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Existence and multiplicity of a-harmonic solutions for a Steklov

problem with variable exponents

B. Karim, A. Zerouali and O. Chakrone.

abstract: Using variational methods, we prove in a different cases the existence
and multiplicity of a-harmonic solutions for the following elliptic problem:

div(a(x,∇u)) = 0 in Ω,

a(x,∇u).ν = f(x, u) on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded domain of smooth boundary ∂Ω and ν is
the outward unit normal vector on ∂Ω. f : ∂Ω × R → R, a : Ω × RN → RN , are
fulfilling appropriate conditions.
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1. Introduction and main results

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary ∂Ω and

consider the elliptic Steklov problem with variable exponents

div(a(x,∇u)) = 0 in Ω,

a(x,∇u).ν = f(x, u) on ∂Ω,
(1.1)

where ν is the outward unit normal vector on ∂Ω and f : ∂Ω × R → R is a
continuous function which will be specified later.

Let p ∈ C(Ω) be a variable exponent. Throughout this paper, we denote

p− = min
x∈Ω

p(x); p+ = max
x∈Ω

p(x);

p∂(x) =

{

(N − 1)p(x)/[N − p(x)] if p(x) < N,
∞ if p(x) ≥ N,
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and
C+(Ω) = {p ∈ C(Ω) : 1 < p− < p+ < ∞}.

Our exponent p fulfills p ∈ C+(Ω) and for this p we introduce a characterization of
the Carathéodory function a : Ω× R

N 7→ R
N .

(H0) a(x,−s) = −a(x, s) for a.e. x ∈ Ω and all s ∈ R
N .

(H1) There exists a Carathéodory function A : Ω × R
N 7→ R continuously differ-

entiable with respect to its second argument, such that a(x, s) = ∇sA(x, s)
all s ∈ R

N and a.e. x ∈ Ω.

(H2) A(x, 0) = 0 for a.e. x ∈ Ω.

(H3) There exists c > 0 such that a satisfies the growth condition
|a(x, s)| ≤ c(1 + |s|p(x)−1) for a.e. x ∈ Ω and all s ∈ R

N , where |.| denotes
the Euclidean norm.

(H4) The monotonicity condition 0 ≤ [a(x, s1) − a(x, s2)](s1 − s2) holds for a.e.
x ∈ Ω and all s1, s2 ∈ R

N , with equality if and only if s1 = s2.

(H5) The inequalities |s|p(x) ≤ a(x, s)s ≤ p(x)A(x, s) hold for a.e. x ∈ Ω and all
s ∈ R

N .

A first remark is that hypothesis (H0) is only needed to obtain the multiplicity
of solutions. As in [9], we have decided to use this kind of function a satisfying
(H0)-(H5) because we want to assure a high degree of generality to our work. Here
we invoke the fact that, with appropriate choices of a, we can obtain many types of
operators. We give, in the following, two examples of well known operators which
are present in lots of papers.

Examples:

1. If a(x, s) = |s|p(x)−2s, we have A(x, s) = 1
p(x) |s|

p(x).

(H0)− (H5) are verified, and we arrive to the p(x)-Laplace operator
div(a(x,∇u)) = div(|∇u|p(x)−2∇u) = △p(x)u.

2. If a(x, s) = (1 + |s|2)(p(x)−2)/2s, we have A(x, s) = 1
p(x) [(1 + |s|2)p(x)/2 − 1].

(H0)− (H5) are verified, and we find a generalized mean curvature operator
div(a(x,∇u)) = div((1 + |∇u|2)(p(x)−2)/2∇u).

The above operator appears in [16] and it is used in the study of two antiplane
frictional contact problems of elastic cylinders. Functions fulfilling conditions re-
lated to (H0)–(H5) are used not only in the framework of the spaces with variable
exponents [5], but also in the framework of the classical Lebesgue-Sobolev spaces
[21] and the anisotropic spaces with variable exponents.

