm if x satisfies the following conditions:

1. * is commutative and associative,

2. % is conlinuous,

3. ax1=a forallaecl01]

4. axb<cxd whenever a<c andb<d and a,b,c,d € [0,1].
Example of t-norm are a x b = ab and a * b = min {a, b}.

Definition 2.2. [20] The 3-tuple (X, M, ) is said to be Fuzzy metric space if X
is an arbitrary set, x is a continuous t-norm and M is a Fuzzy set in X? x [0,00)
satisfying the following conditions:

1. M (z,y,0) =

2. M (z,y,t) =1 for allt >0 if and only if x =y
3. M (z,y,t) =M (y,2,1)

4. M (x,y,t)« M (y,z,8) < M (z,z,t+s)

5. M (z,y,.):]0,00) = [0,1] is left continuous

6. limi—ooM (z,y,t) =1

forall z,y,z € X and s,t > 0.

Definition 2.3. [20] A sequence {x,} in a Fuzzy metric space (X, M,x) is said
to be Cauchy sequence if and only if for each € > 0, t > 0, there exist no € N such
that M (2, Tm,t) > 1 — € for all n,m > ng.

Definition 2.4. [20] A sequence {x,} in a Fuzzy metric space (X, M, ) is said
to be convergent sequence to a point x in X if and only if for each € > 0, t > 0,
there exist ng € N such that M (x,,x,t) > 1 — € for all n > ng.
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Definition 2.5. [20] A Fuzzy metric space (X, M, *) is said to be complete if
every Cauchy sequence in it converges to a point in it.

Definition 2.6. [2] Two self mappings A and S of a Fuzzy metric space (X, M, x)
are said to be compatible if and only if M (ASx,,SAx,,t) — 1 for all t > 0,
whenever {x,} is a sequence in X such that Sx,, Az, — p for some p in X, as
n — 00.

Definition 2.7. [3] Two self mappings A and S of a Fuzzy metric space (X, M, x)
are said to be semi-compatible if and only if M (ASxz,,Sp,t) — 1 for allt > 0,
whenever {x,} is a sequence in X such that Sx,, Ax, — p for some pinX, as
n — oo.

Definition 2.8. [/] Two self mappings A and S of a Fuzzy metric space (X, M, *)
are said to be weakly-compatible if they commute at their coincidence points, i.e
Ax = Sx implies ASt=SAx.

Definition 2.9. [10] Two self mappings A and S of a Fuzzy metric space (X, M, *)
are said to be occasionally-weakly compatible if and only if there is a point © in X
which is coincidence point of A and S at which A and S commudte.

Definition 2.10. [11] Two self mappings A and S of a Fuzzy metric space
(X, M, x) are said to satisfy the property E.A if there exist sequence {x,} in X
such that lim, oo Az, = lim,_ o Sz, = 2z for some z € X.

3. Main results

Theorem 3.1. Let A, B, S and T be self mappings on a Fuzzy metric space (X, M, x)
satisfying the following condition:

M (Az, By,t) > r{min {M (Sx, Ty, t), M (Sz, Ax,t), (3.1)

M (Sz, By,t), M (Ty, Az, ) H
for all x,y € X, where r : [0,1] — [0,1] is a continuous function such that

r(t) >t foreach t<1 and r(t)=1 for t=1. (3.2)

Also, suppose the pair (A,S) and (B,T) share the common property (E.A), and
S(X) and T (X) are closed subsets of X, then the pair (A,S) as well as (B,T)
have a coincidence point.

Further A, B, S, T have a unique common fixed point provided the pair (A,S) is
semi-compatible and (B, T) is occasionally weakly compatible.

Proof: Since the pair (A, S) and (B, T) share the common property (E.A) then
there exist two sequences {x,} and {y,} in X such that
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for some z € X.
Also, S (X) is closed subset of X, therefore lim,,_, o Sz, = z € S(X) and there is
a point u in X such that Su = z.

