
Bol. Soc. Paran. Mat. (3s.) v. 36 4 (2018): 87–105.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v36i4.31190

Weighted Steklov Problem Under Nonresonance Conditions

Jonas Doumatè and Aboubacar Marcos

abstract: We deal with the existence of weak solutions of the nonlinear problem
−∆pu + V |u|p−2u = 0 in a bounded smooth domain Ω ⊂ RN which is subject to

the boundary condition |∇u|p−2 ∂u
∂ν

= f(x, u). Here V ∈ L∞(Ω) possibly exhibit
both signs which leads to an extension of particular cases in literature and f is a
Carathéodory function that satisfies some additional conditions. Finally we prove,
under and between nonresonance conditions, existence results for the problem.
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1. Introduction

Let Ω be a bounded smooth domain in RN with outward unit normal ν on the
boundary ∂Ω. For a given number p > 1, a bounded function V in Ω and a certain
Carathéodory function f , we consider the following nonlinear problem with Steklov
boundary condition

(Pf ) :

{

−∆pu+ V (x)|u|p−2u = 0 in Ω
|∇u|p−2 ∂u

∂ν = f(x, u) on ∂Ω
(1.1)

where −∆pu = −div(|∇u|p−2∇u). This work is mainly motivated by the study of
asymmetric elliptic problems with sign-changing weights carried out in [10]. The
problem was actually considered recently in [7] for the p-Laplacian operator (in
the case V ≡ 0), where the existence of the p-harmonic solutions was proved. Also
in [5], the case V ≡ 1 was treated under and between the first two eigenvalues.
In the present paper, we shall adapt and extend the approach in [7] in order to
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derive our main results for a homogeneous perturbation of −∆p, the p-Laplacian
operator, which is a prototype of quasilinear differential operator.

When V ≡ 0 it is known that (1.1) admits solutions, see e.g. [7], [3] and its
references for the case p = 2. On the other hand, it can also be proved the existence
of solutions for (1.1) when one introduces a positive potential V . Allowing V
to change sign makes the problem more interesting and challenging as to ensure
nontrivial solutions for (Pf ), a lot of facts has to be put in consideration: the
regularity of the domain and the lack of coercitivity of the functional energy.

The paper is organized as follows. In section two, we give a review of a certain
tools and established results that help in our concern. We thereby state properties
for the first nonprincipal eigenvalue for an asymmetric Steklov problem with respect
to its weights. In the third section, we solve under nonresonance conditions, namely,
conditions that involve not only a kind of nonresonance between the first two
eigenvalues but also the ones under the first eigenvalue.

2. Relevant background

2.1. The functional framework

Let Ω ⊂ RN be an open set. The p-Laplace operator (p > 1) is the partial
differential operator which to every function u : Ω −→ R assigns the function

∆pu(x) := div(|∇u(x)|p−2∇u(x)), x ∈ Ω. (2.1)

We simply write ∆ instead of ∆2 and call the 2-Laplace operator simply Laplace
operator. Throughout this paper, Ω will be a bounded smooth domain of class
C2,α where 0 < α < 1 with outward unit normal ν on the boundary ∂Ω. For a
given p > 1,

W 1,p(Ω) =

{

u ∈ Lp(Ω)|
∂u

∂xi
∈ Lp(Ω), i = 1, . . . , N

}

(2.2)

denotes the usual Sobolev space equipped with the norm

||u|| =

(

||u||pLp(Ω) +

N
∑

i=1

||
∂u

∂xi
||pLp(Ω)

)1/p

.

It is well known that (W 1,p(Ω), || · ||) is a Banach space that is separable and
reflexive (see H. Brezis [6]). The value of any u ∈ W 1,p(Ω) on ∂Ω is to be under-
stood in the sense of the trace i.e. there is a unique linear and continuous operator

γ : W 1,p(Ω) −→ W 1− 1
p
,p(∂Ω) such that γ is surjective and for u ∈ W 1,p(Ω)∩C(Ω̄),

we have γu = u|∂Ω. For each u ∈ W 1,p(Ω), one has

∇u =

(

∂u

∂x1
, . . . ,

∂u

∂xN

)

, |∇u| =

(

N
∑

i=1

(

∂u

∂xi

)2
)

1
2

. (2.3)
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2.2. Detour on an asymmetric Steklov prob. with sign-changing weights

Here we give general results for an asymmetric Steklov problem with sign-
changing weights of the form

(PV,m,n) :

{

∆pu = V (x)|u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = λ[m(x)(u+)p−1 − n(x)(u−)p−1] on ∂Ω
(2.4)

where Ω ⊂ RN is a bounded smooth domain of class C2,α where 0 < α < 1 with
outward unit normal ν on the boundary ∂Ω.