In the present paper, we study problem 1.1 in the particular case

f(x, t) = λ
(

|t|q(x)−2t− |t|r(x)−2t
)

− |t|p(x)−2t,
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where λ ≥ 0 is a real number and p, q, r ∈ C+(Ω). The energy functional corre-
sponding to problem 1.1 is defined on W 1,p(x)(Ω) as

Φλ(u) =

∫

Ω

A(x,∇u)dx+

∫

∂Ω

|u|p(x)

p(x)
dσ − λ

∫

∂Ω

(

|u|q(x)

q(x)
−

|u|r(x)

r(x)

)

dσ, (1.2)

where dσ is the N − 1 dimensional Hausdorff measure. Let us recall that a weak
solution of 1.1 is any u ∈ W 1,p(x)(Ω) such that

∫

Ω

a(x,∇u)∇vdx+

∫

∂Ω

|u|p(x)−2uvdσ

= λ

∫

∂Ω

(

|u|q(x)−2uv − |u|r(x)−2uv
)

dσ for all v ∈ W 1,p(x)(Ω).

The study of differential and partial differential equation with variable exponent
has been received considerable attention in recent years. This importance reflects
directly into a various range of applications. There are applications concerning elas-
tic materials [22], image restoration [11], thermorheological and electrorheological
fluids [4,19] and mathematical biology [13].

In the case when p(x) = p is a constant and a(x, s)) = |s|p−2s, the authors in
[1] are considered the following Steklov problem

{

△pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν = λm|u|p−2u on ∂Ω.

They are interested to the existence of p-harmonic solutions ( when ∆pu = 0).
Motivated by the recent works [5,6], we will study the existence and multiplicity of
a-harmonic solutions (when div(a(x,∇u)) = 0) for the problem 1.1 with variable
exponents. These solutions becomes p(x)-harmonic when a(x, s) = |s|p(x)−2s. This
is a generalization of the classical p-harmonic solutions obtained in the case when
p is a positive constant.

Our main results in this paper are the proofs of the following theorems, which
are based on the Ricceri Theorem and the Mountain Pass Theorem.

Theorem 1.1. Assume (H0)–(H5) and let p, q, r ∈ C+(Ω̄), such that N < p− and
1 ≤ r− ≤ r+ < q− ≤ q(x) ≤ q+ < p−, for all x ∈ Ω. Then there exist an open
interval ∧ ⊂ (0,∞) and a positive constant ρ > 0 such that for any λ ∈ ∧, problem
1.1 has at least three weak solutions whose norms are less than ρ.

Theorem 1.2. Assume (H0)–(H5) and let p, q, r ∈ C+(Ω̄), such that r+ ≤ p+ <
q− ≤ q+ < p∂(x) for all x ∈ Ω, where p∂(x) is defined above. Then for any λ > 0
problem 1.1 possesses a non trivial weak solutions.

This present work extends some of the results known with Neuman or Dirichlet
boundary conditions on bounded domain(see [16,18]), and generalize some results
knouwn in the Steklov problems (see [2,3]).

This paper consists of four sections. Section 1 contains an introduction and
the main results. In section 2, which has a preliminary character, we state some
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elementary properties concerning the generalized Lebesgue-Sobolev spaces and an
embedding results. The proofs of our main theorems are given in Section 3 and
Section 4.

2. Preliminaries

We first recall some basic facts about the variable exponent Lebesgue-
Sobolev.
For p ∈ C+(Ω̄), we introduce the variable exponent Lebesgue space

Lp(x)(Ω) :=

{

u;u : Ω → R is a measurable and

∫

Ω

|u|p(x)dx < +∞

}

,

endowed with the Luxemburg norm

|u|Lp(x)(Ω) := inf

{

α > 0;

∫

Ω

∣

∣

∣

∣

u(x)

α

∣

∣

∣

∣

p(x)

dx ≤ 1

}

,

which is separable and reflexive Banach space (see [15]).
Let us define the space

W 1,p(x)(Ω) := {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},

equipped with the norm

‖u‖Ω = inf

{

α > 0;

∫

Ω

∣

∣

∣

∣

∇u(x)

α

∣

∣

∣

∣

p(x)

dx+

∫

Ω

∣

∣

∣

∣

u(x)

α

∣

∣

∣

∣

p(x)

dx ≤ 1

}

; ∀u ∈ W 1,p(x)(Ω).

Proposition 2.1. [10] For any u ∈ W 1,p(x)(Ω).
Let ||u|| := |∇u|Lp(x)(Ω)+ |u|Lp(x)(∂Ω). Then the norm ||u|| is a norm on W 1,p(x)(Ω)
which is equivalent to ||u||Ω.

Proposition 2.2. [12,14]

(1) W 1,p(x)(Ω) is separable reflexive Banach space;

(2) If s ∈ C+(Ω̄) and s(x) < p∂(x) for any x ∈ Ω̄, then the embedding from
W 1,p(x)(Ω) to Ls(x)(∂Ω) is compact and continuous.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the mapping ρ defined by

ρ(u) :=

∫

Ω

|∇u|p(x)dx+

∫

∂Ω

|u|p(x)dσ, ∀u ∈ W 1,p(x)(Ω).

