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Dynamic Equations with Variable Coefficients on a Time Scale
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abstract: Let T be a periodic time scale. The purpose of this paper is to
use Krasnosel’skĭı’s fixed point theorem to prove the existence of positive periodic
solutions for nonlinear neutral dynamic equations with variable coefficients on a
time scale. We invert these equations to construct a sum of a contraction and
a compact map which is suitable for applying the Krasnosel’skĭı’s theorem. The
results obtained here extend the work of Candan [11].
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1. Introduction

Let T be a periodic time scale such that 0 ∈ T. In this paper, we are inter-
ested in the analysis of qualitative theory of positive periodic solutions of dynamic
equations. Motivated by the papers [1]– [7], [10]– [20] and the references therein,
we consider the following two kinds of nonlinear neutral dynamic equations with
variable coefficients

(x (t)− c (t)x (t− τ))△ = −a (t) xσ (t) + f (t, x (t− τ )) , (1.1)

where x△ is the △-derivative on T (see [8]). Throughout this paper we assume
that τ = mω if T has period ω and τ is fixed if T = R. Our purpose here is to use
the Krasnosel’skĭı’s fixed point theorem to show the existence of positive periodic
solutions on time scales for equation (1.1). To reach our desired end we have to
transform (1.1) into integral equation written as a sum of two mapping; one is
a contraction and the other is compact. After that, we use Krasnosel’skĭı’s fixed
point theorem, to show the existence of a positive periodic solution for equation
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(1.1). In the special case T = R, in [11] we show that (1.1) have a positive periodic
solution by using Krasnosel’skĭı’s fixed point theorem.

The organization of this paper is as follows. In Section 2, we present some
preliminary material that we will need through the remainder of the paper. We
will state some facts about the exponential function on a time scale as well as the
Krasnosel’skĭı’s fixed point theorem. For details on Krasnosel’skĭı’s theorem we
refer the reader to [21]. Also, we present the inversion of (1.1), and we give the
Green’s functions of (1.1), which play an important role in this paper. In Section 3
and Section 4, we present our main results on existence of positive periodic solutions
of (1.1). The results presented in this paper extend the main results in [11].

2. Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The
study of dynamic equations on time scales is a fairly new subject, and research in
this area is rapidly growing (see [1], [3], [5]– [9], [16], [17] and papers therein).
The theory of dynamic equations unifies the theories of differential equations and
difference equations. We suppose that the reader is familiar with the basic concepts
concerning the calculus on time scales for dynamic equations. Otherwise one can
find in Bohner and Peterson books [8] and [9] most of the material needed to read
this paper. We start by giving some definitions necessary for our work. The notion
of periodic time scales is introduced in Atici et al. [6] and Kaufmann and Raffoul
[16]. The following two definitions are borrowed from [6] and [16].

Definition 2.1. We say that a time scale T is periodic if there exists a ω > 0 such
that if t ∈ T then t±ω ∈ T. For T 6= R, the smallest positive ω is called the period
of the time scale.

Below are examples of periodic time scales taken from [16].

Example 2.2. The following time scales are periodic.

(1) T =
⋃∞

i=−∞
[2 (i− 1)h, 2ih] , h > 0 has period ω = 2h.

(2) T = hZ has period ω = h.
(3) T = R.
(4) T = {t = k − qm : k ∈ Z,m ∈ N0} where, 0 < q < 1 has period ω = 1.

Remark 2.3 ( [16]). All periodic time scales are unbounded above and below.

Definition 2.4. Let T 6= R be a periodic time scales with period ω. We say that
the function f : T → R is periodic with period T if there exists a natural number
n such that T = nω, f (t± T ) = f (t) for all t ∈ T and T is the smallest number
such that f (t± T ) = f (t). If T = R, we say that f is periodic with period T > 0
if T is the smallest positive number such that f (t± T ) = f (t) for all t ∈ T.