Now, we claim that Au = z. If not, then by using (3.1), we have

M (Au, By, t) > r{min {M (Su, Tyn,t), M (Su, Au, t),
M (Su, By, ), M (Tyn, Au,t) }].
Taking n — oo, we get
M (Au,2,t) > rlmin{M (z,2,), M (2, Au, 1), M (2, 2,1), M (2, Au,1)}]
— M (Au, 2, 0)
> M (Au,z,t),
this is a contradiction. Hence Au = z.
Thus we have Au = Su or u is a coincidence point of the pair (A4, S).
Since T (X)) is closed subset of X, therefore lim, o Ty, = z € T(X) and there

exists w € X such that Tw = z.
Again using (3.1), we obtain

M (Az,, Bw,t) > r[min {M (Sxp, Tw,t), M (Sxyn, Az, t),
M (Sz,, Bw,t), M (Tw, Ax,,t) H
On taking n — oo, we get
M (z,Bw,t) = rmin{M (z,z,t), M (z,z21), M (2, Bw,t),M(z,2,1)}]
= r[M (z, Bw,t)]
> M (z,Bw,t).
This implies Bw = z. Hence, we get Tw = Bw = z. Thus w is a coincidence point
of the pair (B, T).
Also, (A, S) is semi-compatible pair, so lim,, ., ASx, = Sz and
lim,, o0 ASx, = Az.
Since the limit in Fuzzy metric space is unique so Sz = Az.

Now, we claim that z is a common fixed point of the pair (A4, S).
Again, from (3.1), we obtain

M (Az, Bw,t) > r[min {M (Sz,Tw,t), M (Sz, Az,t),
M (Sz, Bw,t), M (Tw, Az, 1) H .

Taking n — oo, we get

M (Az,z,t) > rmin{M (Az,z,t),M (Az, Az,t), M (Az,z,t) , M (2, Az, t)}]
= r[M(Az,z,1t)]
> M (Az,z,t),
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implies Az = z. Thus Az = z = Sz.
Since w is a coincidence point of B and T and the pair (B, T) is occasionally weakly
compatible, so we have, BTw =TBw = Bz =Tz = z.
Hence, z is the common fixed point of A, B, S and T
For Uniqueness,
Let v be another common fixed point of A, B, .S and T.
Take x = z and y = v in (3.1), we get

M (Az, Bu,t) > r [min {M (Sz,Tv,t), M (Sz, Az, t), M (Sz, Bv,t) , M (Tv, Az,t)}].

Taking n — oo, we get

M (z,v,t) > r[min{M (z,v,t),M (z,2z,t), M (z,v,t), M (v, z,t)}]
r[M (Az, z,t)]
> M (Az,z,t),

this implies z = v. Thus z is the unique common fixed point of the mappings
A, B,S and T.
O

Example 3.1. Let X = [2,20] and d be the usual metric on X. For each t € [0, 0),
define M (x,y,t) = m

Clearly (X, M, ) is a Fuzzy metric space, where  is defined as a x b = ab. Define
the mapping A, B, S, T as follows:

5, if z=2 5, if =2
A(x)=46, if 2<z<5 S(x)=<71, if 2<xz<5
7, if x> 5 0 f x> 5
9, if x=2
5 if 2=2
B(SC){7 Z.;z< - T (x) = { 3, if 2<z<5
i x
’ B x—3, if ©>95

Consider x, = 5+ L, then one can say the pairs (A,S) and (B,T) share the
common property (E.A) and the pair (A, S) is semi-compatible and (B,T) is occa-
sitonally weakly compatible.

