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A note on eventually periodic endomorphisms and their maximizing
measures

Juliano S. Gonschorowski

ABSTRACT: Given an eventually periodic endomorphism 7' defined on a compact
metric space K we constructed another endomorphism 7' : K — K that is C%-close
of T, has a nonperiodic orbit and such that SUP e M. [ fdu < SUP e My [ fdu.
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1. Introduction

Ergodic optimization is a relatively new field that use tecnhiques from ergodic
theory and optimization to study the following problem: Given a metric space K,
a potential function f : K — R and a function 7' : K — K, do exist T-invariant
measures that maximize the functional Py : My (K) — R, Pr(p) = [ fdp and how
to characterize these maximizing measures in terms of their support?

Several problems can be put under this context, like finding Lyapunov expo-
nents, action minimizing solutions to Lagrangian systems and the zero temperature
limits of Gibbs equilibrium states in thermodynamical formalism. Some examples
of this are [9,7,6,5,3,10,11]. A good introduction to the subject is [8], where the
fundamental results of the theory are displayed and recentelly, in [4] an important
conjecture was proved.

A research line that arises from this theory, seeks to characterize, when K is
a compact metric space, f is a fixed continuous function and T is a surjective
continuous function, the typical support of the maximizing measures, note that in
this case, there exist maximizing measures due to Py be a continuous functional
defined on a compact set of T" invariant Borel probability measures My (K).

Working in this line it has been showed in [1] and [2] that given an endomor-
phism 7 : K — K one can find some C° close endomorphism T : K — K with
maximizing measures supported in periodic orbits. In [2] the pertubation T of T
had the property that for all point 2 € K there exist n(z) € N such that T"(x) is
a periodic point.
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Now given an endomorphism 7": K — K it is called eventually periodic endo-
morphism if for all point # € K there exist some n(z) € N such that T"(x) is a
periodic point. We proved the following theorem:

Theorem 1.1. Given a eventually periodic endomorphism T' defined on a compact
metric space K then there exist an endomorphim T : K — K that is C°-close of
T, has a nonperiodic orbit and such that SUP e [ fdp < SUP ety | fdp.

Here we will denote by End(K) the set of continuous surjections of K endowed
with the C° metric, d(T, G) = sup,¢ g d(T(x), G(z)).

The strategy of the proof is to create a perturbation 7" of T’ with a nonperiodic
orbit in a small region of K in a way all Birkoff sums will be least or equal to the
[ fdp = o, where p is a f-maximizing measure for 7.

The paper is organized as follows: In the next section we present some prelim-
inary lemmas and notations, and in section 3 prove the theorem.

2. Preliminaries

We start with some notations and preliminary results. Let K be a compact
metric space and End(K) the set of endomorphisms of K. We endow End(M)
with its usual topology of uniform convergence defined by the metric d(T,G) =
sup, e (d(T'(z),G(x)), T,G € End(M).

Given T' € End(M) we denote by My (K) the set of T invariant Borel probability
measures, which is non-empty, convex and also compact in the weak-* topology.
The subset of ergodic measures of My (K) is denoted by M4 (T).

Given f : K — R continuous and T' € End(K), we define Py : Mp(K) —
R, Ps(p) = [ fdu. As the functional Py is affine and My (K) is a convex compact
set, Py must have a maximum point at an extremal point of Mp(K). Since the
extremal points of M are precisely the ergodic measures, there exists some i, €

n—1
Merg(T') that maximizes Pr. We denote S,T'(z) := Z f(T*(z)) to the n Birkhoff
i=0

sum of 7.
The next lemmas are related to the perturbation 7' of T € End(K) and the set
of its invarant measures M (K).

Lemma 2.1. Given T : K — K an eventually periodic endomorphism defined in
compact metric space K and e > 0, then there exist an endomorphism T : K — K,
with d(T,T) = sup, d(T(x), T(x)) < & such that it has a non periodic orbit for
some x € K.

In order to proof lemma 2.1 we will considerate the following cases:

case 1) For all points 2 € K we have T'(z) =z

case 2) For all points z € K we have T*(®)(z) = x, where k(z) € N.