Remark 2.5 ( [16]). If T is a periodic time scale with period ω, then σ (t± nω) =
σ (t)±nω. Consequently, the graininess function µ satisfies µ (t± nω) = σ (t± nω)−
(t± nω) = σ (t)− t = µ (t) and so, is a periodic function with period ω.
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Our first two theorems concern the composition of two functions. The first
theorem is the chain rule on time scales ( [8], Theorem 1.93).

Theorem 2.6 (Chain Rule). Assume ν : T → R is strictly increasing and T̃ :=

ν (T) is a time scale. Let ω : T̃ → R. If ν△ (t) and ω△̃ (ν (t)) exist for t ∈ T
k, then

(ω ◦ ν)
△

=
(
ω△̃ ◦ ν

)
ν△.

In the sequel we will need to differentiate and integrate functions of the form
f (t− r (t)) = f (ν (t)) where, ν (t) := t− r (t). Our second theorem is the substi-
tution rule ( [8], Theorem 1.98).

Theorem 2.7 (Substitution). Assume ν : T → R is strictly increasing and T̃ :=
ν (T) is a time scale. If f : T → R is rd-continuous function and ν is differentiable
with rd-continuous derivative, then for a, b ∈ T,

∫ b

a

f (t) ν△ (t)△t =

∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) △̃s.

A function p : T → R is said to be regressive provided 1 + µ (t) p (t) 6= 0 for all
t ∈ T

k. The set of all regressive rd-continuous function f : T → R is denoted by R

while the set R+ = {f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T}.
Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T is defined

by

ep (t, s) = exp

(∫ t

s

1

µ (z)
Log (1 + µ (z) p (z))△z

)
. (2.1)

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the exponential
function y (t) = ep (t, s) is the solution to the initial value problem y△ = p (t) y,
y (s) = 1. Other properties of the exponential function are given in the following
lemma.

Lemma 2.8 ( [8]). Let p, q ∈ R. Then
(i) e0 (t, s) = 1 and ep (t, t) = 1;
(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s) ;

(iii)
1

ep (t, s)
= e⊖p (t, s) , where ⊖p (t) = −

p (t)

1 + µ (t) p (t)
;

(iv) ep (t, s) =
1

ep (s, t)
= e⊖p (s, t) ;

(v) ep (t, s) ep (s, r) = ep (t, r) ;

(vi) e△p (., s) = pep (., s) and

(
1

ep (., s)

)△

= −
p (t)

eσp (., s)
.

Theorem 2.9 ( [7], Theorem 2.1). Let T be a periodic time scale with period ω > 0.
If p ∈ Crd (T) is a periodic function with the period T = nω, then

∫ b+T

a+T

p (u)△u =

∫ b

a

p (u)△u, ep (b+ T, a+ T ) = ep (b, a) if p ∈ R,
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and ep (t+ T, t) is independent of t ∈ T whenever p ∈ R.

Lemma 2.10 ( [1]). If p ∈ R+, then

0 < ep (t, s) ≤ exp

(∫ t

s

p (u)△u

)
, ∀t ∈ T.

Corollary 2.11 ( [1]). If p ∈ R
+ and p (t) < 0 for all t ∈ T, then for all s ∈ T

with s ≤ t we have

0 < ep (t, s) ≤ exp

(∫ t

s

p (u)△u

)
< 1.

We state Krasnosel’skĭı’s fixed point theorem which enables us to prove the
existence of positive periodic solutions to (1.1). For its proof we refer the reader
to [21].

Theorem 2.12 (Krasnosel’skĭı). Let D be a closed convex nonempty subset of a
Banach space (B, ‖.‖). Suppose that A and B map D into B such that

(i) x, y ∈ D, implies Ax+By ∈ D,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az +Bz.

Let T > 0, T ∈ T be fixed and if T 6= R, T = np for some n ∈ N. By the
notation [a, b] we mean

[a, b] = {t ∈ T : a ≤ t ≤ b} ,

unless otherwise specified. The intervals [a, b) , (a, b] and (a, b) are defined similarly.
Define PT = {ϕ : T → R | ϕ ∈ C and ϕ (t+ T ) = ϕ (t)} where C is the space of

continuous real-valued functions on T. Then (PT , ‖·‖) is a Banach space with the
supremum norm

‖ϕ‖ = sup
t∈T

|ϕ (t)| = sup
t∈[0,T ]

|ϕ (t)| .