λ ∈ R is regarded as an eigenvalue. We assume that m,n ∈ Cα(∂Ω) for some
0 < α < 1. Finally, V is a given function in L∞(Ω) which may change sign and
u = u+ − u− where u± := max{±u, 0}. To solve (2.4), the authors in [10] have
considered the C1 functionals on W 1,p(Ω)

EV (u) :=

∫

Ω

(|∇u|p + V |u|p)dx and Bm,n(u) :=

∫

∂Ω

[m(u+)p + n(u−)p]dσ (2.5)

and introduced the real parameters

λD
1 (V ) := inf

{

EV (u); u ∈ W 1,p
0 (Ω) and

∫

Ω

|u|pdx = 1

}

> 0, (2.6)

β(V,m) := inf
{

EV (u); ||u||pLp(∂Ω) = 1 and Bm,m(u) = 0
}

(2.7)

β(V, n) := inf
{

EV (u); ||u||pLp(∂Ω) = 1 and Bn,n(u) = 0
}

(2.8)

to bypass arisen coerciveness difficulties of the energy functional due to the
sign-changing possibility of the potential V . In brief,

λ±1(V,m) := ± inf
Bm,m(u)=±1

EV (u)

are the principal eigenvalues of (PV,m,m) if and only if β(V,m) ≥ 0. Furthermore, if
β(V,m) < 0 then λ±1(V,m) = −∞ (see [14]). It can be therefore seen that problem
(PV,m,n) has a nontrivial and one-signed solutions under suitable assumptions (see
details in [10]) if and only if λ = λ1(V,m) or λ = λ1(V, n). Let ϕm and −ϕn

be the corresponding one-signed eigenfunctions associated respectively to λ1(V,m)
and λ1(V, n).

Remark 2.1. Since the boundary weights lie in Cα(∂Ω), every solution of (2.4)
belongs to C1,α(Ω̄), for 0 < α < 1 (see [12,14]). We note that if an eigenfunction
u is positive in Ω, it is shown that u remains positive on ∂Ω (see the first part of
the proof of Theorem 3.1 in [14]). Furthermore, one can state using Proposition
5.8 in [15] that if u changes sign in Ω then it is also a sign-changing function on
∂Ω.
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Theorem 2.1. [10] Assume λD
1 (V ) > 0, β(V,m) > 0 and β(V, n) > 0 and let

Γ := {γ ∈ C([0, 1],Mm,n) : γ(0) = ϕm and γ(1) = −ϕn} 6= ∅

where
Mm,n := {u ∈ W 1,p(Ω) : Bm,n(u) = 1}. (2.9)

Then
c(m,n, V ) := inf

γ∈Γ
max

u∈γ([0,1])
ẼV (u) (2.10)

is a nonprincipal eigenvalue for (PV,m,n) which satisfies

c(m,n, V ) > max{λ1(V,m), λ1(V, n)}.

Moreover c(m,n, V ) is the first nonprincipal eigenvalue of (PV,m,n) in sense that
there is no other eigenvalue of (PV,m,n) between max{λ1(V,m), λ1(V, n)} and
c(m,n, V ).

As some facts break down when (at least) one of the values β(V,m) and β(V, n)
vanishes, the authors in [10] have proved that in this case, there is still a hope of
obtaining existence solutions for (PV,m,n). Indeed,

Theorem 2.2. [10] Assume λD
1 (V ) > 0, β(V,m) = 0 or β(V, n) = 0.

1. There exist u1 ≥ 0 and u2 ≤ 0 in Mm,n such that

EV (u1) < c(m,n, V ) and EV (u2) < c(m,n, V ).

2. Define

Γ0 := {γ ∈ C ([0, 1],Mm,n) : γ(0) = u1 and γ(1) = u2} 6= ∅.

Then
c̄(m,n, V ) := inf

γ∈Γ̄0

max
t∈[0,1]

EV (γ(t)) (2.11)

is a nonprincipal eigenvalue for (PV,m,n). Moreover

c̄(m,n, V ) = c(m,n, V ).

Continuity and monotonicity properties concerning c(m,n, V ) with respect to
its first two arguments (boundary weights) are given in [10].

Proposition 2.1. Let m,n ∈ Lq(∂Ω) with N−1
p−1 < q < ∞ if p < N and q ≥ 1 if

p ≥ N , and V ∈ L∞(Ω). Assume that λD
1 (V ) > 0, β(V,m) ≥ 0 and β(V, n) ≥ 0

is verified with mk ⇀ m, nk ⇀ n and Vk ⇀ V as k → ∞. If β(V,m) = 0 (resp.
β(V, n) = 0), we then assume in addition that β(Vk,mk) ≥ 0 for all k ∈ N and
m− 6≡ 0 (resp. β(Vk, nk) ≥ 0 for all k ∈ N and n− 6≡ 0). Hence, the following
relations hold:
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1. λ1(Vk,mk) −→ λ1(V,m) as k → ∞ (resp. λ1(Vk, nk) −→ λ1(V, n) as k →
∞).

