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Exponential Differential Operators For Singular Integral Equations

and Space Fractional Fokker-Planck Equation
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abstract: In this article, it has been shown that the combined use of exponen-
tial operators and integral transform provides a powerful tool to evaluate integrals,
solution to certain type of fractional differential equations and families of singu-
lar integral equations. It is shown that exponential operators are powerful and
effective method for solving certain space fractional Fokker-Planck equation with
non-constant coefficients. Constructive examples are provided.
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Introduction

We present a general method of operational nature to obtain solutions for sev-
eral types of partial differential equations. The integral transform technique is one
of the most useful tools of applied mathematics, employed in many branches of
science, mathematical physics and engineering. The most interesting and useful
applications of the Laplace transformation are solving linear differential equations
with discontinuous or impulsive forcing functions which are common place in me-
chanical systems and circuit analysis problems.

1. One dimensional Laplace transform

Definition 1.1. Laplace transform of function f(t) is as follows

L{f(t)} =

∫ ∞

0

e−stf(t)dt := F (s). (1.1)
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If L{f(t)} = F (s), then L
−1{F (s)} is given by [3]

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, (1.2)

where F (s) is analytic in the region Re(s) > c.

Definition 1.2. If the function Φ(t) belongs to C[a, b] and a < t < b,

IRL,α
a {Φ(t)} =

1

Γ(α)

∫ t

a

Φ(ξ)

(t− ξ)1−α
dξ. (1.3)

The left Riemann-Liouville fractional integral of order α > 0 is defined as [7]

DRL,α
a φ(x) = 1

Γ(1−α)
d
dx

∫ t

a

Φ(ξ)
(t−ξ)α dξ. (1.4)

It follows that DRL,α
a φ(x) exists for all Φ(t) belongs to C[a, b] ,and a < t < b .

Note: A very useful fact about the R-L operators is that they satisfy semi group
properties of fractional integrals.
The special case of fractional derivative when α = 0.5 is called semi –derivative.

Definition 1.3. The left Caputo fractional derivative of order α (0 < α < 1) of
φ(t) is as follows [8]

Dc,α
a φ(x) = 1

Γ(1−α)

∫ t

a
1

(t−ξ)αφ
′(ξ)dξ. (1.5)

Lemma 1.1: The following identities hold true.

1. L
−1F (sβ) = 1

2π

∫∞
0 f(τ )(

∫∞
0 e−tr−rβ(τcosβπ)sin(rβτsinβπ))dr)dτ ,

2. L
−1F (

√
s) = 1

(2t
√
tπ)

∫∞
0 e−

ξ2

4t f(ξ)dξ,

3. L
−1(e−k

√
s) = k

(2
√
π)

∫∞
0

e−tξ− k2

4ξ dξ,

4. e−ksβ = 1
π

∫∞
0 e−rβ(kcosβπ)sin(krβsinβπ)(

∫∞
0 e−sτ−rτdτ )dr.

Proof. See [1].
Lemma 1.2: The following exponential identities hold true.

1. exp(±α d
dt
)Φ(t) = Φ(t±α),

2. exp(±αt d
dt
)Φ(t) = Φ(te±α),

3. exp(αq(t) d
dt
)Φ(t) = Φ(Q(F (t) + α)),

4. exp(−α sinh2 t d
dt
)Φ(t) = Φ( ln(

√

1+α+coth t
1−α−coth t

)),
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where F (t) is primitive of (q(t))−1 and Q(t) is inverse of F (t).
Proof. See [4].
Like Fourier transform, the Laplace transforms is used in a variety of applications.
The most common usage of the Laplace transforms is in the solution of initial
value problems. The Laplace transform is useful tool in applied mathematics, for
instance for solving singular integral equations, partial differential equations, and
in automatic control, where it defines a transfer function.

Problem 1. Let us consider the following non- linear impulsive differential equa-
tion

(
√

D2
t − a2)y(t) = tkδ(t− λ).

Solution. The above differential equation can be written as below

y(t) = 1

(
√

D2
t−a2)

tkδ(t− λ),

from which we deduce that

y(t) = (
∫∞
0 dξe−ξDtI0(aξ))t

kδ(t− λ),

finally,
y(t) =

∫∞
0 dξI0(aξ)e

−ξDttkδ(t− λ).

Using Lemma 1.2 leads to the following

y(t) =
∫∞
0 I0(aξ)(t− ξ)kδ(t− ξ − λ)dξ,

thus, by using elementary properties of Dirac-delta function, we obtain

y(t) = λkI0(a(t− λ)).

