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Some properties of Generalized Fibonacci difference bounded and
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abstract: The main objective of this paper is to introduced a new sequence
space lp(F̂ (r, s)), 1 ≤ p ≤ ∞ by using the band matrix F̂ (r, s). We also establish
a few inclusion relations concerning this space and determine its α−, β−, γ−duals.
We also characterize some matrix classes on the space lp(F̂ (r, s)) and examine some
geometric properties of this space.
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1. Introduction

Let ω be the space of all real-valued sequences. Any vector subspace of ω is
called a sequence space. By l∞, c, c0 and lp (1 ≤ p < ∞), we denote the sets of all
bounded, convergent, null sequences and p−absolutely convergent series, respec-
tively. Also we use the convensions that e = (1, 1, ...) and e(n) is the sequence whose
only non-zero term is 1 in the nth place for each n ∈ N, where N = {0, 1, 2, ...} .

Let Xand Y be two sequence spaces and A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. We write A = (ank) instead of A = (ank)

∞
n,k=0. Then

we say that A defines a matrix mapping from X into Y and we denote it by writing
A : X → Y if for every sequence x = (xk)

∞
k=0 ∈ X, the sequence Ax = {An(x)}∞n=0 ,

the A-transform of x, is in Y, where

An(x) =
∞
∑

k=0

ankxk (n ∈ N) . (1.1)
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For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to ∞. Also if x ∈ ω, then we write x = (xk)

∞
k=0 .

By (X,Y ), we denote the class of all matrices A such that A : X → Y. Thus
A ∈ (X,Y ) iff the series on the right-hand side of (1.1) converges for each n ∈ N

and every x ∈ X and we have Ax ∈ Y for all x ∈ X.
The approach constructing a new sequence space by means of matrix domain

has recently employed by several authors.
The matrix domain XA of an infinite matrix A in a sequence space X is defined

by
XA = {x = (xk) ∈ ω : Ax ∈ X} .

Let ∆ denote the matrix ∆ = (∆nk) defined by

∆nk =

{

(−1)n−k, n− 1 ≤ k ≤ n
0, 0 ≤ k < n− 1 or k > n

The concept of matrix domain we refer to [2,3,4,9,12,13,14,15,16,17,18].
Define the sequence {fn}∞n=0 of Fibonacci numbers given by the linear recurrence
relations f0 = f1 = 1 and fn = fn−1 + fn−2, n ≥ 2.
Fibonacci numbers have many interesting properties and applications. For exam-
ple, the ratio sequences of Fibonacci numbers converges to the golden ratio which
is important in sciences and arts. Also some basic properties of Fibonacci numbers
are given as follows:

lim
n→∞

fn+1

fn
=

1 +
√
5

2
= α (golden ratio),

n
∑

k=0

fk = fn+2 − 1 (n ∈ N),

∑

k

1

fk
converges,

fn−1fn+1 − f2
n = (−1)n+1 (n ≥ 1)(Cassiniformula)

Substituting for fn+1 in Cassini’s formula yields f2
n−1 + fnfn−1 − f2

n = (−1)n+1.
For the properties of Fibonnaci numbers and matrix domain related to Fibonnaci
numbers we refer to [1,8,11].

A sequence space X is called a FK−space if it is complete linear metric space
with continuous coordinates pn : X → R(n ∈ N), where R denotes the real field
and pn(x) = xn for all x = (xk) ∈ X and every n ∈ N. A BK− space is a normed
FK− space, that is a BK−space is a Banach space with continuous coordinates.
The space lp(1 ≤ p < ∞) is a BK-space with the norm

‖ x ‖p=
(

∞
∑

k=0

| xk |p
)1/p
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and c0, c and l∞ are BK-spaces with the norm

‖ x ‖∞= sup
k

|xk|.

The sequence space λ is said to be solid if and only if

λ̃ = {(uk) ∈ ω : ∃ (xk) ∈ λ such that | uk |≤| xk | ∀k ∈ N} ⊂ λ.

