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ABSTRACT: In this paper, we introduce and investigate a new class of sets called A-
open sets which are weaker than cozero sets. Moreover, we obtain characterizations
and preserving theorems of quasi compact spaces.
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1. Introduction

One of the fundamental ideas in all of mathematics is the notion of continu-
ity. So much so that there has been a movement in recent years to categorize
mathematics into two main parts, namely discrete mathematics and continuous
mathematics. In topology there have been many variants of continuity considered
in the literature. Recently papers [1,2,3,4,8,10] have introduced some new classes
of functions via cozero sets. In this paper, we introduce and investigate a new class
of sets called A-open sets which are weaker than cozero sets. Moreover, we obtain
characterizations and preserving theorems of quasi compact spaces.

A subset B of a topological space (X, 7) is called a cozero set if there is a
continuous real-valued function ¢ on X such that B = {z € X : g(z) # 0} [6].
The complement of a cozero set is called a zero set. It is well known [6] that the
countable union of cozero sets is a cozero set and the intersection of two cozero
sets is a cozero set, so the collection of all cozero subsets of (X, 7) is a base for a
topology 7, on X, called the complete regularization of 7. It is clear that 7. C 7 in
general. Furthermore, the space (X, 7) is completely regular if and only if 7, = 7.
In general for any topological space 7, we note that (X, 7.) is completely regular.
Thus (X, 7.) is regular, and hence it is semi-regular. Therefore (7,)s = 7,. Now
the inclusion 7, C 7 implies that (7,)s € 75. That is, we have 7, C 75, for any
topological space (X, 7).
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Definition 1.1. [7] A set G in a topological space X is said to be z-open if for
each x € G there exists a cozero set H such that © € H C G, or equivalently if G
is expressible as the union of cozero sets. The complement of a z-open set will be
referred to be as a z-closed set. The family of all z-open sets of X is denoted by T,
and is called the complete reqularization of 7. It is clear that T, C T in general.

2. Quasi Compact Spaces

Definition 2.1. [5/(1) A topological space X is said to be quasi compact or Z-
compact if every cover of X by cozero sets admits a finite sub cover. And it is clear
(X, 7) is quasi compact if and only if (X,7,) is compact.

(2) A subset A of a space X is said to be quasi compact relative to X if every cover
of A by cozero sets of X has a finite subcover.

Theorem 2.2. Let B be a quasi compact relative to X and A be a cozero set of X
contained in B. Then B — A is quasi compact relative to X .

Proof: Let U be a cover of B — A by cozero sets of X. Then UU {A} is a cover of
B consisting of cozero sets. Since B is quasi compact relative to X, there exists a
finite subcover {U; : 1 < i < n} such that B C AU{U; : 1 <i < n} which implies
B—AC{U;:1<1i<n}. This implies that B — A is quasi compact relative to X.

O

Theorem 2.3. A zero set contained in a set which is quasi compact relative to X
s quast compact relative to X .

Proof: Let V be a quasi compact relative to X and B be a zero set such that
B CV. Let U= {U, : a € I} be a cover of B consisting of cozero sets of X. Then
UU{X — B} is a cover of V consisting of cozero sets of X because X — B a cozero
set. Since V is quasi compact relative to X, there exists a finite subcollection
{U; : 1 <i<n}of Usuch that V C{X — B}U{U; : 1 <i <n} . It follows that
B C{U;:1<i<n}. Hence B is quasi compact relative to X. O

Theorem 2.4. The intersection of a set which is quasi compact relative to X and
a zero set is quasi compact relative to X .

Proof: Let us suppose that A is quasi compact relative to X and B is a zero set in
a topological space (X, 7). We will show that AN B is quasi compact relative to X.
Let U = {U, : « € A} be a cover of AN B by cozero sets in X. Then UU{X — B}
is a cover of A by cozero sets of X. Since A is quasi compact relative to X, there
exists a finite subfamily {U,, : 1 < i < n} of U such that A C U, {U,, }U{X —B}.
Thus we obtain AN B C Ul;1{U,,}. This implies that A N B is quasi compact
relative to X. O

Theorem 2.5. A finite union of sets which are quasi compact relative to X is
quasi compact relative to X .
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Proof: Let B = U {B; : 1 <i < n}, where B; is quasi compact relative to X.
Let U = {U, : @ € A} be any cover of B by cozero sets. Then U covers each B;.
Since B; is quasi compact relative to X, there exists a finite subcollection A; of A
such that B; € Ugena,{Ua}. It follows that B C U{U, : o € U, A;}. Hence B is
quasi compact relative to X. O

Definition 2.6. A function f: X — Y is said to be cozero irresolute if f=*(V) is
a cozero set in X for each cozero set V in'Y.