Note:In the above relation I0 stands for the modified Bessel’s function of the first
kind of order zero.

Problem 2. Let us solve the following fractional Volterra integral equation of
convolution type. The Laplace transform provides a useful technique for the solution
of such integral equations.

λ
∫ t+β

β
sin(a(t− ξ + β))Dc,αφ(ξ − β)dξ = ( t

a
)

ν
2 Jν(2

√
at), (1.6)

φ(β) = 0, α+ ν − 2 > 0, 0 < α < 1.

Solution. Let us make a change of variable ξ − β = η and taking the Laplace
transform of the given integral equation, we obtain

sαΦ(s) aλ
(s2+a2) =

e
−a
s

s1+ν ,
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solving the above equation, leads to

Φ(s) = (s2+a2)e
−a
s

(aλ)s1+α+ν ,

or equivalently

Φ(s) = (s2e
−a
s +a2e

−a
s )

(aλ)s1+α+ν ,

at this point, taking inverse Laplace transform term wise, after simplifing we have

φ(t) = a
λ
( (t−β)

a
)

α+ν
2 Jα+ν(2

√

a(t− β)) + 1
aλ

( (t−β)
a

)
(α+ν−2)

2 Jα+ν−2(2
√

a(t− β)).

In this section, we will also develop a more general procedure to treat singular
integral equation whose solution requires exponential differential operators. Sin-
gular integral equations arise in many problems of mathematical physics. The
mathematical formulation of physical phenomena often involves singular integral
equations. Applications in many important fields like elastic contacts problems,
the theory of porous filtering, fracture mechanics contain integral and integro-
differential equation with singular kernel.

Corollary 1.1 Let us consider the following singular integral equation

exp(−ωx2) =
∫∞
0 ξνe−ξg(xξµ)dξ, (1.7)

the above integral equation has the following formal solution

g(x) = Jν(
√
wx : 2µ).

Where Jν(. : .) stands for the Bessel – Wright function of order ν.

Note:the special function of the form defined by the series representation

Jν(x : µ) =
∑∞

n=0
(−1)n

n!Γ(1+ν+nµ) (x)
n

is known as Bessel- Maitland function or the Bessel- Wright function. It has a
wide application in the problem of physics, chemistry, applied sciences.
Proof. Let us rewrite the left hand side of the above equation(1.7) as below

exp(−ωx2) = (
∫∞
0 dξe−ξξνξµxDxg(x)), (1.8)

in relation (1.8), we used the following exponential identity

Φ(λkx) = Φ(ekln(λ)x) = Φ(eln(λ)
k

x) = eln(λ)
kxDxΦ(x) = λkxDxΦ(x),

thus,

exp(−ωx2) = (
∫∞
0 e−ξξν+µxDxdξ)g(x). (1.9)

At this point, we may rewrite relation (1.9) in terms of Gamma function as follows

exp(−ωx2) = Γ(1 + ν + µxDx)g(x). (1.10)
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From the above operational relationship and Taylor expansion of the exponential
function results in

g(x) =
∑∞

n=0
(−ω)n

Γ(1+ν+µxDx)
(x)2n, (1.11)

g(x) =
∑∞

n=0
(−1)n

Γ(1+ν+2nµ) (
√
ωx)2n = Jν(

√
wx : 2µ).

Corollary 1.2. Let us consider the following singular integral equation

xνexp(x) = (
∫∞
0

ξνe−ξg(xξ)dξ), (1.12)

the above integral equation has the following formal solution

g(x) = Iν(2
√

xµ),

where Iν(2
√

xµ), stands for the modified Bessel function of the first kind of order
ν . Proof. Let us rewrite the left hand side of the above equation as below

xνexp(x) = (
∫∞
0 dξe−ξξxDx+ν)g(x), (1.13)

and treating the derivative operator as a constant, the evaluation of the integral
yields

g(x) = Γ−1(1 + ν + xµDx)(xνexp(x)), (1.14)

after writing Taylor expansion of exponential function, we arrive at

g(x) =

∞
∑

n=0

(1)

n!Γ(1 + ν + µxDx)
(x)n+ν

=

∞
∑

n=0

(1)

n!Γ(1 + ν + µ(n+ ν))
(x)n+ν

=Iν(2
√

xµ). (1.15)