A NOTE ON EVENTUALLY PERIODIC ENDOMORPHISMS 113

case 3) There is a finitely periodic orbit for some x with n(z) > 1, that is, for x € K
there is for some n(x) € N with n(x) > 1, such that 7" (z) is a periodic point
with period equal to m(x) € N.

Proof: To prove case 1) set a point zo € K and B.(z¢) for some ¢ > 0. Inside
this open ball we select any two-sided sequence {...,x_1, 20, 21,...} and for this
sequence we define

~ o Ti4+1 ifz = €T;
T(e) = { T(x) otherwise

This function T : K — K is an endomorphism with d(7, T) < 2¢ and with a
nonperiodic orbit.

For case 2): Given a point xy € K and € > 0, we set a open ball B.(xg) and
a sequence {...,x_1,Zg,Z1,...} such that z; € B.(xg) for all i € Z. For each
x; we have its periodic orbit Op(z;) = {x;, T(x;),... T™*)~1(x;)} with period

n(x;) € N. The new endomorphism 7' : K — K will be defined by:

~ B Tit1 if x = Tn(zl)il(l'z)
Tiw) = { T(x) otherwise

This way T will be an endomorphism such that has a nonperiodic orbit and
d(T,T) < 2¢

For case 3) :

We set a eventually periodic point x € K, that is, its positive orbit is

Of(z) = {&,T(x),...,T"(x), T (z),..., TF =),

where TF+7(z) = T*(z). Lets denote by Q(x) the end point on the periodic part
of the positive orbit OF (), for = Q(z) = TF+(=U(z). Given £ > 0, we chose
z1 € B(T(Q(z))) such that z; N O (z) = 0, in the same way chose by induction a
sequence {z1, 22, ...} where 2., € Be(T(2(2mm—1))) such that z,—1 N Or(zm) =0

Now we define the endomorphism 7" : K — K by:

a4 L if y=0()
T(y) = zi i y=Q(zi-1)
T(y) otherwise

Note that T is an endomorphism such that d(T,T) < ¢ and has a orbit that is
not eventually periodic.
O

Proposition 2.2. IfT : K — K is a eventually periodic endomorphism then every
measure supported on a periodic orbit is ergodic.
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Proof: Let A be a totally invariant set, that is, T-'4 = A, and p € M7(K) a
periodic measure suported on a periodic orbit O(zg) for some zy € K. We have
two possibilities: Or AN O(zg) = 0 in this case A C (supp(u))© then pu(A) =0, or
AN O(zp) # 0 in this case the intersection will have finitely many points, and as
A is totally invariant we will have p(A) = 1. O

The next lemma is the other direction of proposition 2.2.

Lemma 2.3. If T : K — K is a eventually periodic endomorphism defined on a
compact metric space K, then all ergodic measures are periodics.

Proof: Suppose that there is a ergodic measure p that is not periodic, so there
is & € supp(u) a nonperiodic point and an open ball A = B.(x) that contains
for some ¢ > 0. As T is eventually periodic we have that for all x € K there is
n(x) € N such that T"(x) is a periodic point, so by the Poincaré recurrence theorem
T™(A)N A =0 for some ¢ > 0 and for all m > n(z), that is a contradiction. O

3. Proof of the main theorem

In this section we prove the main theorem:

Theorem 3.1. Given a eventually periodic endomorphism T : K — K defined in
a compact metric space K, ¢ > 0 and

= sup / fdu,
neMr (K

where f: K — R is a continuous function. Then there exist another endomor-
phism T : K — K, with a nonperiodic orbit such that d(T,T) < ¢ and

= sup /fd,u<a

HEMz(K)

Proof: We will show that 7 : K — K constructed in lemma 2.1 is the endomor-
phism that we are looking for. By its construction we know that d(7,T) < e and it
has a nonperiodic orbit. We need to proof that g < «. In case 1 of lemma 2.1 since
T(xz) = x, we have that S,(T)(z) = nf(x) for all x € K and n € N. If 2, is some
point in {x € K : f(z) = supyer f(y)} we will have that the Dirac measure d,,_, will
be f-maximizing measure, and o = f(2). Note that if = ¢ {...,z_1,20,21...}
then S, T(z) = S,T(z) = nf(x) for all n € N, now if z € {...,2_1,20,21...}

suppose x = xo we have

n—1 n—1

SaT(x) =Y f(T (o)) = Y fl:) < nf(To0)-

=0 i=0
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As %Snf(x) < f(zo) for all z € K and n € N, we have that § < a.