A sequence (bn) in a normed space X is called a Schauder basis for X if every
x ∈ X, there is a unique sequence (αn) of scalars such that x =

∑

n αnbn, i.e.,

lim
m→∞

‖ x−
m
∑

n=0

αnbn ‖= 0.

The α−, β−, γ−duals of the sequence space X are respectively defined by
Xα = {a = (ak) ∈ ω : ax = (akxk) ∈ l1 ∀ x = (xk) ∈ X} ,
Xβ = {a = (ak) ∈ ω : ax = (akxk) ∈ cs ∀ x = (xk) ∈ X} ,
and
Xγ = {a = (ak) ∈ ω : ax = (akxk) ∈ bs ∀ x = (xk) ∈ X} ,
where cs and bs are the sequence spaces of all convergent and bounded series,
respectively (see for instance [2,7,15]).
Now let A = (ank) be an infinite matrix and consider the following conditions:

sup
n

∑

k

|ank|q < ∞, q =
p

p− 1
(1.2)

lim
n

ank exists ∀ k (1.3)

sup
K∈F

∑

k

∣

∣

∣

∣

∣

∑

n∈K

ank

∣

∣

∣

∣

∣

q

< ∞, q =
p

p− 1
(1.4)

lim
n

∑

k

|ank| =
∑

k

∣

∣

∣lim
n

ank

∣

∣

∣ (1.5)

Now we may give the following lemma due to Stieglitz and Tietz [12] on the char-
acterization of the matrix transformations between some sequence spaces.

Lemma 1.1. The following statements hold:

(a) A = (ank) ∈ (lp, c) iff (1.2),(1.3) holds, 1 < p < ∞.

(b) A = (ank) ∈ (lp, l1) iff (1.4) holds, 1 < p < ∞.

(c) A = (ank) ∈ (l∞, c) iff (1.3),(1.5) holds.

(d) A = (ank) ∈ (lp, l∞) iff (1.2) holds, 1 < p < ∞.
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2. Fibonacci difference sequence space lp(F̂ (r, s))

In this section, we have used the Fibonacci band matrix F̂ (r, s) = (fnk(r, s))„
which was introduced by Candan [5], and introduce the sequence space lp(F̂ (r, s)).
Also we present some inclusion theorems and construct the Schauder basis of the
space lp(F̂ (r, s)).

Let fn be the nth Fibonacci number for every n ∈ N. Then we define the infinite
matrix F̂ (r, s) = (fnk(r, s)) by

fnk(r, s) =











s fn+1

fn
, k = n− 1

r fn
fn+1

, k = n

0, 0 ≤ k < n− 1 or k > n

(2.1)

where n, k ∈ N and r, s ∈ R− {0} .
Define the sequence y = (yn), which will be frequently used, by the F̂ (r, s) -

transform of a sequence x = (xn), i.e., yn = F̂ (r, s)n(x), where

yn =







r f0
f1
x0 = rx0, n = 0

r
fn

fn+1
xn + s

fn+1

fn
xn−1, n ≥ 1

(2.2)

where n ∈ N .
Moreover it is obvious that F̂ (r, s) is a triangle. Thus it has a unique inverse

F̂ (r, s)−1 = (f̂nk(r, s)
−1) and it is given by

f̂nk(r, s)
−1 =

{

1
r

(

− s
r

)n−k f2
n+1

fkfk+1
, 0 ≤ k ≤ n

0, k > n
(2.3)

for all n, k ∈ N. There we have by (2.3) that

xk =

k
∑

j=0

1

r

(

−s

r

)k−j f2
k+1

fjfj+1
yj; (k ∈ N). (2.4)

Now we introduce new Fibonacci sequence spaces as follows

lp(F̂ (r, s)) =

{

x = (xn) ∈ ω :

∞
∑

n=1

∣

∣

∣

∣

r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣

∣

∣

∣

p

< ∞
}

, 1 ≤ p < ∞

and

l∞(F̂ (r, s)) =

{

x = (xn) ∈ ω : sup
n

∣

∣

∣

∣

r
fn

fn+1
xn + s

fn+1

fn
xn−1

∣

∣

∣

∣

< ∞
}

.