Note: From operational relation (xDx)x
n = nxn we get the following identity

g(cxDx)xn = g(cn)xn, (1.16)

and g(x) has Taylor series expansion.
Lemma 1.3. The following exponential operator identity holds true

( d
dt
)(1−

1
n
) exp(k d

dt
)Φ(t) = 1

Γ( 1
n
)

∫∞
0

Φ(t+k−ξ)
n
√
ξ

dξ. (1.17)

Proof. Let us introduce the following integral

y(t) = 1
Γ( 1

n
)

∫∞
−k

exp(−pξ)
n
√

(k+ξ)n−1
dξ. (1.18)

By making the change of variable k + ξ = ζ in the above integral we get
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y(t) = 1
Γ( 1

n
)

∫∞
0

exp(pk−pζ)
n
√

(ζ)n−1
dζ, (1.19)

after simplifying, we get

y(t) = exp(kp)

Γ( 1
n
)

∫∞
0

exp(−pζ)
n
√

(ζ)n−1
dζ, (1.20)

or,

y(t) = exp(kp)
n
√
p

.

Let us choose p = d
dt

, we obtain

( d
dt
)(1−

1
n
) exp(k d

dt
)Φ(t) = 1

Γ( 1
n
)

∫∞
0

Φ(t+k−ξ)
n
√
ξ

dξ. (1.21)

Special case . For n = 2 , we have

( d
dt
)

1
2 exp(k d

dt
)Φ(t) = 1

Γ( 1
2 )

∫∞
0

Φ(t+k−ξ)√
ξ

dξ,

from which we deduce
√

(
d

dt
)exp(k

d

dt
)Φ(t) =

1

Γ( 1
n
)

∫ ∞

−k

dξ
n
√

(k + ξ)n−1
exp(−ξ

d

dt
)Φ(t)

=

∫ ∞

0

Φ(t+ k − ξ)√
πξ

dξ. (1.22)

Lemma1.4.The following second order exponential operator relations hold true.

1. exp(r( ∂
∂x

)2)Φ(x) = 1
(2r

√
π)

∫∞
0

e−
u2

4r (Φ(x + iu) + Φ(x− iu))du, (1.23)

2. exp(kx( ∂
∂x

)2)Φ(x) = 1
(2kx

√
π)

∫∞
0 e−

u2

4kx (Φ(x+ iu) + Φ(x− iu))du.

(1.24)
Proof. Let us consider the following elementary integral

r
√
π exp−r(b2 − a2) =

∫∞
0

e−
u2

4r cos(au) cosh(bu)du. (1.25)

By integration by parts, one can easily find the value of the integral and after some
algebra we obtain

exp−r(b2 − a2) = 1
(4r

√
π)

∫∞
0

e−
u2

4r (exp(iau) + exp(−iau))(exp(bu) + exp(−bu))du.

(1.26)



Exponential Differential Operators For Singular Integral Equations 229

1. In the above integral relation, we set a = ( ∂
∂x

), b = 0 to obtain

exp(r( ∂
∂x

)2)Φ(x) = 1
(2r

√
π)

∫∞
0

du(e−
u2

4r (exp(iu)( ∂
∂x

) + exp(−iu)( ∂
∂x

))Φ(x),

(1.27)
by using lemma 1.1, we get finally

exp(r( ∂
∂x

)2)Φ(x) = 1
(2r

√
π)

∫∞
0 e−

u2

4r (Φ(x + iu) + Φ(x − iu))du.

2. In the above integral relation, we set r = kx a = ∂
∂x

, b = 0 to obtain

exp(kx(
∂

∂x
)2)Φ(x) =

1

(2kx
√
π)

∫ ∞

0

du(e−
u2

4kx (exp(iu)(
∂

∂x
)

+ exp(−iu)(
∂

∂x
))Φ(x), (1.28)

by using Lemma 1.1, we get finally

exp(kx( ∂
∂x

)2)Φ(x) = 1
(2kx

√
π)

∫∞
0 e−

u2

4kx (Φ(x+ iu) + Φ(x− iu))du. (1.29)

Corollary 1.3. Let us consider the following Fredholm singular integral equa-
tion

exp(βx2) =
∫∞
−∞ e−ξ2φ(x− 2ξ

√
k)dξ, (1.30)

the above integral equation has the following formal solution

Φ(x) =
exp((− 1+8λβ

1+4λβ
)βx2)√

λπ(1+4λβ)
.