We will need the following lemma whose proof can be found in [16].

Lemma 2.13. Let x ∈ PT . Then ‖xσ‖ = ‖x ◦ σ‖ exists and ‖xσ‖ = ‖x‖ .

In this paper we assume that a ∈ R+, c are continuous and for all t ∈ T,

a (t+ T ) = a (t) , c (t+ T ) = c (t) , (2.2)

where c△ is continuous. Also, we assume

∫ T

0

a (s)△s > 0. (2.3)
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We also assume that the function f (t, x) is continuous in their respective arguments
and periodic in t with period T , that is,

f (t+ T, x) = f (t, x) . (2.4)

The following lemma is essential for our results on existence of positive periodic
solutions of (1.1).

Lemma 2.14. Suppose (2.2)–(2.4) hold. If x ∈ PT , then x is a solution of equation
(1.1) if and only if

x (t) = c (t)x (t− τ ) +

∫ t+T

t

G (t, s) [f (s, x (s− τ ))− a (s) cσ (s)xσ (s− τ)]△s,

(2.5)
where

G (t, s) =
ea (s, t)

ea (T, 0)− 1
. (2.6)

Proof. Let x ∈ PT be a solution of (1.1). First we write this equation as

(x (t)− c (t)x (t− τ ))
△
+ a (t) (xσ (t)− cσ (t)xσ (t− τ ))

= f (t, x (t− τ ))− a (t) cσ (t)xσ (t− τ) .

Multiply both sides of the above equation by ea (t, 0) we get

{
(x (t)− c (t)x (t− τ))△ + a (t) (xσ (t)− cσ (t)xσ (t− τ))

}
ea (t, 0)

= {f (t, x (t− τ))− a (t) cσ (t)xσ (t− τ )} ea (t, 0) .

Since ea (t, 0)
△ = a (t) ea (t, 0) we find

[(x (t)− c (t)x (t− τ )) ea (t, 0)]
△

= {f (t, x (t− τ ))− a (t) cσ (t)xσ (t− τ )} ea (t, 0) .

Taking the integral from t to t+ T , we obtain

∫ t+T

t

[(x (s)− c (s)x (s− τ )) ea (s, 0)]
△
△s

=

∫ t+T

t

{f (s, x (s− τ ))− a (s) cσ (s)xσ (s− τ)} ea (s, 0)△s.

As a consequence, we arrive at

(x (t+ T )− c (t+ T )x (t+ T − τ)) ea (t+ T, 0)− (x (t)− c (t)x (t− τ )) ea (t, 0)

=

∫ t+T

t

{f (s, x (s− τ ))− a (s) cσ (s)xσ (s− τ)} ea (s, 0)△s.
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Dividing both sides of the above equation by ea (t, 0) and using the fact that
x (t+ T ) = x (t), (2.2) and (2.4), we obtain

x (t)− c (t)x (t− τ )

=

∫ t+T

t

ea (s, t)

ea (T, 0)− 1
{f (s, x (s− τ ))− a (s) cσ (s)xσ (s− τ)}△s.

Since each step is reversible, the converse follows easily. This completes the proof.
✷

Corollary 2.15. Suppose c (t) 6= 0 for all t ∈ T and (2.2)–(2.4) hold. If x ∈ PT ,
then x is a solution of equation (1.1) if and only if

x (t) =
x (t+ τ )

c (t+ τ)

+
1

c (t+ τ )

∫ t+τ+T

t+τ

G (t+ τ , s) [a (s) cσ (s)xσ (s− τ)− f (s, x (s− τ))]△s,

(2.7)

where G is given by (2.6).