Also, for different values of x, equation (3.1) is satisfied. We will discuss it in the
following three cases:

Case I: when x =y =2
M (Ax, By,t) = M (A2, B2,t) = M (2,2,t) = 1 and
r|min{M (Sz,Ty,t), M (Sx, Az,t), M (Sx, By,t), M (Ty, Az, t)} | = 1 therefore,
equation (3.1) is satisfied.
Case II: when 2 < x <5
M (Ax, By,t) = M (6,7,t) = = and

t+1
r [min {M (Sz,Ty,t), M (Sz, Av,t) f, M (Sz, By,t), M (Ty, Az, )}]
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_ ; ottt _ ¢ ¢
=T {mln{t+4’ T+1° 1407 t+3}} =r (t+4) > i

Thus for all values of t > 0, t_%l > “%4 and hence equation (3.1) is satisfied.

Case I1I: when x > 5
M (Az, By, t) = M (2,410 ) — t+|2£74x| and
15

_ - t t t t
=r [mm t+|551;1m|a t+|4ml—520|? t+|4m;595|) t+[z—5]

=r >

t ¢
t+| 417;595 | t+| 43:17595 |
Thus for all values of t > 0 and x > 5
(3.1) is satisfied.

t > t .
—T = ———=7 and hence equation
1 t+| 201541‘ | t+| m15gu |

Theorem 3.2. Let A, B,S and T be four self mappings on a Fuzzy metric space
(X, M, %) satisfying the following conditions:

1. The pairs (A, S) and (B, T) share the common property (E.A)
2. 5(X) and T (X) are closed subsets of X
3. qM (Ax, By,t) > aM (Ty, Sx,t) + bM (Sx, By,t) + ¢cM (Ax, By, t)
+max {M (Azx,Sx,t), M (By,Ty,t)}
forallz,y € X, a,b,c>0,q¢q>0andqg<a+b+c,

then each pair (A,S) and (B,T) have a point of coincidence .
Further, if the pair (A,S) is semi-compatible and (B,T) is occasionally weakly
compatible, then A, B, S and T have a unique common fixed point.

Proof: Asthe pair (4, 5) and (B, T) share the common property (E.A), then there
exist two sequences {x,} and {y,} in X such that
for some z € X.
Since S (X) is a closed subset of X; therefore, there exists a point u € X such that
Su = z. Using the above condition (iii), we have
qM (Au, By, t) > aM (Ty,, Su,t) + bM (Su, Byn,t) + ¢M (Au, By,,t)
+max {M (Au, Su,t), M (Byn, Tyn,t)} .

Taking n — oo, we obtain

gM (Au,z,t) > aM (z,z,t)+bM (z,2,t) + cM (Au, 2, t)
+ ma:c{M(Au,z,t),M(z,z,t)},
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this gives,

(g—c)M (Au, z,t) > (a+b)M(z,2,t)+1> (a+b)M(z,2,t),

this implies,

b
M (Au,z,t) > ot
qg—c
> 1.

for all ¢ > 0, this implies, Au = z. Hence Au = Swu, which shows that u is the
coincidence point of (A, S).
Again, T (X) is closed subset of X, therefore there is a point w in X such that
Tw = z.
Now take © = x,, and y = w in condition (iii), we get

gM (Azp, Bw,t) > aM (Tw, Sxy, t) + DM (Sxy, Bw,t) + cM (Azy,, Bw,t)
+max {M (Azy, Sz, t), M (Bw, Tw,t)}.

Taking n — oo, we obtain

gM (z, Bw,t) > aM (z,z,t)+bM (z, Bw,t) + ¢M (z, Bw,t)
+ max{M(z,z,t),M(Bw,z,t)},
(g—b—c)M (z,Bw,t) > aM (z,z,t)+1
> aM (z,2z,1),
this gives
M (z, Bw,t) > L>1 forallt > 0.
q—b—c

This implies Bw = z. Hence Tw = Bw = z and thus w is the coincidence point of
(B,T).

Further, we assume that (A, S) is a semi-compatible pair, so lim,, o, ASx,, = Sz
and lim,,_yoo AST, = Az.

Since the limit in fuzzy metric space is unique, so Sz = Az.

Now, we claim that z is a common fixed point of the pair A and S.