Proposition 2.3. [10] For u, uk ∈ W 1,p(x)(Ω); k = 1, 2, ..., we have

(1) ‖u‖ ≥ 1 implies ‖u‖p
−

≤ ρ(u) ≤ ‖u‖p
+

;
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(2) ‖u‖ ≤ 1 implies ‖u‖p
−

≥ ρ(u) ≥ ‖u‖p
+

;

(3) ‖uk‖ → 0 if and only if ρ(uk) → 0;

(4) ‖uk‖ → ∞ if and only if ρ(uk) → ∞.

Remark 2.4. If N < p− ≤ p(x) for any x ∈ Ω, by Theorem 2.2 in [15] and
remark 1 in [18], we have W 1,p(x)(Ω) is compactly embedded in C(Ω). Defining
||u||∞ = sup

x∈Ω

|u(x)|, we find that there exists a positive constant c > 0 such that

||u||∞ ≤ c||u|| for all u ∈ W 1,p(x)(Ω).

3. Proof of Theorem 1.1

The key argument in the proof of Theorem 1.1 is the following version of
Ricceri theorem (see Theorem 1 in [8]).

Theorem 3.1. [8] Let X be a separable and reflexive real Banach space; Φ : X → R

a continuously Gâteaux differentiable and sequentially weakly lower. semicontin-
uous functional whose Gâteaux derivative admits a continuous inverse on X∗;
Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive is compact. Assume that
(i) lim

||u||→∞
(Φ(u) + λΨ(u)) = +∞ for all λ > 0; and that are r ∈ R and u0, u1 ∈ X

such that
(ii) Φ(u0) < r < Φ(u1);

(iii) inf
u∈Φ−1((−∞,r])

Ψ(u) > (Φ(u1)−r)Ψ(u0)+(r−Φ(u0))Ψ(u1)
Φ(u1)−Φ(u0)

.

Then there exist an open interval ∧ ⊂ (0,+∞) and a positive real number ρ0 such
that for each λ ∈ ∧ the equation Φ′(u) + λΨ′(u) = 0 has at least three solutions in
X whose norme are less than ρ0.

Let X denote the generalized Sobolev space W 1,p(x)(Ω).
In order to apply Ricceri’s result we define the functionals Φ,Ψ : X → R by

Φ(u) =

∫

Ω

A(x,∇u)dx+

∫

∂Ω

1

p(x)
|u|p(x)dσ, (3.1)

Ψ(u) = −

∫

∂Ω

(

|u|q(x)

q(x)
−

|u|r(x)

r(x)

)

dσ, (3.2)

Its clear that from (H1), the Fréchet derivative of Φ is the operator Φ′ : X → X ′

defined as

〈Φ′(u), v〉 =

∫

Ω

a(x,∇u)∇vdx+

∫

∂Ω

|u|p(x)−2uvdσ for any u, v ∈ X.

On the other hand the Fréchet derivative of Ψ is Ψ′ defined as

〈Ψ′(u), v〉 = −

∫

∂Ω

(

|u|q(x)−2uv − |u|r(x)−2uv
)

dσ, for any u, v ∈ X.
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Thus we deduce that u ∈ X is a weak solution of problem 1.1 if there exist λ > 0
such that u is a critical point of the operator Φ + λΨ.

We start by proving some properties of the operator Φ′.

Theorem 3.2. Suppose that the mapping a satisfies (H0)-(H5). Then the following
statements holds.

(1) Φ′ is continuous, bounded and strictly monotone;

(2) Φ′ is of (S+) type;

(3) Φ′ is an homeomorphism.

Proof. The same approach as in proof of Theorem 1.1 in [3], by taking λ = 0 and
replacing the term

∫

Ω
1

p(x) |u|
p(x)dx by

∫

∂Ω
1

p(x) |u|
p(x)dσ in the expression of energy

functional φλ,0 defined in [3]. ✷

Now we can give the proof of our main result.

