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A note on eventually periodic endomorphisms and their maximizing

measures

Juliano S. Gonschorowski

abstract: Given an eventually periodic endomorphism T defined on a compact
metric space K we constructed another endomorphism T̃ : K → K that is C0-close
of T , has a nonperiodic orbit and such that supµ∈M

T̃

∫
fdµ ≤ supµ∈MT

∫
fdµ.
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1. Introduction

Ergodic optimization is a relatively new field that use tecnhiques from ergodic
theory and optimization to study the following problem: Given a metric space K,
a potential function f : K → R and a function T : K → K, do exist T -invariant
measures that maximize the functional Pf : MT (K) → R, Pf (µ) =

∫

fdµ and how
to characterize these maximizing measures in terms of their support?

Several problems can be put under this context, like finding Lyapunov expo-
nents, action minimizing solutions to Lagrangian systems and the zero temperature
limits of Gibbs equilibrium states in thermodynamical formalism. Some examples
of this are [9,7,6,5,3,10,11]. A good introduction to the subject is [8], where the
fundamental results of the theory are displayed and recentelly, in [4] an important
conjecture was proved.

A research line that arises from this theory, seeks to characterize, when K is
a compact metric space, f is a fixed continuous function and T is a surjective
continuous function, the typical support of the maximizing measures, note that in
this case, there exist maximizing measures due to Pf be a continuous functional
defined on a compact set of T invariant Borel probability measures MT (K).

Working in this line it has been showed in [1] and [2] that given an endomor-
phism T : K → K one can find some C0 close endomorphism T̃ : K → K with
maximizing measures supported in periodic orbits. In [2] the pertubation T̃ of T
had the property that for all point x ∈ K there exist n(x) ∈ N such that T̃ n(x) is
a periodic point.
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Now given an endomorphism T : K → K it is called eventually periodic endo-
morphism if for all point x ∈ K there exist some n(x) ∈ N such that T̃ n(x) is a
periodic point. We proved the following theorem:

Theorem 1.1. Given a eventually periodic endomorphism T defined on a compact

metric space K then there exist an endomorphim T̃ : K → K that is C0-close of

T , has a nonperiodic orbit and such that supµ∈MT̃

∫

fdµ ≤ supµ∈MT

∫

fdµ.

Here we will denote by End(K) the set of continuous surjections of K endowed
with the C

0 metric, d(T,G) = supx∈K d(T (x), G(x)).

The strategy of the proof is to create a perturbation T̃ of T with a nonperiodic
orbit in a small region of K in a way all Birkoff sums will be least or equal to the
∫

fdµ = α, where µ is a f -maximizing measure for T .

The paper is organized as follows: In the next section we present some prelim-
inary lemmas and notations, and in section 3 prove the theorem.

2. Preliminaries

We start with some notations and preliminary results. Let K be a compact
metric space and End(K) the set of endomorphisms of K. We endow End(M)
with its usual topology of uniform convergence defined by the metric d(T,G) =
supx∈K(d(T (x), G(x)), T,G ∈ End(M).

Given T ∈ End(M) we denote by MT (K) the set of T invariant Borel probability
measures, which is non-empty, convex and also compact in the weak-* topology.
The subset of ergodic measures of MT (K) is denoted by Merg(T ).

Given f : K → R continuous and T ∈ End(K), we define Pf : MT (K) →
R, Pf (µ) =

∫

fdµ. As the functional Pf is affine and MT (K) is a convex compact
set, Pf must have a maximum point at an extremal point of MT (K). Since the
extremal points of MT are precisely the ergodic measures, there exists some µmax ∈

Merg(T ) that maximizes Pf . We denote SnT (x) :=

n−1
∑

i=0

f(T i(x)) to the n Birkhoff

sum of T .

The next lemmas are related to the perturbation T̃ of T ∈ End(K) and the set
of its invarant measures MT̃ (K).

Lemma 2.1. Given T : K → K an eventually periodic endomorphism defined in

compact metric space K and ε > 0, then there exist an endomorphism T̃ : K → K,

with d(T, T̃ ) = supx∈K d(T (x), T̃ (x)) < ε such that it has a non periodic orbit for

some x ∈ K.

In order to proof lemma 2.1 we will considerate the following cases:

case 1) For all points x ∈ K we have T (x) = x

case 2) For all points x ∈ K we have T k(x)(x) = x, where k(x) ∈ N.
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case 3) There is a finitely periodic orbit for some x with n(x) > 1, that is, for x ∈ K
there is for some n(x) ∈ N with n(x) > 1, such that T n(x) is a periodic point
with period equal to m(x) ∈ N.

Proof: To prove case 1) set a point x0 ∈ K and Bε(x0) for some ε > 0. Inside
this open ball we select any two-sided sequence {. . . , x−1, x0, x1, . . .} and for this
sequence we define

T̃ (x) =

{

xi+1 if x = xi

T (x) otherwise

This function T̃ : K → K is an endomorphism with d(T, T̃ ) ≤ 2ε and with a
nonperiodic orbit.