Theorem 2.7. If f is a cozero irresolute surjection from a quasi compact space X
onto Y, then Y is quasi compact.

Proof: Let U = {U, : « € A} be any cover of Y by cozero sets in Y. Since f is
cozero irresolute, each f~1(U,) is a cozero set in X and V = {f~1(U,) : a € A}
forms a cover of X consisting of cozero sets. Since X is quasi compact, there exists
a finite subcollection of V, say V* = {f~}(U,,) : 1 < i < n} which covers X. It
follows that the finite subcollection {U,, : 1 < i < n} covers Y. Hence Y is quasi
compact. O

Definition 2.8. [11] A space X is functionally Hausdorff if for each x,y € X,
x # y there exists a continuous function f: X — [0,1] such that f(x) # f(y). And
it is clear that each functionally Hausdorff space is Hausdorff.

Proposition 2.9. [9] For a topological space X, the following statements are equiv-
alent.

1. X is functionally Hausdorff.
2. Every pair of distinct points in X are contained in disjoint cozero sets.

Theorem 2.10. If X — K is countable and K is a quasi compact subset of a
functionally Hausdorff space X, then K is a zero set.

Proof: Let z € X — K, for any y € K, using the functionally Hausdorff property,
we can two cozero sets U, and V,, with z € Uy, y € V, and U, NV, = ¢. Since we
obviously have K C UyeckVy, by quasi compact, there exist points y1,--- ,y, € K,
such that K € V,, U---UV, . Then x € N_,U,, = D, which is a cozero set
containing x. Now we can write X — K = U,ecx— gD, which is a cozero set since
the countable union of cozero sets is a cozero set and hence K a zero set. O

3. On A-open Sets

In this section we introduce the following notion:

Definition 3.1. A subset A of a space X is said to be A-open if for every x € A,
there exists a cozero set U, C X containing x such that U, — A is finite. The
complement of an A-open subset is said to be A-closed.
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The family of all A-open subsets of a space (X, 7) is denoted by AO(X). For
each z € X, AO(X, z) denotes the family {U € AO(X) :x € U}.

Lemma 3.2. For a subset of a topological space, every cozero set is A-open.

Proof: Let A be a cozero set. For each x € A, there exists a cozero set U, = A
such that x € U, and U, — A = ¢. Therefore, A is A-open. O

Example 3.1. Let X = R be the set of all real numbers. Let 7., be the cofinite
topology on X. Since cofinite topology on X is connected, then every continuous
function f : (R,7.) — (R,7,) is constant, hence the set of all cozero sets in
(X, Teo) is {X,¢}. Thus X —{1,2,3} is A-open but it is not a cozero set.

Theorem 3.3. Let (X, 1) be a topological space. Then (X, AO(X)) is a topological
space.

Proof: (1): We have ¢, X € AO(X).

(2): Let U,V € AO(X) and x € UNV . Then there exist cozero sets G, H € X
containing = such that G\ U and H \ V are finite. And (GNH)\(UNV) =
(GNH)N(X\D)U(X\V)] C[GNX\D)JU[HN(X\V)]. Thus (GNH)\(UNV)
is finite and G N H is a cozero set. Hence U NV € AO(X).

(3): Let {U; : i € I} be a family of A-open subsets of X and x € U;c;U;. Then
x € Uj for some j € I. This implies that there exists a cozero set V' of X containing
x such that V' \ U; is finite. Since V' \ U;c;U; C V' \ Uj, then V' \ U;e;U; is finite.
Thus U;cU; € .AO(X) O

Lemma 3.4. Let (X, 1) be a topological space. Then the intersection of a cozero
set and an A-open set is A-open.

Proof: Let U be a cozero set and A be A-open. Then, by Lemma 3.2, U is A-open
and by Theorem 3.3 the intersection is A-open. O

Lemma 3.5. A subset A of a space X is A-open if and only if for every x € A,
there exist a cozero set U containing x and a finite subset C such that U — C C A.

Proof: Let A be A-open and x € A, then there exists a cozero set U, containing
2 such that U, — A is finite. Let C =U, — A=U,N(X — A). Then U, — C C A.
Conversely, let © € A. Then there exist a cozero set U, containing x and a finite
subset C' such that U, — C C A. Thus U, — A C C and U, — A is a finite set. O

Theorem 3.6. Let X be a space and C C X. If C' is A-closed, then C C K UB
for some zero set K and a finite subset B.