The sequence spaces lp(F̂ (r, s)) and l∞(F̂ (r, s)) may be redefined as

lp(F̂ (r, s)) = (lp)F̂ (r,s) , l∞(F̂ (r, s)) = (l∞)F̂ (r,s) . (2.5)

In this section, we give some results related to the space lp(F̂ (r, s)), 1 ≤ p ≤ ∞.
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Theorem 2.1. Let 1 ≤ p < ∞. Then lp(F̂ (r, s)) is a BK-space with norm

‖ x ‖lp(F̂ (r,s))=

(

∑

k

∣

∣

∣F̂ (r, s)k(x)
∣

∣

∣

p
)1/p

and l∞(F̂ (r, s)) is a BK-space with norm

‖ x ‖l∞(F̂ (r,s))= sup
k

|F̂ (r, s)k(x)|.

Proof. Since (2.5) holds, lp and l∞ are BK-spaces with respect to their natural

norm and the matrix F̂ (r, s) is triangular matrix. By Theorem 4.3.3 of Wilansky
[18] gives the fact that the spaces lp(F̂ (r, s)), 1 ≤ p < ∞ and l∞(F̂ (r, s)) are BK
space with the given norms. ✷

Remark 2.2. The spaces lp(F̂ (r, s)) for 1 ≤ p < ∞ and l∞(F̂ (r, s)) are non-
absolute type because ‖ x ‖lp(F̂ (r,s)) 6=‖| x |‖lp(F̂ )(r,s) and ‖ x ‖l∞(F̂ (r,s)) 6=‖| x |‖l∞(F̂ )(r,s)

, where | x |= (| xk |).

Theorem 2.3. The sequence spaces lp(F̂ (r, s)), 1 ≤ p < ∞ and l∞(F̂ (r, s)) of
non-absolute type are linearly isomorphic to the spaes lp and l∞, respectively, i.e.

lp(F̂ (r, s)) ∼= lp and l∞(F̂ (r, s)) ∼= l∞.

Proof. To prove this, we have to show that there exists a linear bijective mapping
between lp(F̂ (r, s)) and lp for 1 ≤ p ≤ ∞.

Let us consider a mapping T defined from lp(F̂ (r, s)) to lp by Tx = F̂ (r, s)(x) =

y ∈ lp for every x ∈ lp(F̂ (r, s)), where x = (xk) and y = (yk).
It is obvious that T is linear. Further, it is trivial that x = 0 whenever Tx = 0.

Hence T is injective.
Let y = (yk) ∈ lp, 1 ≤ p ≤ ∞ and define the sequence x = (xk) by

xk =

k
∑

j=0

1

r

(

−s

r

)k−j f2
k+1

fjfj+1
yj for all k ∈ N.

Then, in the cases 1 ≤ p < ∞ and p = ∞ we get

‖ x ‖lp(F̂ (r,s))=

(

∑

k

∣

∣

∣r fk
fk+1

xk + s
fk+1

fk
xk−1

∣

∣

∣

p
)1/p

=

(

∑

k

∣

∣

∣

∣

∣

r fk
fk+1

k
∑

j=1

1
r

(

− s
r

)k−j f2
k+1

fjfj+1
yj + s fk+1

fk

k−1
∑

j=1

1
r

(

− s
r

)k−j−1 f2
k+1

fjfj+1
yj

∣

∣

∣

∣

∣

p)1/p

=

(

∑

k

| yk |p
)1/p

=‖ y ‖lp< ∞.
Similarly we can show that ‖ x ‖l∞(F̂ (r,s))=‖ y ‖∞ .

Thus we have x ∈ lp(F̂ (r, s)) for 1 ≤ p ≤ ∞. Hence T is surjective and norm
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preserving. Consequently T is a linear bijection which proves that the spaces
lp(F̂ )(r, s) and lp are linearly isomorphic for 1 ≤ p ≤ ∞. ✷

Theorem 2.4. lp ⊂ lp(F̂ (r, s)) holds for 1 ≤ p ≤ ∞ and for finite r, s such that
∣

∣− s
r

∣

∣ ≥ 1, | r |≤ 1 and | s |≤ 1/2.