For case 2): Given a point x0 ∈ K and ε > 0, we set a open ball Bε(x0) and
a sequence {. . . , x−1, x0, x1, . . .} such that xi ∈ Bε(x0) for all i ∈ Z. For each
xi we have its periodic orbit OT (xi) = {xi, T (xi), . . . T

n(xi)−1(xi)} with period
n(xi) ∈ N. The new endomorphism T̃ : K → K will be defined by:

T̃ (x) =

{

xi+1 if x = T n(xi)−1(xi)
T (x) otherwise

This way T̃ will be an endomorphism such that has a nonperiodic orbit and
d(T̃ , T ) ≤ 2ε

For case 3) :

We set a eventually periodic point x ∈ K, that is, its positive orbit is

O+
T (x) = {x, T (x), . . . , T k(x), T k+1(x), . . . , T k+(n−1)(x)},

where T k+n(x) = T k(x). Lets denote by Ω(x) the end point on the periodic part
of the positive orbit O+

T (x), for x Ω(x) = T k+(n−1)(x). Given ε > 0, we chose
z1 ∈ Bε(T (Ω(x))) such that z1 ∩OT (x) = ∅, in the same way chose by induction a
sequence {z1, z2, . . .} where zm ∈ Bε(T (Ω(zm−1))) such that zm−1 ∩OT (zm) = ∅

Now we define the endomorphism T̃ : K → K by:

T̃ (y) =







z1 , if y = Ω(x)
zi , if y = Ω(zi−1)

T (y) , otherwise

Note that T̃ is an endomorphism such that d(T, T̃ ) ≤ ε and has a orbit that is
not eventually periodic.

✷

Proposition 2.2. If T : K → K is a eventually periodic endomorphism then every

measure supported on a periodic orbit is ergodic.
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Proof: Let A be a totally invariant set, that is, T−1A = A, and µ ∈ MT (K) a
periodic measure suported on a periodic orbit O(x0) for some x0 ∈ K. We have
two possibilities: Or A ∩O(x0) = ∅ in this case A ⊂ (supp(µ))c then µ(A) = 0, or
A ∩ O(x0) 6= ∅ in this case the intersection will have finitely many points, and as
A is totally invariant we will have µ(A) = 1. ✷

The next lemma is the other direction of proposition 2.2.

Lemma 2.3. If T : K → K is a eventually periodic endomorphism defined on a

compact metric space K, then all ergodic measures are periodics.

Proof: Suppose that there is a ergodic measure µ that is not periodic, so there
is x ∈ supp(µ) a nonperiodic point and an open ball A = Bε(x) that contains x
for some ε > 0. As T is eventually periodic we have that for all x ∈ K there is
n(x) ∈ N such that T n(x) is a periodic point, so by the Poincaré recurrence theorem
Tm(A) ∩ A = ∅ for some ε > 0 and for all m > n(x), that is a contradiction. ✷

3. Proof of the main theorem

In this section we prove the main theorem:

Theorem 3.1. Given a eventually periodic endomorphism T : K → K defined in

a compact metric space K, ε > 0 and

α = sup
µ∈MT (K)

∫

fdµ,

where f : K → R is a continuous function. Then there exist another endomor-

phism T̃ : K → K, with a nonperiodic orbit such that d(T, T̃ ) < ε and

β = sup
µ∈MT̃ (K)

∫

fdµ ≤ α

.

Proof: We will show that T̃ : K → K constructed in lemma 2.1 is the endomor-
phism that we are looking for. By its construction we know that d(T̃ , T ) < ε and it
has a nonperiodic orbit. We need to proof that β ≤ α. In case 1 of lemma 2.1 since
T (x) = x, we have that Sn(T )(x) = nf(x) for all x ∈ K and n ∈ N. If x∞ is some
point in {x ∈ K : f(x) = supy∈Kf(y)} we will have that the Dirac measure δx∞

will
be f -maximizing measure, and α = f(x∞). Note that if x /∈ {. . . , x−1, x0, x1 . . .}
then SnT̃ (x) = SnT (x) = nf(x) for all n ∈ N, now if x ∈ {. . . , x−1, x0, x1 . . .}
suppose x = x0 we have

SnT̃ (x) =
n−1
∑

i=0

f(T̃ i(x0)) =
n−1
∑

i=0

f(xi) ≤ nf(x∞).
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As 1
n
SnT̃ (x) ≤ f(x∞) for all x ∈ K and n ∈ N, we have that β ≤ α.

Now we consider that we are in case 2 of lemma 2.1, we have the sequence
{. . . , x−1, x0, x1, . . .} used to construct T̃ . As any point x ∈ K is a T -periodic
point with period m(x) from lemma 2.3 we have that there is a f -maximizing
ergodic measure, suported in some periodic orbit, suppose µ = 1

np

∑

δT i(xp). This

way α = 1
np

Snp
T (xp) then

lim
1

n
SnT (x) ≤

1

np

Snp
T (x),

for all x ∈ K. Now for T̃ we have that

1

n
SnT̃ (x) =

Sn1
T (x1) + Sn2

T (x2) + . . .+ Snk
T (xk)

n1 + n2 + . . .+ nk

≤

n1

np
Snp

T (xp) +
n2

np
Snp

T (xp) + . . .+ nk

np
Snp

T (xp)

n1 + n2 + . . .+ nk

=
1

np

Snp
T (xp)

n1 + n2 + . . .+ nk

n1 + n2 + . . .+ nk

≤ α

For case 3, just consider the sequence {z1, z2, . . .} use in this case on lemma 2.1.
The rest of the proof will be similar with case 2. ✷
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