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Zagreb, Multiplicative Zagreb Indices And Coindices Of NCn(k) And

Ca3(C6) Graphs

V. Ahmadi and M. R. Darafsheh

abstract: Let G=(V,E) be a simple connected graph with vertex set V and edge
set E. The first, second and third Zagreb indices of G are defind, respectivly by:
M1(G) =

∑
u∈V d(u)2, M2(G) =

∑
uv∈E d(u).d(v) and M3(G) =

∑
uv∈E |d(u) −

d(v)| , where d(u) is the degree of vertex u in G and uv is an edge of G, con-
necting the vertices u and v. Recently, the first and second multiplicative Za-
greb indices of the graph are defind by: PM1(G) =

∏
u∈V d(u)2 and PM2(G) =

∏
u∈V d(u)d(u). The first and second Zagreb coindices of the graph are defind

by: M1(G) =
∑

uv/∈E(d(u) + d(v)) and M2(G) =
∑

uv/∈E d(u).d(v). PM1(G) =
∏

uv/∈E d(u) + d(v) and PM2(G) =
∏

uv/∈E d(u).d(v) , named as multiplicative
Zagreb coindices. In this article, we compute the first, second and the third Za-
greb indices and the first and second multiplicative Zagreb indices of NCn(k) and
Ca3(C6) graphs. The first and second Zagreb coindices and the first and second
multiplicative Zagreb coindices of these graphs are also computed.

Key Words: Zagreb Indices, Multiplicative Zagreb Indices, Zagreb Coind-ices,
Multiplicative Zagreb Coindices.
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1. Introduction

The graphs considered in this paper are simple and connected. Let G=(V,E)
be a simple connected graph with vertex set V and edge set E. A topological index
is a fixed number under graph automorphisms. Gutman and Trinajstić [4], defined
the first and second Zagreb indices. Zagreb indices are defined as follows:

M1(G) =
∑

u∈V d(u)2, M2(G) =
∑

uv∈E d(u).d(v)
The alternative expression of M1(G) is

∑

uv∈E(d(u) + d(v)).
G.H.Fath-Tabar [3], defines the third Zagreb index, by:

M3(G) =
∑

uv∈E |d(u)− d(v)|
Todeschine et al. [5,6], have recently proposed to consider multiplicative variants
of additive graph invariants, applied to the Zagreb indices, lead to:

PM1(G) =
∏

u∈V d(u)2, PM2(G) =
∏

u∈V d(u)d(u)

The alternative expression of PM2(G) is
∏

uv∈E d(u).d(v).
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Recently,Ashrafi,Došlić and Hamzeh [1,2], define the first and second Zagreb coindices
by:

M1(G) =
∑

uv/∈E(d(u) + d(v)), M2(G) =
∑

uv/∈E d(u).d(v)
In 2013 Xu, Das and Tang [7], defined multiplicative Zagreb coindices by:

PM1(G) =
∏

uv/∈E d(u) + d(v), PM2(G) =
∏

uv/∈E d(u).d(v)
They defined multiplicative sum Zagreb index and the total multiplicative sum
Zagreb index by:

PM1
∗(G) =

∏

uv∈E d(u) + d(v), PMT (G) =
∏

u,v∈V d(u) + d(v)
The goal of this article is to compute Zagreb indices, multiplicative Zagreb in-

dices, Zagreb coindices, multiplicative Zagreb coindices, multiplicative sum Zagreb
index and the total multiplicative sum Zagreb index of NCn(k) nanocones and
Ca3(C6), the third member of Capra- designed planar benzenoid series, graphs.
The Harmonic index of NCn(k) are calculated in Ref. [8].

2. Preliminaries

We define di to be the number of vertices with degrees i and xij , i 6= j, to be
the number of edges connecting the vertex of degree i with a vertex of degree j and
xii to be the number of edges connecting two vertices of degree i. We define xij to
be the number of paths connecting the vertex of degree i with a vertex of degree
j, so thatxij does not include the number of edges that connect vertices i, j . We
define xii to be the number of paths connecting two vertices of degree i, so that xii

does not include the number of edges which connect two vertices of degree i.
Lemma 2.1. The values of xij , xii are equal to:

xij =

(

di
1

)(

dj
1

)

− xij = didj − xij xii =

(

di
2

)

− xii =
di(di−1)

2 − xii

Proof. Straight forward. �

We use the above formuli to obtain Zagreb and multiplicative Zagreb coindices.
Lemma 2.2. The number of paths that connect two vertices of degree i as well as
the number of paths that connect the vertex of degree i with a vertex of degree j,
are equal to:

(

di
2

)

= di(di−1)
2

(

di
1

)(

dj
1

)

= didj

Proof. straight forward. �

We use these formuli to obtain PMT (G).
We compute these indices for the figures 1-5.