Now we consider that we are in case 2 of lemma 2.1, we have the sequence
{...,x_1,20,21,...} used to construct T. As any point = € K is a T-periodic
point with period m(z) from lemma 2.3 we have that there is a f-maximizing
ergodic measure, suported in some periodic orbit, suppose p = % > d7i(z,)- This

way o = %Sin(xp) then

1 1
lim —$,T(z) < —85,,T(x),

Np
for all z € K. Now for T we have that
1 - Sp, T Sy, T ...+ S, T
—SnT(m) _ 1 ($1) + 2 (‘TQ) + + k (‘Tk)
n ny+mne+ ...+ ng
%SHPT(:L'p> + Z—QSin(:cp) + ...+ %&Sin(:cp)
< p P P
- ny+ne+...+ng
1
= —5, T(:L'p)nl et <a
Ny p ny+ne+...+ng

For case 3, just consider the sequence {z1, 22, ...} use in this case on lemma 2.1.
The rest of the proof will be similar with case 2. O

References

1. Tatiane C. Batista, Juliano S. Gonschorowksi, and Fabio A. Tal, Density of the set of endo-
morphisms with a mazimizing measure supported on a periodic orbit, Discrete and Continuos
Dynimical Systems 35 (2015), no. 8, 3315-3326.

2. Tatiane C. Batista, Juliano S. Gonschorowksi, and Fabio A. Tal, Density of the set of symbolic
dynamics with all ergodic measures supported on periodic orbits, aceppted on Fundamenta
Mathematicae arXiv:1410.5857 (2015).

3. Thierry Bousch, La condition de Walters, Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 2,
287-311. MR 1841880 (2002h:37051)

4. G. Contreras, Ground States are generically a Periodic Orbit, ArXiv e-prints (2013).

5. G. Contreras, A. O. Lopes, and Ph. Thieullen, Lyapunov minimizing measures for expanding
maps of the circle, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1379-1409. MR 1855838
(2002i:37038)

6. Gonzalo Contreras, Jorge Delgado, and Renato Iturriaga, Lagrangian flows: the dynamics of
globally minimizing orbits. II, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 155-196. MR
1479500 (98i:58093)

7. Eduardo Garibaldi and Philippe Thieullen, Minimizing orbits in the discrete Aubry-Mather
model, Nonlinearity 24 (2011), no. 2, 563-611. MR 2765475 (2012b:37166)

8. Oliver Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst. 15 (2006), no. 1, 197-224.
MR 2191393 (2009i:37075)

9. Oliver Jenkinson and Ian D. Morris, Lyapunov optimizing measures for C' expanding maps
of the circle, Ergodic Theory Dynam. Systems 28 (2008), no. 6, 1849-1860. MR 2465602
(2010b:37081)



116 JuLIANO S. GONSCHOROWSKI

10. Artur O. Lopes and Philippe Thieullen, Sub-actions for Anosov diffeomorphisms, Astérisque
(2003), no. 287, xix, 135-146, Geometric methods in dynamics. II. MR 2040005 (2005¢:37047)

11. Tan D. Morris, Ergodic optimization for generic continuous functions, Discrete Contin. Dyn.
Syst. 27 (2010), no. 1, 383-388. MR 2600778 (2011e:37006)

Juliano S. Gonschorowski

Universidade Tecnoldgica Federal do Parand,

Avenida Professora Laura Pacheco Bastos, 800 - Bairro Industrial
CEP 85053-525 - Guarapuava - PR - Brazil

E-mail address: julianod@utfpr.edu.br



	Introduction
	Preliminaries
	Proof of the main theorem