Proof. Let us rewrite the right hand side of the above equation as below

exp(βx2) =
∫∞
−∞ dξe−ξ2e−2

√
kξDxΦ(x), ( (1.31)

and treating the derivative operator as a constant, the evaluation of the integral
yields

Φ(x) = 1√
π
e−λD2

x exp(βx2), (1.32)

at this point, using relation (1.23) leads to

Φ(x) = 1√
π

1
(2λ

√
π)

∫∞
0

e−
u2

4λ (exp(β(x+ iu)2) + exp(β(x− iu)2))du,

(1.33)
from which and after some easy calculations, we get

Φ(x) =
exp((− 1+8λβ

1+4λβ
)βx2)√

λπ(1+4λβ)
.
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2. Evaluation of certain integrals

The main purpose of this section is to introduce the use of the exponential
differential operator technique for evaluation of certain types of integrals.
Lemma 2.1. Considering the integral

Ir = I(x, ν) =
∫∞
0 Jν(

x
(k2+t2)µ )dt, (2.1)

as a function of parameters ν ,µ, show thatI(x, ν) satisfies the following relationship

Ir =
∫∞
0 Jν(

x
(k2+t2)µ )dt =

k
√
π

2

∑∞
n=0

(−1)n

n!Γ(1+ν+n)
Γ(µ(n+ν)−0.5)

Γ(µ(n+ν)) (0.5k−2µx)n+ν .

(2.2)
Proof. By making a change of variable t = ky ,and letting x = k2µr , we get

Ir = k
∫∞
0

Jν(
r

(1+y2)µ )dy. (2.3)

The above integral can be written in the following operational form

Ir = k
∫∞
0

Jν(
r

(1+y2)µ )dy = k(
∫∞
0

( 1
1+y2 )

µrDrdy)Jν(r), (2.4)

after evaluation and simplifying the right hand side integral, this last result
leads to

Ir = k
∫∞
0 Jν(

r
(1+y2)µ )dy = k

√
π

2
Γ(µrDr−0.5)

Γ(µrDr)
Jν(r). (2.5)

By using Taylor expansion of the Bessel’s function of order ν, we obtain

Ir = k
√
π

2

∑∞
n=0

(−1)n

n!Γ(1+ν+n)
Γ(µrDr−0.5)

Γ(µrDr)
(0.5r)n+ν , (2.6)

finally,

Ir = k
√
π

2

∑∞
n=0

(−1)n

n!Γ(1+ν+n)
Γ(µ(n+ν)−0.5)

Γ(µ(n+ν)) (0.5r)n+ν . (2.7)

Lemma 2.2. Let us Consider the following integral

Iα =
∫∞
0

Erf( x
(k2+t2)µ dt, (2.8)

as a function of parameters k ,µ , show that I0 satisfies the following relationship

Iα = k
∫∞
0 Erf( r

(1+y2)µ )dy =
∑∞

n=0
k(−1)n

n!(1+2n)
Γ(µ(2n+1)−0.5)

Γ(µ(2n+1)) (k−2µx)2n+1.

(2.9)
Proof. By making a change of variable t = ky ,and letting x = k2µr , we get

Iα = k
∫∞
0

Erf( r
(1+y2)µ )dy. (2.10)

The above integral can be written in the following operational form

Iα = k
∫∞
0 Erf( r

(1+y2)µ )dy = k(
∫∞
0 ( 1

1+y2 )
µrDrdy)Erf(r), (2.11)

after evaluation and simplifying the right hand side integral, this last result
leads to
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Iα = k
∫∞
0 Erf( r

(1+y2)µ )dy = k
√
π

2
Γ(µrDr−0.5)

Γ(µrDr)
Erf(r). (2.12)

By using Taylor expansion of the Error - function, one has

Iα = k
∫∞
0 Erf( r

(1+y2)µ )dy =
∑∞

n=0
k(−1)n

n!(1+2n)(
Γ(µ(2n+1)−0.5)

Γ(µ(2n+1)) r2n+1, ) (2.13)

finally we get

Iα = k
∫∞
0 Erf( r

(1+y2)µ )dy =
∑∞

n=0
k(−1)n

n!(1+2n)
Γ(µ(2n+1)−0.5)

Γ(µ(2n+1)) (k−2µx)2n+1.