Proof of Theorem 1.1. Set Φ and Ψ as 3.1, 3.2 . So, for each u, v ∈ X , one has

〈Φ′(u), v〉 =

∫

Ω

a(x,∇u)∇vdx+

∫

∂Ω

|u|p(x)−2uvdσ,

〈Ψ′(u), v〉 = −

∫

Ω

(

|u|q(x)−2u− |u|r(x)−2u
)

v dx

From Theorem 3.2, the functional Φ is a continuous Gâteaux differentiable and
sequentially weakly lower semicontinuous functional whose Gâteaux derivative ad-
mits a continuous inverse onX ′, moreover, Ψ is continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact. Obviously, Φ is bounded on each
bounded subset of X under our assumptions.
From (H5) and using Proposition2.3, if ‖u‖ ≥ 1 then

Φ(u) =

∫

Ω

A(x,∇u)dx+

∫

∂Ω

1

p(x)
|u|p(x)dσ

≥

∫

Ω

1

p(x)
|∇u|p(x)dx+

∫

∂Ω

1

p(x)
|u|p(x)dσ

≥
1

p+
ρ(u)

≥
1

p+
‖u‖p

−

,

Meanwhile, for each λ ∈ Λ,

λΨ(u) = −λ

∫

∂Ω

(

|u|q(x)

q(x)
−

|u|r(x)

r(x)

)

dσ

≥ −λ(c1||u||
q− + c2||u||

q+)
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for any u ∈ X , where c1 and c2 are positive constants. Combining the two inequal-
ities above, we obtain

Φ(u) + λΨ(u) ≥
1

p+
‖u‖p

−

− λ(c1||u||
q− + c2||u||

q+),

since q+ < p−, it follows that

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞ ∀u ∈ X, λ ∈ [0,+∞).

Then assumption (i) of Theorem 3.1 is satisfied.
Next, we will prove that assumption (ii) is also satisfied. In order to do that

we define the function
G : Ω× [0,∞[→ R by G(x, t) = tq(x)

q(x) − tr(x)

r(x) , ∀x ∈ Ω and t ∈ (0,∞).

It is clear that G is of class C1 with respect to t, uniformly when x ∈ Ω. Define
also the function Gt(x, t) = tr(x)−1(tq(x)−r(x) − 1), ∀x ∈ Ω and t ∈ (0,∞).
Thus Gt(x, t) ≥ 0 for all t ≥ 1 and all x ∈ Ω; Gt(x, t) ≤ 0 for all t ≤ 1 and all
x ∈ Ω. Consequently G(x, t) is increasing when t ∈ (1,∞) and decreasing when
t ∈ (0, 1), uniformly with respect to x. Furthermore, lim

t→+∞
G(x, t) = +∞ uniformly

which respect to x ∈ Ω. On the other hand G(x, t) = 0 imply that t = t0 = 0 or

t = tx =
(

q(x)
r(x)

)
1

q(x)−r(x)

. So we have G(x, t) ≤ 0 for all 0 ≤ t ≤ tx and G(x, t) > 0

for all t > tx and all x ∈ Ω. Let a, b two real numbers such that 0 < a < min(1, c),

with c given in Remark 2.4 and b > max
(

( q
+

r− )
1

q−−r+ , ( 1
|∂Ω| )

1

p−

)

.

Consider u0, u1 ∈ X , u0(x) = 0, u1(x) = b, for any x ∈ Ω. Consequently by
Remark 2.4 we have u0(x) = 0 and u1(x) = b, for any x ∈ Ω. Thus we have

∫

∂Ω

sup
0≤t≤a

G(x, t)dσ ≤ 0 <

∫

∂Ω

G(x, b)dσ.

We also define r = 1
p+

(

a
c

)p+

, we have r ∈ (0, 1) and Φ(u0) = −Ψ(u0) = 0.

Φ(u1) =
∫

∂Ω
1

p(x)b
p(x)dx ≥ 1

p+ b
p−

|∂Ω| > 1
p+ .

(

a
c

)p+

= r, Ψ(u1) = −
∫

∂Ω
G(x, b)dσ.

Thus we deduce that Φ(u0) < r < Φ(u1), so (ii) in Theorem 3.1 is verified.
On the other hand we have

−
(Φ(u1)− r)Ψ(u0) + (r − Φ(u0)) Ψ(u1)

Φ(u1)− Φ(u0)
= −r

Ψ(u1)

Φ(u1)
= r

∫

∂ΩG(x, b)dσ
∫

∂Ω
1

p(x)b
p(x)dσ

> 0.