Proof: If C' is A-closed, then X — C is A-open and hence for every x € X — C,
there exist a cozero set U containing = and a finite set B such that U— B C X —C.
ThusCC X - (U-B)=X-UN(X-B)=(X-U)UB. Let K =X —-U.
Then K is a zero set such that C C K U B. O
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Definition 3.7. A function f: X =Y is said to be pre-cozero if f(V) is a cozero
set in'Y for each cozero set V in X.

Proposition 3.8. If f: X — Y is pre-cozero, then the image of an A-open set of
X s A-open in Y.

Proof: Let f: X — Y be pre-cozero and W an A-open subset of X. Lety € f(W),
there exists € W such that f(z) = y. Since W is A-open, there exists a cozero
set U such that € U and U — W = C is finite. Since f is pre-cozero, f(U) is a
cozero set in Y such that y = f(x) € f(U) and f(U) — f(W) C f(U—-W) = f(C)
is finite. Therefore, f(W) is A-open in Y. O

Proposition 3.9. If f : X — Y is cozero irresolute injective and A is A-open in
Y, then f~1(A) is A-open in X.

Proof: Assume that A is an A-open subset of Y. Let x € f~(A). Then f(z) € A
and there exists a cozero set V' containing f(z) such that V — A is finite. Since f
is cozero irresolute, f~1(V) is a cozero set containing x. Thus f~1(V)— f~1(A) =
YV — A) = finite. It follows that f~1(A) is A-open in X. O

4. On A-open Sets and Quasi Compact Spaces

In this section we obtain characterizations of quasi compact spaces via A-open
set.

Theorem 4.1. For any space X, the following properties are equivalent:
1. X 1is quasi compact;

2. Every A-open cover of X has a finite subcover.

Proof: (1) = (2): Let {U, : @ € A} be any A-open cover of X. For each x € X,
there exists a(z) € A such that x € Uy (y). Since Uy, is A-open, there exists a
cozero set Vi, ;) such that = € Vi, (5 and Vi (2)\Uq(s) is finite. The family {V,, )|z €
X} is a cozero cover of X and X is quasi compact. There exists a finite subset,
says a(z1), a(x2),- -+ ,a(z,) such that X = U{Vyli € F' = {1,2,...,n}}. Now,
we have

X = UiEF {(Va(zl)\Ua(ml)) U Ua(zl)}
:[UiGF(Va(zi)\Ua(mi))] U [UiEFUOt(Ii)]'
For each a(z;), Va(z,)\Ua(a,) is a finite set and there exists a finite subset Ay(y,)
of A such that Vo) \Ua@,) € U{Us|la € Ag(e,)}. Therefore, we have X C
[UiGF(U{UQ|a € Aa(zﬂ})] U [UZEFUa(mZ)]
(2) = (1): Since every cozero set is A-open, the proof is obvious.
O

In any topological space, since every cozero set is open, the following corollary
is obvious.
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Corollary 4.2. If a space X is compact, then it is quasi compact.
Theorem 4.3. For any space X, the following properties are equivalent:
1. X is quasi compact;

2. Fvery proper A-closed set is quasi compact with respect to X.

Proof: (1) = (2): Let A be a proper A-closed subset of X. Let {U, : o € A}
be a cover of A by cozero sets of X. Now for each x € X — A, there is a cozero
set V such that V, N A is finite. Since {Uy : o € AJU{V, : 2 € X — A}
is a cozero cover of X and X is quasi compact, there exists a finite subcover
{Ug; ;i€ Fy ={1,2,..,n}}U{V,, :i € F, ={1,2,...,m}}. Since Ujep, (Vy, N A)
is finite, so for each x; € Uiep, (Vi N A), there is Uy(y,;) € {Ua : @ € A} such that
7 € Uy(s,;) and j € F3 where Fj is finite . Hence {Uy, 11 € F1}U{Uq(s;) 1 J € F3}
is a finite subcover of {U, : & € A} and it covers A. Therefore, A is quasi compact
relative to X.

(2) = (1): Let {V,, : @ € A} be any cozero cover of X. We choose and fix one ag € A.
Then X —V,,, CU{V, :a € A—{ap}} is a cozero cover of a A-closed set X — V.
There exists a finite subset Ag of A — {ap} such that X — V,, C U{V, : o € Ag}.
Therefore, X = U{V, : a« € Ag U{ap}}. This shows that X is quasi compact. O

Corollary 4.4. If a space X is quasi compact and A is zero set, then A is quasi
compact relative to X .

Definition 4.5. A function f : X — Y is said to be A-continuous if f~1(V) is
A-open in X for each open set V inY.

Theorem 4.6. A function f : X — Y is A-continuous if and only if for each point
x € X and each open set V in'Y with f(x) € V, there is an A-open set U in X
such that x € U and f(U) C V.