Using condition (iii), we get

gM (Az, Bw,t) > aM (Tw, Sz,t) + bM (Sz, Bw,t) + ¢M (Az, Bw,t)
+max {M (Az,Sz,t), M (Bw, Tw,t)}.
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Taking n — oo, we obtain

gM (Az,z,t) > aM (z,Az,t)+0M (Az,z,t) + cM (Az, z,t)
+ max{M (Az, Az, t), M (z,2,t)}
(g—a—b—c)M (z,Bw,t) > 1
This implies
1
M(Az,z,t) > —————
qg—a—b—c

> 1, forallt>0.

Thus Az = z. Hence Az =z = Sz.

Since w is a coincidence point B and T, and the pair (B,T) is occasionally
weak compatible. So, BTw = T Bw this implies Bz =Tz = z.

Hence, z is the common fixed point of mappings A, S, B and T
The uniqueness of fixed point follows from taking z = z and y = v in condition

(ii).

d

Taking A = B in the above theorem, we get the following corollary:

Corollary 3.3. Let A, S and T be three self mappings of a Fuzzy metric space
(X, M, %), satisfying the following conditions:

1. The pairs (A, S) and (A,T) share the common property (E.A)
2. 5(X) and T (X) are closed subsets of X

3. gqM (Ax, Ay,t) > aM (Ty, Sx,t) + bM (Sx, Ay, t) + cM (Ax, Ay, t)
+max {M (Ax, Sz, t), M (Ay, Ty,t)}

forallz,y e X, a,b,c>0,q¢q>0andqg<a+b+c,

then the pairs (A, S) and (A, T) have a point of coincidence.
Further, if the pair (A,S) is semi-compatible and (A,T) is occasionally weakly
compatible then A, S and T have a unique common fized point.

4. Applications

Theorem 4.1. Let A, B, S and T be self mappings on a Fuzzy metric space (X, M, x)
satisfying the condition

M (Az,By,t) rm(z,y,t)]
/ s> [ b (1) dt (4.1)
0 0

where ¢ : R — RV is a Lebesgue-integrable mapping which is summable, non-
negative such that fOE o (t)dt > 0 for each € > 0,and
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m (z,y,t) = min {M (Sx,Ty,t), M (Sz, Az, t) , M (Sz, By, t),

M (Ty, Az, t) } for all x,y € X, and r : [0,1] — [0,1] is continuous function such

that v(t) >t for each t <1 and r(t) =1 fort = 1., Also suppose that the pairs
(A,S) and (B,T) share the common property (E.A), and S(X) and T (X) are
closed subsets of X.

Then the pair (A, S) as well as (B,T) have a coincidence point.

Further, if A, B, S and T have a unique common fixed point provided the pair (A, S)
is semi-compatible and (B, T) is occasionally weakly compatible.

Proof: Since the pair (A, S) and (B, T) share the common property (E.A) then
there exist two sequences {z,} and {y,} in X such that

limy, oo Azy = limy, o0 Sy = limy, 00 By, = limy, oo Ty, = 2z for some z € X.
Since S (X)) is closed subset of X, then lim, o Sz, = z € S(X), therefore there
is a point u in X such that Su = z.

We claim that Au = z. If not then by using (4.1), we have

M (Aw,Byy,t) rlm(u,yn,t)]
/ o(t)dt > / b (t) dt,
0 0

where
rm (z,y,1)]
= r[min {M (Su, Tyn,t), M (Su, Au,t), M (Su, Byn,t) , M (Tyn, Au,t) H

M(Au,z,t) rlm(u,z,t)]
50, / 6 (1) dt > / 6 (1) dt,
0 0

where
rm(u,z,t)] =r [min{M (z,z,t), M (z, Au,t) , M (z,z,t) , M (2, Au,t)}]
=r[M (Au, z,t))
>M (Au, z,t)

M (Au,z,t) M(Au,z,t)
i.e/ o (t) dtz/ () dt,
0 0

this is contradiction, this implies Au = z.