Proof. Let x = (xk) ∈ lp and 1 ≤ p ≤ ∞. Since the inequalities fk
fk+1

≤ 1 and
fk+1

fk
≤ 2 for every k ∈ N therefore we have

∑

k

| F̂ (r, s)k(x) |p

=
∑

k

∣

∣

∣r fk
fk+1

xk + s fk+1

fk
xk−1

∣

∣

∣

p

≤| r |p ∑
k

| xk |p + | 2s |p ∑
k

| xk−1 |p

and
supk∈N

| F̂ (r, s)k(x) |≤ (| r | + | 2s |) supk∈N
| xk |

which together gives
‖ x ‖lp(F̂ (r,s))≤ (| r | + | 2s |) ‖ x ‖lp for 1 ≤ p ≤ ∞, where r, s are finite.

Therefore ‖ x ‖lp(F̂ )(r,s)< ∞, since x ∈ lp.

Hence lp ⊆ lp(F̂ (r, s)). Further since x = (xk) =
(

1
r

(

− s
r

)k
f2
k+1

)

is in lp(F̂ (r, s))−
lp for

∣

∣− s
r

∣

∣ ≥ 1. Therefore lp ⊂ lp(F̂ (r, s)) for 1 ≤ p ≤ ∞. ✷

Theorem 2.5. For 1 ≤ p < q, lp(F̂ (r, s)) ⊂ lq(F̂ (r, s)) holds.

Proof. Let 1 ≤ p < q and x ∈ lp(F̂ (r, s)). Then we obtain from Theorem 2.3 that

y ∈ lp, where y = F̂ (r, s)(x). We have lp ⊂ lq which gives y ∈ lq. This means that

x ∈ lq(F̂ (r, s)). Hence we have lp(F̂ (r, s)) ⊂ lq(F̂ (r, s)). ✷

Theorem 2.6. If
∣

∣− s
r

∣

∣ ≥ 1 then the space l∞ does not include the space lp(F̂ (r, s)).

Proof. Let
∣

∣− s
r

∣

∣ ≥ 1 and x = (xk) =
(

1
r

(

− s
r

)k
f2
k+1

)

. We know that f2
k+1 → ∞

as k → ∞ and F̂ (r, s)(x) = (1, 0, 0, 0, ...). Therefore the sequence lies in lp(F̂ (r, s))
but not in l∞. This completes the proof. ✷

Theorem 2.7. If
∣

∣− s
r

∣

∣ ≥ 1 then the space bvp does not include the space lp(F̂ (r, s)).

Proof. Let
∣

∣− s
r

∣

∣ ≥ 1 and x = (xk) =
(

1
r

(

− s
r

)k
f2
k+1

)

. We know that f2
k+1 → ∞ as

k → ∞ and F̂ (r, s)(x) = (1, 0, 0, 0, ...) and ∆x = (∆xk) =
(

− 1
r

(

− s
r

)k−1 ( s
rf

2
k+1 + f2

k

)

)

.

Clearly for
∣

∣− s
r

∣

∣ ≥ 1, ∆x /∈ lp. Therefore the sequence lies in lp(F̂ (r, s)) but not in
bvp. This completes the proof. ✷

Lemma 2.8. [2] Let λ be a BK-space including the space φ. Then λ is solid if and
only if l∞λ ⊂ λ.
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Now we give a sequence of points of the space lp(F̂ (r, s)) which will form the

basis for the space lp(F̂ (r, s)) for 1 ≤ p < ∞.

Theorem 2.9. Let 1 ≤ p < ∞ and define the sequence c(n) ∈ lp(F̂ (r, s)) for every
fixed n ∈ N by

(c(n))k =

{

0, 0 ≤ k ≤ n− 1
1
r .
(

− s
r

)k−n
.

f2
k+1

fnfn+1
, k ≥ n

(2.6)

where n ∈ N. Then the sequence (c(n))∞n=0 is a basis for the space lp(F̂ (r, s)), and

every x ∈ lp(F̂ (r, s)) has a unique representation of the form

x =
∑

n

F̂ (r, s)n(x)c
(n). (2.7)

Proof. Let 1 ≤ p < ∞. It is obvious by that F̂ (r, s)(c(n)) = e(n) ∈ lp (k ∈ N) and

hence c(n) ∈ lp(F̂ (r, s)) for all k ∈ N.