Proof: Sufficiency. Let V be open in Y and let x € f~1(V). Then f(z) € V
and thus there exists an U, € AO(X) such that € U, and f(U;) € V. Then
xeU, C fY(V)and f~1(V) = Ugep-1(v)Us. Then by Theorem 3.3 f~1(V) is
A-open.

Necessity . Let f(z) € V. Then z € f~}(V) € AO(X) since f : X — Y is
A-continuous. Let U = f~%(V). Then x € U and f(U) C V. O

Theorem 4.7. Let f be an A-continuous function from a space X onto a space
Y. If X is quasi compact, then'Y is compact.

Proof: Let {V, : @ € A} be an open cover of Y. Then {f~*(V,) : a € A} is an
A-open cover of X. Since X is quasi compact, by Theorem 4.1, there exists a finite
subset Ag of A such that X = U{f71(V,) : @ € Ag}; hence Y = U{V,, : a € Ap}.
Therefore Y is compact. O
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Definition 4.8. A function f : X — Y is said to be A,-continuous if f~1(V) is
A-open in X for each cozero set' V in'Y.

It is clear that a function f : X — Y is A,-continuous if and only if for each
point z € X and each cozero set V in Y with f(x) € V, there is an A-open set U
in X such that z € U and f(U) C V.

Definition 4.9. A function f : X =Y is said to be weakly A,-continuous if for
each x € X and each cozero set V of Y containing f(x), there exists U € AO(X, x)
such that f(U) C CU(V).

Now we state the following theorem whose proof follows from Theorem 4.1.

Theorem 4.10. Let f be an A, -continuous function from a space X onto a space
Y. If X is quasi compact, then Y is quasi compact.

Definition 4.11. A topological space X is said to be Z-closed if for every cozero
set cover {Uy : o € A} of X there exists a finite subset Ag C A such that X =
U{Cl(Uy,) : e € Ap}.

Theorem 4.12. Let f : X — Y be a weakly A,-continuous surjection. If X is
quast compact, then'Y is Z-closed.

Proof: Let {V, : @ € A} be a cozero cover of Y. For each z € X, there exists
a(x) € A such that f(x) € V(). Since f is weakly A.-continuous, there exists
an A-open set Uy, of X containing x such that f(Uyn)) € Cl(V,(e)). Now
{Ua(z) : € X} is an A-open cover of the quasi compact space X. So by Theorem
4.1 there exist a finite numbers of points, says, z1, s, ..., x, in X such that X =
UWUa(zy 11 <t <n}. Thus Y = f(UW{Up(zy) 1 1 <0 <n}) = U{f(Un@y) 11 <0 <
n}) C U{Cl(Vy(z,)) : 1 <i < n}. This shows that Y is Z-closed.

O

Definition 4.13. A function f : X — Y is said to be A,-closed (resp. A-closed)
if f(A) is A-closed in'Y for each zero set (resp. closed) set A of X.

Theorem 4.14. If f : X — Y is an A.-closed surjection such that f~1(y) is quasi
compact relative to X for each y € Y and Y is quasi compact, then X is quasi
compact.

Proof: Let {U, : o € A} be any cozero cover of X. For each y € Y, f~1(y)
is quasi compact relative to X and there exists a finite subset A(y) of A such
that f~1(y) € WU, : a € A(y)}. Now we put U(y) = U{U, : a € A(y)}
since a countable union of cozero sets is a cozero set so U(y) is a cozero set and
V(y) =Y — f(X —U(y)). Then, since f is A.-closed, V(y) is an A-open set in Y’
containing y such that f=1(V(y)) C U(y). Since {V (y) : y € Y} is an A-open cover
of Y, by Theorem 4.1 there exist a finite numbers of points, says, y1,y2, ..., Yn in
Y such that Y = U{V(y;) : 1 <i < n}. Therefore, X = f~1(Y) = U{f~1(V(y)) :
1<i<n} CWU®W:):1<i<n}=U{U,:ac¢€Ay),1 <i<n}. This shows
that X is quasi compact. O
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Theorem 4.15. If f : X — Y is an A-closed surjection such that f~1(y) is
compact in X for each y € Y and Y is quasi compact, then X is compact.

Proof: The proof is analogous to that of Theorem 4.14. a

5. Z-closed

The intersection of all A-closed sets of X containing A is called the A-closure
of A and is denoted by Cl,(A). And the union of all A-open sets of X contained
in A is called the A-interior and is denoted by Int,(A).