3. Results and discussions

Theorem 3.1. Zagreb, multiplicative Zagreb indices and Coindices of NCn(k)
nanocones (see Figures1-5) are computed as follows:

M1 = 9k2n+ 13kn+ 4n,M2 =
27k2n

2 + 33kn
2 + 4n,M3 = 2kn,

PM1 = 22kn+2n.32k
2n+2kn, PM2 = 22kn+2n.33k

2n+3kn,
M1 = 3n2k4 + 11n2k3 + (15n2 − 12n)k2 + (9n2 − 18n)k + (2n2 − 6n),

M2 =
9n2

2 k4 + 15n2k3 + (37n
2

2 − 18n)k2 + (10n2 − 23n)k + 2n2 − 6n,

PM1 = 2
n2k4+2n2k3+(3n2

−4n)k2+(4n2
−4n)k+2n2

−6n
2 .3

n2k4+2n2k3+(n2
−4n)k2

−2nk

2 .
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5n
2k3+2n2k2+(n2−2n)k,

PM2 = 2n
2k3+3n2k2+(3n2−3n)k+n2−3n.3n

2k4+3n2k3+(3n2−4n)k2+(n2−4n)k.

Proof. We suppose NCn(k) denote a nanocone where n denotes the number of
edges in the single triangle, square, pentagon, etc. and k denotes the number of
layers in the nanocone. See Figures 1-5 for examples of this type of nanocones.
First, we obtain the number of vertices and edges of nanocone, calculations show
that:

|V (G)| = k2n+2kn+n, |E(G)| = 3k2n
2 + 5kn

2 +n, also: d2 = kn+n, d3 = k2n+kn.

Elementary computation gives:

M1 = 9k2n+ 13kn+ 4n,

PM1 = 22kn+2n.32k
2n+2kn, PM2 = 22kn+2n.33k

2n+3kn.

Calculations show that: x22 = n, x23 = 2kn, x33 = 3k2n
2 + kn/2.

Elementary computation gives: M2 = 27k2n
2 + 33kn

2 + 4n,M3 = 2kn.

Figure 1. NC3(3) Nanocone Figure 2. NC4(5) Nanocone

Figure 3. NC5(4) Nanocone Figure 4. NC6(2) Nanocone
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Figure 5. NC7(4) Nanocone

Similar calculation shows that:

M1 = 3n2k4 + 11n2k3 + (15n2 − 12n)k2 + (9n2 − 18n)k + (2n2 − 6n),

M2 =
9n2

2 k4 + 15n2k3 + (37n
2

2 − 18n)k2 + (10n2 − 23n)k + 2n2 − 6n,

PM1 = 2
n2k4+2n2k3+(3n2

−4n)k2+(4n2
−4n)k+2n2

−6n
2 .3

n2k4+2n2k3+(n2
−4n)k2

−2kn

2 .

5n
2k3+2n2k2+(n2−2n)k,

PM2 = 2n
2k3+3n2k2+(3n2−3n)k+n2−3n.3n

2k4+3n2k3+(3n2−4n)k2+(n2−4n)k,

also: PM∗
1 = 2

3k2n+kn+4n
2 .3

3k2n+kn
2 .52kn,

PMT = 2
n2k4+2n2k3+(3n2

−n)k2+(4n2
−2n)k+2n2

−2n
2 .3

n2k4+2n2k3+(n2
−n)k2

−nk

2 .

5n
2k3+2n2k2+n2k. �

Theorem 3.2. Zagreb, multiplicative Zagreb indices and Coindices of Ca3(C6),
the third member of Capra- designed planar benzenoid series (see Figure6) are
computed as follows:

M1 = 4.3n + 18.7(n− 1)− 6,

M2 =

{

24 n = 1
27.7n−1 + 10.3n−1 − 15 n > 1

,

M3 =

{

0 n = 1
4.3n−1 n > 1

,

PM1 = 22.3
n+6.34.7

n−1−4,

PM2 = 22.3
n+6.36.7

n−1−6,

M1 =

{

36 n = 1
12.72n−2 + 2.32n + 10.3n.7n−1 − 4.3n − 18.7n−1 + 6 n > 1

,

M2 =

{

36 n = 1
18.72n−2 + 2.32n + 12.3n.7n−1 − 16.3n−1 − 36.7n−1 + 18 n > 1

,

PM1 =







218 n = 1

22.7
2n−2+32n+5.3n−8.7n−1+6.32.7

2n−2+2.3n−1−8.7n−1+6. n > 1

52.3
n.7n−1+6.7n−1−10.3n−1−6

,

PM2 =







218 n = 1

22.3
n.7n−1+32n+3n+6.7n−1−6. n > 1

32.3
n7n−1−2.3n+4.72n−2−10.7n−1+6

,
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Proof. We suppose Ca3(C6) denotes a planar benzenoid where the first layer has
a hexagonal, the second layer has six hexagonal and the third layer has six Figure
such as the second layer etc. First, we obtain the number of vertices and edges of
Ca3(C6). Calculations show that:

d2,n = 6(
d2,n−1−2

2 ) = 3d2,n−1 − 6.
Where d2,n, d2,n−1 denote the number of vertices with degree two of the last layer
and previous the last layer, respectively:

d2 = 3n + 3.
First, we obtain the number of vertices of a layer we compute sixtimes the

number of vertices of the previous layer in addition to the number of vertices of
previous layer, then we subtract the common part of the six added figure and
previous layer from the obtained number.

Figure 6. Graph Ca3(C6) is the third member of Capra- designed planar
benzenoid series Cak(C6)

The number of vertices around the previous layer is equal to:
6(

d2,n−2−2
2 + (

d2,n−2−2
2 − 1)) = 6(d2,n−2 − 3) = 6(3n−2 + 3− 3) = 2.3n−1.

Where d2,n−2, denotes the number of vertices with degree two of the two pre-
vious layers. Also, to obtain the number of vertices of the common parts of the six
added figures. We compute sixtimes of the number of vertices around two previous
layers plus one, then we divide it by two. Therefore:

6[ 12 (2.3
n−2) + 1] = 2.3n−1 + 6.

So, the number of common vertices is equal to:
2.3n−1 + 2.3n−1 + 6 = 4.3n−1 + 6.

Therefore:
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|V (G)| = 2.7n−1 + 7.3n−1 + 7− [4.3n−1 + 6] = 2.7n−1 + 3n + 1.
The amount included in square brackets is the number of vertices of the common

parts of the six added figures and around of the previous layer.
Also:d3 = |V (G)| − d2 = 2.7n−1 − 2.
Elementary computation gives:

M1 = 4.3n + 18.7n−1 − 6,
PM1 = 22.3

n+6.34.7
n−1−4, PM2 = 22.3

n+6.36.7
n−1−6.

We obtain the number of edges of the graph as we did for computing the number
of vertices of the graph, so:

|E(G)| = 3.7n−1 + 7.3n−1 − [4.3n−1] = 3.7n−1 + 3n.
The amount included in square brackets is the number of edges of the common

parts of the six added figures and around of the previous layer.
x22 = 6(

x22,n−1−2
2 ) = 3x22,n−1 − 6 = 3n−1 + 3,

x23 = 6(
x23,n−1

2 ) = 3x23,n−1 = 4.3n−1

and so, for n > 1.
Where x22,n−1, x23,n−1, denote the number of edges x22, x23 of the previous

layer, respectively.
Calculations show that:

x22 =

{

6 n = 1
3n−1 + 3 n > 1

, x23 =

{

0 n = 1
4.3n−1 n > 1

,

x33 =

{

0 n = 1
3.7n−1 − 2.3n−1 − 3 n > 1

,

Elementary computation gives:

M2 =

{

24 n = 1
27.7n−1 + 10.3n−1 − 15 n > 1

,M3 =

{

0 n = 1
4.3n−1 n > 1

,

Similar calculation shows that:

M1 =

{

36 n = 1
12.72n−2 + 2.32n + 10.3n.7n−1 − 4.3n − 18.7n−1 + 6 n > 1

,

M2 =

{

36 n = 1
18.72n−2 + 2.32n + 12.3n.7n−1 − 16.3n−1 − 36.7n−1 + 18 n > 1

,

PM1 =







218 n = 1

22.7
2n−2+32n+5.3n−8.7n−1+6.32.7

2n−2+2.3n−1−8.7n−1+6. n > 1

52.3
n.7n−1+6.7n−1−10.3n−1−6

,

PM2 =







218 n = 1

22.3
n.7n−1+32n+3n+6.7n−1−6. n > 1

32.3
n7n−1−2.3n+4.72n−2−10.7n−1+6

,

also: PM∗
1 =

{

212 n = 1

23.7
n−1+3.33.7

n−1−2.3n−1−3.54.3
n−1

n > 1
,

PMT = 22.7
2n−2+32n+5.3n−5.7n−1+9.32.7

2n−2−5.7n−1+3.
52.3

n.7n−1+6.7n−1−2.3n−6. �
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