Further, let x ∈ lp(F̂ (r, s)). For any non-negative integer m, we put x(m) =
m
∑

n=0
F̂ (r, s)n(x)c

(n).

Then we have that

F̂ (r, s)(x(m)) =
m
∑

n=0

F̂ (r, s)n(x)F̂ (r, s)(c(n)) =
m
∑

n=0

F̂ (r, s)n(x)e
(n)

and hence

F̂ (r, s)k(x − x(m)) =

{

0, 0 ≤ k ≤ m

F̂ (r, s)k(x), k > m

where k,m ∈ N.
For any given ǫ > 0, there is a non-negative integer m0 such that

∞
∑

n=m0+1

∣

∣

∣F̂ (r, s)n(x)
∣

∣

∣

p

≤
( ǫ

2

)p

.

Therefore we have for every m ≥ m0 that

‖ x− x(m) ‖lp(F̂ (r,s))

=

(

∞
∑

n=m+1

∣

∣

∣F̂ (r, s)n(x)
∣

∣

∣

p
)1/p

≤
(

∞
∑

n=m0+1

∣

∣

∣F̂ (r, s)n(x)
∣

∣

∣

p
)1/p

≤ ǫ

2
< ǫ
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which shows that lim
m→∞

‖ x − x(m) ‖lp(F̂ (r,s))= 0 and hence x is represented as in

(2.7).
Now we are going to show the uniqueness of the representation (2.7) of x ∈

lp(F̂ (r, s)). Let x =
∑

k

µk(x)c
(k). We have F̂ (r, s) is a linear mapping from lp(F̂ (r, s))

to lp. Since any matrix mapping between FK spaces is continuous, so F̂ (r, s) is con-
tinuous.
Now

F̂ (r, s)n(x) =
∑

k

µk(x)F̂ (r, s)n(c
(k)) = µn(x) (n ∈ N).

Hence the representation (2.7) is unique. ✷

3. The α-,β- and γ-duals of the space lp(F̂ (r, s))

In this section, we determine the α−, β− and γ−duals of the sequence space
lp(F̂ (r, s)). Since the case p = 1 can be proved by analogy, we omit the proof of
that case and consider only the case 1 < p ≤ ∞.

Theorem 3.1. The α-dual of the sequence space lp(F̂ (r, s)) is the set

d1 =

{

a = (ak) ∈ ω : supK∈F

∑

k

∣

∣

∣

∣

∑

n∈K

bnk

∣

∣

∣

∣

q

< ∞, q = p
p−1

}

where 1 < p ≤ ∞ and

the matrix B = (bnk) is defined as follows

bnk =

{

1
r

(

− s
r

)n−k f2
n+1

fkfk+1
an, 0 ≤ k ≤ n

0, k > n

for all n, k ∈ N and a = (an) ∈ ω.

Proof. Let a = (an) ∈ ω. Also for every x = (xn) ∈ ω, we put y = (yn) = F̂ (r, s)(x).

Then it follows by (2.4) that xk =
k
∑

j=0

1
r

(

− s
r

)k−j f2
k+1

fjfj+1
yj and

Bn(y) =
n
∑

k=0

bnkyk =
n
∑

k=0

1

r

(

−s

r

)n−k f2
n+1

fkfk+1
anyk = anxn. (3.1)

where n ∈ N.
Thus we observe by (3.1) that ax = (anxn) ∈ l1 whenever x ∈ lp(F̂ (r, s)) if and

only if By ∈ l1 whenever y ∈ lp. Therefore we derive by using the Lemma 1.1 that

supK∈F

∑

k

∣

∣

∣

∣

∑

n∈K

bnk

∣

∣

∣

∣

q

< ∞ which implies that
{

lp(F̂ (r, s))
}α

= d1. ✷

Theorem 3.2. Define the sets d2, d3 and d4 by

d2 =

{

a = (ak) ∈ ω : supn
∑

k

| dnk |q< ∞, q = p
p−1

}

,

d3 = {a = (ak) ∈ ω : limn dnk exists ∀ k} ,
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and d4 =

{

a = (ak) ∈ ω : limn

n
∑

k=0

| dnk |=∑
k

| limn dnk |
}

.