(2.14)

3. Main Results

Solution to generalized space fractional Fokker-Planck equation with non-constant
coefficients, which is used to study the beam life time due to quantum fluctuation
in the storage ring. Fokker-Planck equation arises frequently in the theory of
stochastic processes. The physical interpretation of the variables in this equation
is that, the probability that a random variable has the value x at time t. For exam-
ple, u(x,t) might be the probability distribution of the position of a harmonically
bound particle in Brownian motion, or probability distribution of the deflection x
of an electrical noise traces at time t.

Problem 3. Let us consider the following generalized Fokker-Planck equation

( t−ν

ν+1 )ut + α( ∂
∂x

x ∂
∂x

)λu+ βxµu(x, t) = 0,

u(x, 0) = f(x).

Solution: In order to obtain a solution for equation (3.1) in view of [2],[3] first
by solving the first order PDE with respect to t, and applying the initial condition
(3.2), we get the following relationship

u(x, t) = exp(−βtν+1xµ) exp(−axν+1( ∂
∂x

x ∂
∂x

)λ)f(x).

In order to find the result of the action of exponential operator, we make use of
part three of Lemma 1.1, by choosing λ = β = 0.5, k = atν+1, s = ( ∂

∂x
x ∂
∂x

, ) to
obtain

u(x, t) = exp(−βtν+1xµ) exp(−axν+1( ∂
∂x

x ∂
∂x

)λ)f(x), ) (3.1)

or

u(x, t) = exp(−λtν+1xµ) 1
π

∫∞
0 g(r)dr,

where, g(r) = e−rλ(atν+1 cosλπ) sin(atν+1rλ sinλπ)(
∫∞
0 dτe−rτ−τ ∂

∂x
x ∂

∂x f(x)).
Let us take f(x) = exp(−qx), λ = 0.5 ,

u(x, t) = exp(−0.5tν+1xµ) 1
π

∫∞
0

e−ar0.5tν+1cos0.5π......
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.......... sin(atν+1r0.5 sin 0.5π)(
∫∞
0 dτe−rτ−τ ∂

∂x
x ∂

∂x exp(−qx))dr,

then after some manipulation, and using the following relationship [5]

exp(−τ ∂
∂x

x ∂
∂x

) exp(−qx) =
∑∞

n=1 Ln(qx, τ ), (3.2)

we get the formal solution as below

u(x, t) = exp(−0.5tν+1xµ) 1
π

∫∞
0

sin(πatν+1
√
r)(

∫∞
0

dτe−rτ−τ ∂
∂x

x ∂
∂x exp(−qx))dr,

or,

u(x, t) = exp(−0.5tν+1xµ) 1
π

∫∞
0 sin(πatν+1

√
r)(

∫∞
0 e−rτ

∑∞
n=1 Ln(qx, τ )dτ )dr.

At this point, in order to simplify the above relationship, we consider the following
- well – known relationship for Laguerre polynomials of two variable as below.

∑∞
n=1 Ln(x, τ ) =

1
1−τ

exp( x
1−τ

), (3.3)

u(x, t) = exp(−0.5tν+1xµ) 1
π

∫∞
0 sin(πatν+1√r)(

∫∞
0 e−rτ 1

1−τ
exp( qx

1−τ
)dτ )dr,

the above double integral may be simplified as following

u(x, t) = exp(−0.5tν+1xµ) 1
π

∫∞
0

1
1−τ

exp( qx
1−τ

)dτ (
∫∞
0

e−rτ sin(πatν+1√r)dr,
thus the result will become

u(x, t) = (aπt1+ν)2

2 exp(−0.5tν+1xµ)
∫∞
0

1
τ(1−τ)

√
τ
exp( qx

1−τ
− (aπt1+ν)2

4τ )dτ .

Remark. For the general case,0 < λ < 1,λ 6= 0.5 , and f(x) is any differentiable
function of all orders (we assume that,f(x) has Taylor series expansion ), we may
solve the above fractional partial differential equation by making use of the above
procedure. The procedure as described above should be generally applicable to the
most fractional partial differential equations with non - constant coefficients.

4. Conclusion

Operational methods provide fast and universal mathematical tool for obtaining
the solution of PDEs or even FPDEs. Combination of integral transforms, opera-
tional methods and special functions give more powerful analytical instrument for
solving a wide range of engineering and physical problems. The paper is devoted
to study exponential operators and their applications in solving certain boundary
value problems such as the space fractional Fokker-Planck equation. We show that
the present technique could be used to solve different kind of fractional partial dif-
ferential equations. The present method can be readily applied to certain singular
integral equations such as generalized Lamb - Bateman equation. The results of
these developments will be published in future papers.
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