Lemma 5.1. Let A be a subset of a space X. Then
1. A is A-closed in X if and only if A= Cl,(A).
2. Clo(X \ A) = X \ Int.(A).
3. Cl,(A) is A-closed in X.
4. x € Cly(A) if and only ANG # ¢ for each A-open set G containing x.

Theorem 5.2. Let every cozero set in a space X be infinite. If A is a cozero set,

then Cl,(A) = Cl,(A).

Proof: Clearly Cl,(A) C Cl,(A). Let € Cl,(A) and B be an A-open subset
containing x. Then by Lemma 3.5, there exist a cozero subset V' containing x and a
finite set C such that V\C C B. Thus (V\C)NA C BNA and so (VNA)\C C BNA.
Since z € V and x € Cl,(A4), VN A # ¢. Since V N A is cozero, by the hypothesis
VN A is infinite and so is (VN A)\C. Then BN A is not finite. Therefore, BNA # ¢
and by Lemmab.1 z € Cl,(A). Hence, Cl,(A) = Cl.(A). O

A subset S of X is said to be Z-closed relative to X if for every cover {U, :
a € A} of S by cozero sets in X, there exists a finite subset Ag of A such that
S CH{ClU,) : a € Ag}.

Theorem 5.3. For an open set G of a topological space X, the following properties
are equivalent:

1. G is Z-closed relative to X ;

2. For each cover {U, : a € A} of G by A-open sets of X, there exists a finite
subset Ag C A such that G C U{CIl(U,) : a € Ag}.

Proof: (1)= (2): Let {U, : « € A} be a cover of G and U, € AO(X). For each
r € G, there exists a(x) € A such that x € U,(,). Since Uy, is A-open, there
exists a cozero set V() such that x € V,(y) and V,(5)\Uq(s) is finite. The family
{Va(z) : ® € G} is a cozero cover of G and G is Z-closed relative to X. There exists
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a finite subset, says, x1,22,---, 2, such that G C U{Cl(V,(s,)) : i € F'}, where
F=1{1,2,...,n}. Now, we have

G C Uier {Cl((Va(Ii)\Ua(Ii)) U Ua(xi))}
:[UiEF(Cl(Va(zi)\Ua(Ii)))] U [UiEFCl(Ua(Ii))]'

For each a(2;), Va(z,)\Ua(a;) is a finite set and there exists a finite subset Ay(z,)
of A such that (Va(zi)\Ua(Ii)) NG CUWU, :ac€ Aa(mi)} and Cl(Va(zi)\Ua(zi)) N
G C Cl(Va@)\Ua@y) NG) € U{CI(Us) : o € A,y Therefore, we have
G C [Uier(U{Cl(Us) = @ € Aoz })] U [UierCl(Uqy(y,))]. Hence G is Z-closed
relative to X.

(2)= (1): Since every cozero set is A-open, the proof is obvious. O

Corollary 5.4. For any topological space X, the following properties are equiva-
lent:

1. X is Z-closed;

2. For each A-open cover {U, : a € A} of X, there exists a finite subset Ag C A
such that X = U{Cl(Uy,) : « € Ap}.

Theorem 5.5. If a topological space (X, T) is Z-closed, then for each A-open cover
{Uns : @« € A} of X, there exists a finite subset Ag C A such that X = Cl,(U{U, :
o€ Ao})

Proof: Let {U, : @ € A} be any A-open cover of X. If X is Z-closed, by Corollary
5.4 there exists a finite subset Ag C A such that X = U{CIl(U,) : « € Ag}. Then
since 7, C 7, X CU{CIl,(Uy) : @« € Ao} = CL,(W{U, : @ € Ag}). O

The following lemma is well known and will be stated without proof.
Lemma 5.6. A topological space is a T1-space if and only if every finite set is
closed.
Proposition 5.7. Let (X, 7) be a T1-space. Then the following properties hold:
1. For each A € A(X,x), there exists V, € T such that x € V, C A,
2. A(X,7)CT.
Proof: (1) Let A be any A-open set and = € A, then there exists a cozero set U,
containing x such that U, — A is finite. Let C = U, — A = U, N (X — A). Then
reU,—CCA. Since 7, C 7, by Lemma 5.6 V,, = U, — C is an open set and

reV, CA.
(2) This is an immediate consequence of (1). O
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Theorem 5.8. If (X, 1) is a Z-closed T1-space, then for each A-open cover {U,, :
a € A} of X, there exists a finite subset Ag C A such that X = Cl,(U{U, : « €
Ao}).

Proof: By Proposition 5.7 (2), A(X,7) C 7 and CI(A) C Cl,(A) for any subset
A of X. Therefore, the proof follows form Corollary 5.4. O
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