From Lemma 2.8 and Theorem 2.9, we have for all t, s ∈ R,

G (t+ T, s+ T ) = G (t, s) , G (t+ τ + T, s+ T ) = G (t+ τ , s) , (2.8)

and ∫ t+T

t

G (t, s) a (s)△s = 1,

∫ t+τ+T

t+τ

G (t+ τ, s) a (s)△s = 1. (2.9)

3. Existence of positive periodic solutions in the case |c (t)| > 1

To apply Theorem 2.12, we need to define a Banach space B, a closed convex
subset D of B and construct two mappings, one is a contraction and the other is
compact. So, we let (B, ‖·‖) = (PT , ‖·‖) and D = {ϕ ∈ B : L ≤ ϕ ≤ K}, where L is
a non-negative constant and K is a positive constant. We express equation (2.7)
as

ϕ (t) = (B1ϕ) (t) + (A1ϕ) (t) := (H1ϕ) (t) ,

where A1,B1 : D → B are defined by

(A1ϕ) (t) =
1

c (t+ τ )

∫ t+τ+T

t+τ

G (t+ τ , s) [a (s) cσ (s)ϕσ (s− τ )− f (s, ϕ (s− τ ))]△s,

(3.1)
and

(B1ϕ) (t) =
ϕ (t+ τ)

c (t+ τ)
. (3.2)
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In this section we obtain the existence of a positive periodic solution of (1.1)
by considering the two cases; 1 < c (t) <∞ and −∞ < c (t) < −1 for all t ∈ T.

Denote

F (t, x, y) = cσ (t) y −
f (t, x)

a (t)
.

In the case 1 < c (t) <∞, we assume that there exist positive constants c1 and c2
such that

c1 ≤ c (t) ≤ c2, for all t ∈ [0, T ] , (3.3)

c1 > 1, (3.4)

and for all t ∈ [0, T ] , x, y ∈ D

(c2 − 1)L ≤ F (t, x, y) ≤ (c1 − 1)K. (3.5)

Lemma 3.1. For A1 defined in (3.1), Suppose that the conditions (2.2)–(2.4) and
(3.3)–(3.5) hold. Then A1 : D → B is compact.

Proof. We first show that A1 : D → B. Clearly, if ϕ is continuous, then A1ϕ is.
Evaluating (3.1) at t+ T gives

(A1ϕ) (t+ T )

=
1

c (t+ τ + T )

∫ t+τ+2T

t+τ+T

G (t+ τ + T, s) [a (s) cσ (s)ϕσ (s− τ )− f (s, ϕ (s− τ ))]△s.

Use Theorem 2.7 with u = s− T to get

(A1ϕ) (t+ T ) =
1

c (t+ τ + T )

∫ t+τ+T

t+τ

G (t+ τ + T, u+ T )

× [a (u+ T ) cσ (u+ T )ϕσ (u+ T − τ )− f (u+ T, ϕ (u+ T − τ))]△u.

From (2.2), (2.3) and (2.8), we obtain

(A1ϕ) (t+ T ) =
1

c (t+ τ )

∫ t+τ+T

t+τ

G (t+ τ , u) {a (u) cσ (u)ϕσ (u− τ )− f (u, ϕ (u− τ ))}△u

= (A1ϕ) (t) .

That is, A1 : D → B.
We show that A1 (D) is uniformly bounded. For t ∈ [0, T ] and for ϕ ∈ D, we

have

|(A1ϕ) (t)| =

∣∣∣∣∣
1

c (t+ τ)

∫ t+τ+T

t+τ

G (t+ τ, s) [a (s) cσ (s)ϕσ (s− τ )− f (s, ϕ (s− τ))]△s

∣∣∣∣∣

≤
(c1 − 1)K

c1
.
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by (2.9) and (3.5). Thus from the estimation of |(A1ϕ) (t)| we arrive

‖A1ϕ‖ ≤
(c1 − 1)K

c1
.

This shows that A1 (D) is uniformly bounded.
It remains to show that A1 (D) is equicontinuous. Let ϕn ∈ D, where n is

a positive integer. Next we calculate (A1ϕn)
△
(t) and show that it is uniformly

bounded. By making use of (2.2) and (2.4) we obtain by taking the derivative in
(3.1) that

(A1ϕn)
△
(t) = −

c△ (t+ τ)

cσ (t+ τ )
(A1ϕn) (t)− a (t+ τ ) (A1ϕn)

σ
(t)

+
a (t+ τ )

cσ (t+ τ )

{
cσ (t+ τ)ϕσ

n (t)−
f (t+ τ , ϕn (t))

a (t+ τ )

}
.