Let u ∈ X with Φ(u) ≤ r < 1. Then by Proposition 2.3, we have

1

p+
||u||p

+

≤
1

p+
ρ(u) ≤ Φ(u) ≤ r =

1

p+

(a

c

)p+

< 1.
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Using Remark 2.4, we deduce that for any u ∈ X with Φ(u) ≤ r, we have

|u(x)| ≤ c.||u|| ≤ c.(p+.r)
1

p+ = a, ∀x ∈ Ω.

The above inequality shows that

− inf
u∈Φ−1((−∞,r])

Ψ(u) = sup
u∈Φ−1((−∞,r])

−Ψ(u) ≤

∫

∂Ω

sup
0≤t≤a

G(x, t)dσ ≤ 0

Thus

− inf
u∈Φ−1((−∞,r])

Ψ(u) < r

∫

∂ΩG(x, b)dσ
∫

∂Ω
1

p(x)b
p(x)dσ

,

i.e.

inf
u∈Φ−1((−∞,r])

Ψ(u) >
(Φ(u1)− r) Ψ(u0) + (r − Φ(u0)) Ψ(u1)

Φ(u1)− Φ(u0)
,

consequently the condition (iii) in Theorem 3.1 is verified. We proved that all
assumptions of Theorem 1.2 are verified. We conclude that there exists an open
interval ∧ ⊂ (0,∞) and a positive constant ρ0 > 0 such that for any λ ∈ ∧ the
equation Φ′(u) + λΨ′(u) = 0 has at least three solution in X whose norms are less
than ρ0. The proof of Theorem 1.1 is complete. ✷

4. Proof of Theorem 1.2

The proof of Theorem1.2 relies on the following version of the mountain pass
theorem.

Theorem 4.1 ( [20]). Let X endowed with the norm ‖.‖X, be a Banach space.
Assume that φ ∈ C1(X ;R) satisfies the Palais-Smale condition. Also, assume that
φ has a mountain pass geometry, that is,

(i) there exists two constants η > 0 and ρ ∈ R such that φ(u) ≥ ρ if ‖u‖X = η;

(ii) φ(0) < ρ and there exists e ∈ X such that ‖e‖X > η and φ(e) < ρ.

Then φ has a critical point u0 ∈ X such that u0 6= 0 and u0 6= e with critical value

φ(u0) = inf
γ∈P

sup
u∈γ

φ(u) ≥ ρ > 0.

Where P denotes the class of the paths γ ∈ C([0, 1];X) joining 0 to e.

The energy functional corresponding to problem 1.1 is defined as

Φλ(u) =

∫

Ω

A(x,∇u)dx+

∫

∂Ω

|u|p(x)

p(x)
dσ − λ

∫

∂Ω

(

|u|q(x)

q(x)
−

|u|r(x)

r(x)

)

dσ.

Where dσ is the N − 1 dimensional Hausdorff measure. Standard arguments imply
that Φλ ∈ C1(X ;R)
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Lemma 4.2. Assume (H0)–(H5) and let p, q, r ∈ C+(Ω̄), such that r+ ≤ p+ <
q− ≤ q+ < p∂(x) for all x ∈ Ω. Then there exist η, b > 0 such that Φλ(u) ≥ b for
u ∈ W 1,p(x)(Ω) with ||u|| = η.

Proof. Since q+ < p∂(x) for all x ∈ Ω̄, by Proposition 2.2 and (H5), we have the
following inequality

Φλ(u) ≥
1

p+
‖u‖p

+

−
λ

q−

(

C1‖u‖
q+ + C2‖u‖

q−
)

if ‖u‖ ≤ 1.

Thus

Φλ(u) ≥ ‖u‖p
+

(

1

p+
−

λ

q−

(

C1‖u‖
q+−p+

+ C2‖u‖
q−−p+

)

)

if ‖u‖ ≤ 1.

As p+ < q− ≤ q+, the functional h : [0, 1] → R defined by

h(t) =
1

p+
−

λC1

q−
tq

+−p+

−
λC2

q−
tq

−−p+

is positive on neighborhood of the origin. So the Lemma 4.2 is proved. ✷

Lemma 4.3. Assume (H0)–(H5) and let p, q, r ∈ C+(Ω̄), such that r+ ≤ p+ <
q− ≤ q+ < p∂(x) for all x ∈ Ω. Then there exists e ∈ W 1,p(x)(Ω) with ‖e‖ > η
such that Φλ(e) < 0; where η is given in Lemma 4.2.