Then
{

lp(F̂ (r, s))
}β

= d2 ∩ d3 and
{

l∞(F̂ (r, s))
}β

= d2 ∩ d4 where 1 < p < ∞
and D = (dnk) is defined by

dnk =







n
∑

j=k

1
r

(

− s
r

)j−k f2
j+1

fkfk+1
an, 0 ≤ k ≤ n

0, k > n

for all n, k ∈ N.

Proof. Let a = (ak) ∈ ω and consider the equality

n
∑

k=0

akxk =

n
∑

k=0

ak





k
∑

j=0

1

r

(

−s

r

)k−j f2
k+1

fjfj+1
yj



 =

n
∑

k=0





n
∑

j=k

1

r

(

−s

r

)j−k f2
j+1

fkfk+1
aj



 yk = Dn(y)

(3.2)
where D = (dnk) is defined by

dnk =







n
∑

j=k

1
r

(

− s
r

)j−k f2
j+1

fkfk+1
an, 0 ≤ k ≤ n

0, k > n

where n, k ∈ N. Then we deduce from Lemma 1.1 that ax = (akxk) ∈ cs when-
ever x = (xk) ∈ lp(F̂ (r, s)) if and only if Dy ∈ c whenever y ∈ lp. Thus a ∈
{

lp(F̂ (r, s))
}β

if and only if a ∈ d2, a ∈ d3. Hence
{

lp(F̂ (r, s))
}β

= d2 ∩ d3.

Similarly, we can show that
{

l∞(F̂ (r, s))
}β

= d3 ∩ d4. ✷

Theorem 3.3.
{

lp(F̂ (r, s))
}γ

= d2, 1 < p ≤ ∞.

Proof. This result can be obtained from Lemma 1.1. ✷

4. Some matrix transformations related to the sequence space

lp(F̂ (r, s))

In this section, we characterize the classes
(

lp(F̂ (r, s)), X
)

, where 1 ≤ p ≤ ∞
and X is any of the spaces l∞, l1, c and c0.

We use the following lemma to prove our results.

Lemma 4.1. [2] Let C = (cnk) be defined via a sequence a = (ak) ∈ ω and the
inverse matrix V = (vnk) of the triangle matrix U = (unk) by

cnk =







n
∑

j=k

ajvjk, 0 ≤ k ≤ n

0, k > n
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for all k, n ∈ N. Then for any sequence space λ,
λγ
U = {a = (ak) ∈ ω : C ∈ (λ, l∞)} and λβ

U = {a = (ak) ∈ ω : C ∈ (λ, c)} .

Theorem 4.2. Let λ = lp, 1 ≤ p ≤ ∞ and µ be an arbitrary subset of ω. Then
A = (ank) ∈ (λF̂ (r,s), µ) if and only if

D(m) =
(

d
(m)
nk

)

∈ (λ, c) for all n ∈ N, (4.1)

D = (dnk) ∈ (λ, µ), (4.2)

where

d
(m)
nk =







m
∑

j=k

1
r

(

− s
r

)j−k f2
j+1

fkfk+1
anj , 0 ≤ k ≤ m

0, k > m

and dnk =
∞
∑

j=k

1
r

(

− s
r

)j−k f2
j+1

fkfk+1
anj for all k,m, n ∈ N.

Proof. To prove this theorem, we follow the similar way due to Kirişçi and Başar
[9]. Let A = (ank) ∈ (λF̂ (r,s), µ) and x = (xk) ∈ λF̂ (r,s). We have from (2.4),

xk =
k
∑

j=0

1
r

(

− s
r

)k−j f2
k+1

fjfj+1
yj for all k ∈ N.