Consequently, by invoking (2.9), (3.5) and Lemma 2.13, we obtain

∣∣∣(A1ϕn)
△ (t)

∣∣∣ ≤
(c1 − 1)K

c1

(
1

c1

∥∥c△
∥∥+ 2 ‖a‖

)
≤ D,

for some positive constant D. Hence the sequence (A1ϕn) is equicontinuous. The
Ascoli-Arzela theorem implies that a subsequence

(
A1ϕnk

)
of (A1ϕn) converges

uniformly to a continuous T -periodic function. Thus A1 is continuous and A1 (D)
is contained in a compact subset of B. ✷

Lemma 3.2. Suppose that (2.2)–(2.4), (3.3) and (3.4) hold. Then B1 : D → B is
a contraction.

Proof. Let B1 be defined by (3.2). Obviously, B1ϕ is continuous and it is easy to
show that (B1ϕ) (t+ T ) = (B1ϕ) (t). So, for any ϕ, ψ ∈ D, we have

|(B1ϕ) (t)− (B1ψ) (t)| ≤

∣∣∣∣
ϕ (t+ τ )

c (t+ τ )
−
ψ (t+ τ)

c (t+ τ )

∣∣∣∣

≤
1

c1
|ϕ (t+ τ )− ψ (t+ τ )|

≤
1

c1
‖ϕ− ψ‖ .

Then ‖B1ϕ−B1ψ‖ ≤
1

c1
‖ϕ− ψ‖. Thus B1 : D → B is a contraction by (3.4). ✷

Theorem 3.3. Suppose (2.2)–(2.4), (3.3)–(3.5) hold and there exists a t0 ∈ [0, T ]
such that F (t0, x, y) > (c2 − 1)L for any x, y ∈ D. Then equation (1.1) has a
positive T -periodic solution x in the subset D1 = {ϕ ∈ B : L < ϕ ≤ K}.
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Proof. By Lemma 3.1, the operator A1 : D → B is compact and continuous. Also,
from Lemma 3.2, the operator B1 : D → B is a contraction. Moreover, if ϕ, ψ ∈ D,
we see that

(B1ψ) (t) + (A1ϕ) (t)

=
ψ (t+ τ )

c (t+ τ)
+

1

c (t+ τ )

∫ t+τ+T

t+τ

G (t+ τ , s) [a (s) cσ (s)ϕσ (s− τ )− f (s, ϕ (s− τ))]△s

≤
K

c1
+

(c1 − 1)K

c1

∫ t+τ+T

t+τ

G (t+ τ, s) a (s)△s

=
K

c1
+

(c1 − 1)K

c1
= K.

On the other hand,

(B1ψ) (t) + (A1ϕ) (t)

=
ψ (t+ τ )

c (t+ τ)
+

1

c (t+ τ )

∫ t+τ+T

t+τ

G (t+ τ , s) [a (s) cσ (s)ϕσ (s− τ )− f (s, ϕ (s− τ ))]△s

≥
L

c2
+

(c2 − 1)L

c2

∫ t+τ+T

t+τ

G (t+ τ, s) a (s)△s

=
L

c2
+

(c2 − 1)L

c2
= L.

Clearly, all the hypotheses of the Krasnosel’skĭı’s theorem are satisfied. Thus there
exists a fixed point x ∈ D such that x = A1x + B1x. By Lemma 2.14 this fixed
point is a solution of (1.1).

Next, we prove that x ∈ D1. We just need to prove that for all t ∈ [0, T ],
x (t) > L. Otherwise, there exists t∗ ∈ [0, T ] satisfying x (t∗) = L. From (2.7), we
have

L =
x (t∗ + τ )

c (t∗ + τ)

+
1

c (t∗ + τ)

∫ t∗+τ+T

t∗+τ

G (t∗ + τ, s) {a (s) cσ (s)xσ (s− τ )− f (s, x (s− τ ))}△s

≥
L

c2
+

∫ t∗+τ+T

t∗+τ

G (t∗ + τ , s) a (s)

{
cσ (s)xσ (s− τ )−

f (s, x (s− τ ))

a (s)

}
△s.