Proof. Choose ϕ ∈ C∞
0 (Ω̄), ϕ ≥ 0 and ϕ 6≡ 0, on ∂Ω. For t > 1, and using

(H2), (H3) we have

Φλ(tϕ) ≤ tc

∫

Ω

|∇ϕ|dx +
c1t

p+

p−
ρ(ϕ)−

λtq
−

q+

∫

∂Ω

|ϕ|q(x)dσ + λ
tr

+

r−

∫

∂Ω

|ϕ|r(x)dσ.

Since r+ ≤ p+ < q−, we deduce that lim
t→+∞

Φλ(tϕ) = −∞. Therefore for all ε > 0

there exists α > 0 such that |t| > α, Φλ(tϕ) < −ε < 0. This completes the proof.
✷

Lemma 4.4. Assume (H0)–(H5) and let p, q, r ∈ C+(Ω̄), such that r+ ≤ p+ <
q− ≤ q+ < p∂(x) for all x ∈ Ω. Then the functional Φλ satisfies the Palais-Smale
(PS) condition.

Proof. Let (uk) ⊂ W 1,p(x)(Ω) be a sequence such that C = sup
k∈N∗

Φλ(uk) and

Φ′
λ(uk) → 0. Suppose by contradiction that ‖uk‖ → ∞, there exists k0 ∈ N

∗
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such that ‖uk‖ > 1 for any k ≥ k0, using (H5) Then we have

C + ‖uk‖ ≥ Φλ(uk)−
1

q−
〈Φ′

λ(uk), uk〉

≥

∫

Ω

A(x,∇uk)dx+

∫

∂Ω

1

p(x)
|uk|

p(x)dσ − λ

∫

∂Ω

(

1

q(x)
|uk|

q(x) −
1

r(x)
|uk|

r(x)

)

dσ

−
1

q−

(
∫

Ω

a(x,∇uk)∇ukdx+

∫

∂Ω

|uk|
p(x)dσ

)

+
λ

q−

∫

∂Ω

(

|uk|
q(x) − |uk|

r(x)
)

dσ

≥

(

1

p+
−

1

q−

)

ρ(uk) + λ

∫

∂Ω

[(

1

q−
−

1

q(x)

)

|uk|
q(x) +

(

1

r(x)
−

1

q−

)

|uk|
r(x)

]

dσ

≥

(

1

p+
−

1

q−

)

ρ(uk)

≥

(

1

p+
−

1

q−

)

‖uk‖
p−

.

Since p+ < q−, this contradicts the fact that p− > 1. So, the sequence (uk) is
bounded in W 1,p(x)(Ω). As W 1,p(x)(Ω) is reflexive (Proposition 2.2), for a subse-
quence still denoted (uk), we have uk ⇀ u in W 1,p(x)(Ω), uk → u in Lp(x)(∂Ω),
uk → u in Lq(x)(∂Ω), uk → u in Lr(x)(∂Ω) (see Proposition 2.2). Therefore
〈Φ′

λ(uk), uk−u〉 → 0,
∫

∂Ω
|uk|

p(x)−2uk(uk−u)dσ → 0,
∫

∂Ω
|uk|

q(x)−2uk(uk−u)dσ →

0 and
∫

∂Ω |uk|
r(x)−2uk(uk−u)dσ → 0. Thus lim sup

k→+∞

∫

Ω a(x,∇uk)(∇uk−∇u)dx ≤ 0.

The following theorem assure that uk → u strongly in W 1,p(x)(Ω) as k → +∞. ✷

Theorem 4.5. ( [17] Theorem 4.1) The Carathéodory function a : Ω× R
n → R

n

described by (H0)–(H5) is an operator of type S+ that is, if un ⇀ u weakly in
W 1,p(x)(Ω) as n → +∞ and lim sup

n→+∞

∫

Ω
a(x,∇un)(∇un −∇u)dx ≤ 0, then un → u

strongly in W 1,p(x)(Ω) as n → +∞.

Proof of Theorem 1.2. Using the Lemmas 4.2 and 4.3, we obtain

max (Φλ(0),Φλ(e)) = Φλ(0) < inf
||u||=µ

Φλ(u) =: β.

By Lemma 4.4 and Theorem 4.1, we deduce the existence of critical points of Φλ

associated of the critical value given by

inf
γ∈Γ

sup
t∈[0,1]

Φλ(γ(t)) ≥ β,

where
Γ = {γ ∈ C([0, 1],W 1,p(x)(Ω)); γ(0) = 0 and γ(1) = e}.

This completes the proof. ✷
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