Hence Au = Su or w is a coincidence point of the pair (4, 5).

But T'(X) is closed subset of X, then lim, o Ty, = z € T(X), therefore there
exists w € X such that Tw = z.

Using (4.1), we obtain

M(Az,,Bw,t) r[m(zn,w,t)]
/ o(tydt > / o (1) dt
0

M (z,Bw,t) rlm(z,w,t)]
OT/ o(t)dt > / ¢ (t)dtV,
0 0

[}
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where
rm(z,w,t)] =r [min{M (z,2,t), M (2, 2,t), M (z, Bw,t) , M (2, z,t)}]
=r [M (z, Bw,t)] > M (z, Bw,t),

M (z,Bw,t) M (z,Bw,t)
i.e/ 6 (1) dt 2/ 6 (1) dt.
0 0

This gives, Bw = z. Hence Tw = Bw = z or w is a coincidence point of the pair
(B,T).

Also, (A, S) is a semi-compatible pair, so lim,,—,~ ASx, = Sz and lim,_, o, ASz, =
Az.
Since the limit in Fuzzy metric space is unique, therefore Sz = Az.
We claim that z is a common fixed point of the pair (4, 5).
from (4.1), we have

M (Az,Buw,t) rim(z,w,t)]
/ s(ydt > / o (1) dt
0 0

M(Az,z,t) rim(z,w,t)]
OT/ o(t)dt > / ¢ (t)dt,
0 0
where
r[m(z,w,t)] =r [min{M (Az, z,t), M (Az, Az, t) , M (Az, z,t), M (z, Az, t)}]
=r|[M (Az, z,t)]
>M (Az, z,t),

M(Az,z,t) M(Az,z,t)
i.e/ & (t) dtz/ o (t) dt.
0 0

this implies Az = z and hence Az = z = Sz.
Since w is a coincidence point of B and T, and the pair (B, T) is occasionally
weakly compatible, so we have BTw =TBw = Bz =Tz = z.
Hence 2z is the common fixed point of A, S, B and T.
For Uniqueness, let v be another common fixed point of A, B, S and T
Take x = z and y = v in (4.1), we get

M(Az,Buv,t) r[m(z,v,t)]
/ o(tydt > / ¢ (1) dt
0 0

M(z,v,t) rim(z,v,t)]
OT/ o(t)dt > / o (t) dt,
0 0
wherer[m(z,v,t)] = rmin{M (z,v,t), M (z,2,t), M (z,v,t) , M (v, z,t)}]
= r[M(Az,z,t)]
> M (Az,z,t),
M(Az,z,t) M(Az,z,t)
z'.e/ o(t)dt > / o (t) dt,
0 0
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this implies z = v and thus z is the unique common fixed point of the mappings
A B,Sand T.

d

Theorem 4.2. Let A, B,S and T be four self mappings on a Fuzzy metric space
(X, M, %) satisfying the following conditions:

1. The pairs (A, S) and (B, T) share the common property (E.A);

2. 5(X) and T (X) are closed subsets of X;

3. q fy A B0 ¢>< )dt > a [T g @y de 4 b [T 6 (1)
Te fI\/[(A:n ,By,t) dt + fmax{M Az,Sx,t),M(By,Ty,t)} ¢ (t) dt

forallz,y e X, a,b,c>0,q>0andqg<a+b+c,

then the pairs (A, S) and (B,T) have a point of coincidence each.
Further, if the pair (A,S) is semi-compatible and (B,T) is occasionally weakly
compatible, then A, B,S and T have a unique common fized point.

Proof: The proof follows from Theorem 4.1. O

5. Conclusion

In this paper, Theorem 3.1, Theorem 3.2 are specially constructed for pairwise
semi-compatible mappings and occasionally weakly compatible mappings(owc) in
fuzzy metric spaces. An example and some applications are is given in support of
our result.
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