From
∫ t∗+τ+T

t∗+τ
G (t∗ + τ, s) a (s)△s = 1, it follows that

∫ t∗+τ+T

t∗+τ

G (t∗ + τ, s) a (s) [F (s, x, y)− (c2 − 1)L]△s ≤ 0.

Noting that F (s, x, y) ≥ (c2 − 1)L and F (t0, x) > (c2 − 1)L, t0 ∈ [0, T ], we obtain

∫ t∗+τ+T

t∗+τ

G (t∗ + τ , s)γ (s) [F (s, x, y)− (c2 − 1)L]△s > 0.
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This is a contradiction. So, x ∈ D1. The proof is complete. ✷

Remark 3.4. When T = R, Theorem 3.3 reduces to Theorem 1 of [11].

In the case −∞ < c (t) < −1, we substitute conditions (3.3)–(3.5) with the
following conditions respectively. We assume that there exist a negative constants
c3 and c4 such that

c3 ≤ c (t) ≤ c4, for all t ∈ [0, T ] , (3.6)

c4 < −1, (3.7)

and for all t ∈ [0, T ] , x, y ∈ D

K − c3L ≤ −F (t, x, y) ≤ L− c4K. (3.8)

Theorem 3.5. Suppose (2.2)–(2.4) and (3.6)–(3.8) hold and there exists a t0 ∈
[0, T ] such that −F (t0, x, y) > K − c3L for any x, y ∈ D. Then equation (1.1) has
a positive T -periodic solution x in the subset D1.

The proof follows along the lines of Theorem 3.3, and hence we omit it.

Remark 3.6. When T = R, Theorem 3.5 reduces to Theorem 2 of [11].

4. Existence of positive periodic solutions in the case |c (n)| < 1

We express equation (2.5) as

ϕ (t) = (B2ϕ) (t) + (A2ϕ) (t) := (H2ϕ) (t) ,

where A2,B2 : D → B are defined by

(A2ϕ) (t) =

∫ t+T

t

G (t, s) [f (s, ϕ (s− τ ))− a (s) cσ (s)ϕσ (s− τ )]△s, (4.1)

and
(B2ϕ) (t) = c (t)x (t− τ) . (4.2)

In this section we obtain the existence of a positive periodic solution of (1.1)
by considering the two cases; 0 ≤ c (t) < 1 and −1 < c (t) ≤ 0 for all t ∈ T.

Denote

H (t, x, y) =
f (t, x)

a (t)
− cσ (t) y.

In the case 0 ≤ c (t) < 1, we assume that there exists positive constant c1 such that

0 ≤ c (t) ≤ c1, for all t ∈ [0, T ] , (4.3)

c1 < 1, (4.4)

and for all t ∈ [0, T ] , x, y ∈ D

L ≤ H (t, x, y) ≤ (1− c1)K. (4.5)
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In the case −1 < c (t) ≤ 0, we assume that there exists negative constant c2
such that

c2 ≤ c (t) ≤ 0, for all t ∈ [0, T ] , (4.6)

c2 > −1, (4.7)

and for all t ∈ [0, T ] , x, y ∈ D

L− c2K ≤ H (t, x, y) ≤ K. (4.8)

Lemma 4.1. Suppose that (2.2)–(2.4), (4.3) and (4.4) hold. If B2 is given by
(4.2), then B2 : D → B is a contraction.

Proof. Let B2 be defined by (4.2). Obviously, B2ϕ is continuous and it is easy to
show that (B2ϕ) (t+ T ) = (B2ϕ) (t). So, for any ϕ, ψ ∈ D, we have

|(B2ϕ) (t)− (B2ψ) (t)|

≤ |c (t)ϕ (t− τ)− c (t)ψ (t− τ)|

≤ |c (t)| |ϕ (t− τ)− ψ (t− τ)|

≤ c1 ‖ϕ− ψ‖ .