From (3.2) we get

m
∑

k=0

ankxk =
m
∑

k=0





m
∑

j=k

1

r

(

−s

r

)j−k f2
j+1

fkfk+1
anj



 yk =
m
∑

k=0

d
(m)
nk yk = D(m)

n (y), (4.3)

for all m,n ∈ N.
Since Ax exists, D(m) ∈ (λ, c). As m → ∞ in the equality (4.3), we obtain Ax = Dy
which implies D ∈ (λ, µ).

Conversely, suppose (4.1) and (4.2) holds and take any x = (xk) ∈ λF̂ (r,s). Then

we have (dnk) ∈ λβ which gives together with (4.1) that An = (ank)k∈N ∈ λβ

F̂ (r,s)

for all n ∈ N. Thus Ax exists. Therefore we derive by equality (4.3) as m → ∞
that Ax = Dy and this shows that A ∈ (λF̂ (r,s), µ). ✷

Now we consider the following conditions

sup
n

∑

k

∣

∣

∣d
(m)
nk

∣

∣

∣

q

< ∞, q =
p

p− 1
(4.4)

lim
n

d
(m)
nk exists ∀ k (4.5)

lim
n

∑

k

∣

∣

∣d
(m)
nk

∣

∣

∣ =
∑

k

∣

∣

∣lim
n

d
(m)
nk

∣

∣

∣ (4.6)

sup
n

∑

k

|dnk|q < ∞, q =
p

p− 1
(4.7)



Some properties of Generalized Fibonacci sequences 47

lim
n

dnk exists ∀ k (4.8)

lim
n

∑

k

|dnk| =
∑

k

∣

∣

∣lim
n

dnk

∣

∣

∣ (4.9)

sup
K∈F

∑

k

∣

∣

∣

∣

∣

∑

n∈K

dnk

∣

∣

∣

∣

∣

q

< ∞, q =
p

p− 1
(4.10)

Combining Theorems 4.2 and Lemma 1.1, we derive the following results:

Corollary 4.3. Let A = (ank) be an infinite matrix. Then the following statements
hold:

(a) A ∈ (lp(F̂ (r, s)), c), 1 < p < ∞ if and only if (4.4),(4.5),(4.7),(4.8).

(b) A ∈ (lp(F̂ (r, s)), l1), 1 < p < ∞ if and only if (4.4),(4.5),(4.10).

(c) A ∈ (l∞(F̂ (r, s)), c) if and only if (4.5),(4.6),(4.8),(4.9).

(d) A ∈ (lp(F̂ (r, s)), l∞), 1 < p < ∞ if and only if (4.4),(4.5),(4.7).

(e) A ∈ (l∞(F̂ (r, s)), l1) if and only if (4.5),(4.6),(4.10).

(f) A ∈ (l∞(F̂ (r, s)), l∞) if and only if (4.5),(4.6),(4.7).

5. Some geometric properties of the space lp(F̂ (r, s)) (1 < p < ∞)

In this section, we study some geometric properties of the space lp(F̂ (r, s)) (1 <
p < ∞).

For geometric properties we refer to [8,6,10].
A Banach space X is said to have the Banach-Saks property if every bounded

sequence (xn) in X admits a subsequence (zn) such that the sequence {tk(z)} is
convergent in the norm in X (see [17]), where

tk(z) =
1

k + 1
(z0 + z1 + ...+ zk) (k ∈ N) (5.1)

A Banach space X is said to have the weak Banach-Saks property whenever,
given any weakly null sequence (xn) ⊂ X , there exists a subsequence (zn) of (xn)
such that the sequence {tk(z)} is strongly convergent to zero.

In [6], García-Falset introduced the following coefficient:

R(X) = sup
{

lim inf
n→∞

‖ xn − x ‖: (xn) ⊂ B(X), xn → 0(weakly), x ∈ B(X)
}

(5.2)
where B(X) denotes the unit ball of X.

Remark 5.1. [6] A Banach space X with R(X) < 2 has the weak fixed point
property.
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Let 1 < p < ∞. A Banach space is said to have the Banach-Saks type p or the
property (BS)p if every weakly null sequence (xk) has a subsequence (xkl

) such
that for some C > 0,

‖
n
∑

l=0

xkl
‖< C(n+ 1)1/p (5.3)

for all n ∈ N (see [10]).
Now we are going to prove some geometric properties of the space lp(F̂ (r, s))

for 1 < p < ∞.