Then ‖B2ϕ−B2ψ‖ ≤ c1 ‖ϕ− ψ‖. Thus B2 : D → B is a contraction by (4.4). ✷

Lemma 4.2. For A2 defined in (4.1), suppose that the conditions (2.2)–(2.4) and
(4.3)–(4.5) hold. Then A2 : D → B is compact.

Proof. Let A2 : D → B be defined by (4.1). Obviously, A2ϕ is continuous and it is
easy to show that (A2ϕ) (t+ T ) = (A2ϕ) (t).

We show that A2 (D) is uniformly bounded. For t ∈ [0, T ] and for ϕ ∈ D, we
have

|(A2ϕ) (t)| =

∣∣∣∣∣

∫ t+T

t

G (t, s) [f (s, ϕ (s− τ ))− a (s) cσ (s)ϕσ (s− τ )]△s

∣∣∣∣∣

≤

∫ t+T

t

G (t, s) a (s)

[
f (s, ϕ (s− τ ))

a (s)
− cσ (s)ϕσ (s− τ )

]
△s

≤ (1− c1)K

∫ t+T

t

G (t, s) a (s)△s

≤ (1− c1)K.

by (2.9) and (4.5). Thus from the estimation of |(A2ϕ) (t)| we arrive

‖A2ϕ‖ ≤ (1− c1)K.

This shows that A2 (D) is uniformly bounded.
It remains to show that A2 (D) is equicontinuous. Let ϕn ∈ D, where n is

a positive integer. Next we calculate (A2ϕn)
△
(t) and show that it is uniformly
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bounded. By making use of (2.2) and (2.4) we obtain by taking the derivative in
(4.1) that

(A2ϕn)
△
(t) = f (t, ϕ (t− τ ))− a (t) cσ (t)ϕσ (t− τ )− a (t) (A2ϕn)

σ
(t) .

Consequently, by invoking (2.9), (4.5) and Lemma 2.13, we obtain

∣∣∣(A2ϕn)
△
(t)

∣∣∣ ≤ (1− c1)K ‖a‖+ (1− c1)K ‖a‖

= 2 (1− c1)K ‖a‖ ≤ D,

for some positive constant D. Hence the sequence (A2ϕn) is equicontinuous. The
Ascoli-Arzela theorem implies that a subsequence

(
A2ϕnk

)
of (A2ϕn) converges

uniformly to a continuous T -periodic function. Thus A2 is continuous and A2 (D)
is contained in a compact subset of B. ✷

Similar to the results in Section 3, we have

Theorem 4.3. Suppose (2.2)–(2.4) and (4.3)–(4.5) hold and there exists a t0 ∈
[0, T ] such that H (t0, x, y) > L for any x, y ∈ D. Then equation (1.1) has a positive
T -periodic solution in the subset D1.

Theorem 4.4. Suppose (2.2)–(2.4) and (4.6)–(4.8) hold and there exists a t0 ∈
[0, T ] such that H (t0, x, y) > L− c2K for any x, y ∈ D. Then equation (1.1) has a
positive T -periodic solution in the subset D1.

Remark 4.5. When T = R, Theorem 4.3 and Theorem 4.4 reduce to Theorem 3
and Theorem 4 of [11], respectively.

Example 4.6. Let T = Z. Consider the neutral difference equation

△ (x (t)− 0.1x (t− 5)) = −0.2x (t+ 1) +
0.1

x2 (t− 5) + 4
+ 0.25. (4.9)

Note that (4.9) of the form (1.1) with T = 4, c (t) = 0.1, a (t) = 0.2, τ = 5 and
f (t, x) = 0.1

x2+4 + 0.25. It is easy to verify that the conditions of Theorem 4.3 are
satisfied with L = 1, K = 1.5 and t0 = 0. Thus (4.9) has at least one positive
4-periodic solution.

Acknowledgement. The authors are grateful to the referee for his/ her comments
and good advice.
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