Theorem 5.2. Let 1 < p < ∞. Then the space lp(F̂ (r, s)) has the Bnach-Saks type
p.

Proof. Let (ǫn) be a sequence of positive numbers for which
∑

ǫn ≤ 1/2, and
also let (xn) be a weakly null sequence in B(lp(F̂ (r, s))). Set z0 = x0 = 0 and
z1 = xn1

= x1. Then there exists m1 ∈ N such that

‖
∞
∑

i=m1+1

z1(i)e
(i)‖lp(F̂ (r,s)) < ǫ1 (5.4)

Since (xn) being a weakly null sequence implies xn → 0 coordinatewise, there is an
n2 ∈ N such that

‖
m1
∑

i=0

xn(i)e
(i)‖lp(F̂ (r,s)) < ǫ1, when n ≥ n2.

Set z2 = xn2
. Then there exists an m2 > m1 such that

‖
∞
∑

i=m2+1

z2(i)e
(i)‖lp(F̂ (r,s)) < ǫ2.

Again using the fact that xn → 0 coordinatewise, there exists an n3 ≥ n2 such that

‖
m2
∑

i=0

xn(i)e
(i)‖lp(F̂ (r,s)) < ǫ2, when n ≥ n3.

If we continue this process, we can find two increasing subsequences (mi) and (ni)
such that

‖
mj
∑

i=0

xn(i)e
(i)‖lp(F̂ (r,s)) < ǫj for each n ≥ nj+1

and

‖
∞
∑

i=mj+1

zj(i)e
(i)‖lp(F̂ (r,s)) < ǫj , where zj = xnj

.

Hence

‖
n
∑

j=0

zj‖lp(F̂ (r,s))
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= ‖
n
∑

j=0

(

mj−1
∑

i=0

zj(i)e
(i) +

mj
∑

i=mj−1+1

zj(i)e
(i) +

∞
∑

i=mj+1

zj(i)e
(i)

)

‖lp(F̂ (r,s))

≤ ‖
n
∑

j=0

(

mj
∑

i=mj−1+1

zj(i)e
(i)

)

‖lp(F̂ (r,s)) + 2
n
∑

j=0

ǫj .

Since z ∈ lp(F̂ (r, s)) therefore there exists C > 0 such that ‖z‖lp(F̂ (r,s)) ≤ C.

Therefore we have that

‖
n
∑

j=0

(

mj
∑

i=mj−1+1

zj(i)e
(i)

)

‖lp(F̂ (r,s))

≤
n
∑

j=0

mj
∑

i=mj−1+1

∣

∣

∣
r fi
fi+1

zj(i) + s fi+1

fi
zj(i− 1)

∣

∣

∣

p

≤
n
∑

j=0

∞
∑

i=0

∣

∣

∣r fi
fi+1

zj(i) + s fi+1

fi
zj(i− 1)

∣

∣

∣

p

≤
n
∑

j=0

‖z‖lp(F̂ (r,s))

≤ Cp(n+ 1).
Hence we obtain

‖
n
∑

j=0

(

mj
∑

i=mj−1+1

zj(i)e
(i)

)

‖lp(F̂ (r,s)) ≤ C(n+ 1)p.

By using the fact that 1 ≤ (n+ 1)1/p for all n ∈ N and 1 < p < ∞, we have

‖
n
∑

j=0

zj‖lp(F̂ (r,s)) ≤ C(n+ 1)p + 1 ≤ (C + 1)(n+ 1)p.

Hence lp(F̂ (r, s)) has the Banach-Saks type p. ✷

Remark 5.3. Note that R
(

lp(F̂ (r, s))
)

= R (lp) = 21/p since lp(F̂ (r, s)) is linearly

isomorphic to lp.

By Remarks 5.1 and 5.3, we have the following theorem.

Theorem 5.4. The space lp(F̂ (r, s)) has the weak fixed point property, where 1 <
p < ∞.
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