2. c(mk, nk, Vk) −→ c(m,n, V ) as k → ∞.

Proposition 2.2. 1. If m ≤ m̂ and n ≤ n̂ then c(m,n, V ) ≥ c(m̂, n̂, V ).

2. If m ≤ m̂, n ≤ n̂ in ∂Ω and

∫

∂Ω

(m̂−m)(u+)pdσ +

∫

∂Ω

(n̂− n)(u−)pdσ > 0 (2.12)

for at least one eigenfunction u associated to c(m,n, V ), then c(m,n, V ) >
c(m̂, n̂, V ).

We are guided to consider some basic results on the Nemytskii operator. Simple
proofs of these facts can be found in (for instance) Kavian [11] or de Figueiredo [8].

2.3. On the Nemytskii operator

Let Ω be as in the beginning of Section 2. and g : ∂Ω × R −→ R be a
Carathéodory function, i.e.:

• for each s ∈ R, the function x 7−→ g(x, s) is Lebesgue measurable in ∂Ω;

• for a.e. x ∈ ∂Ω, the function s 7−→ g(x, s) is continuous in R.

In the case of a Carathéodory function, the assertion x ∈ ∂Ω is to be understood
in the sense a.e. x ∈ ∂Ω. Let M be the set of all measurable function u : ∂Ω −→ R.

Proposition 2.3. If g : ∂Ω × R −→ R is Carathéodory, then, for u ∈ M, the
function Ngu : ∂Ω −→ R defined by

(Ngu)(x) = g(x, u(x)) for x ∈ ∂Ω (2.13)

is measurable in ∂Ω.

In the light of this proposition, a Carathéodory function g : ∂Ω × R −→ R
defines an operator Ng : M −→ M, which is called Nemytskii. The result below
states sufficient conditions when a Nemytskii operator maps an Lq1 space into
another Lq2 .

Proposition 2.4. Assume g : ∂Ω × R −→ R is Carathéodory and the following
growth condition is satisfied:

|g(x, s)| ≤ C|s|r + b(x) for x ∈ ∂Ω, s ∈ R, (2.14)

where C ≥ 0 is constant, r > 0 and b ∈ Lp1(∂Ω) with 1 ≤ p1 < ∞.
Then Ng(L

p1r(∂Ω)) ⊂ Lp1(∂Ω). In addition, Ng is continuous from Lp1r(∂Ω)
into Lp1(∂Ω) and maps bounded sets into bounded sets.
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We now give some important results concerning the Nemytskii operator that
will be used later.

Proposition 2.5. Suppose g : ∂Ω × R −→ R is Carathéodory and it satisfies the
growth condition:

|g(x, s)| ≤ C|s|p−1 + b(x) for x ∈ ∂Ω, s ∈ R, (2.15)

where C > 0 is constant, p > 1, b ∈ Lp′

(∂Ω) with 1
p +

1
p′

= 1. Let G : ∂Ω×R −→ R
be defined as

G(x, s) =

∫ s

0

g(x, t)dt. (2.16)

Then we have:

1. the function G is Carathéodory and there exist C1 ≥ 0 constant and d ∈
L1(∂Ω) such that

|G(x, s)| ≤ C1|s|
p + d(x) for x ∈ ∂Ω, s ∈ R; (2.17)

2. the functional Ψ : Lp(∂Ω) −→ R defined by

Ψ(u) :=

∫

∂Ω

NGu =

∫

∂Ω

G(x, u)

is continuously Fréchet differentiable and Ψ′(u) = NGu for all u ∈ Lp(∂Ω).

3. Assumptions and nonresonance results

The present article deals explicitly with a very known type of problem

(Pf ) :

{

∆pu = V (x)|u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = f(x, u) on ∂Ω
(3.1)

where Ω ⊂ RN is a bounded smooth domain of class C2,α where 0 < α < 1 with
outward unit normal ν on the boundary ∂Ω.

The functions V (x) and f(x, s) satisfy the following conditions:

(HV ) : V (x) ∈ L∞(Ω) possibly indefinite,

(HC) : f : ∂Ω× R −→ R is a Carathéodory function lying in Cr

for some 0 < r < 1.
We define the following functions and make the assumption that they have

nontrivial positive parts:

(Hf ) k±(x) := lim inf
s→±∞

f(x, s)

|s|p−2s
≤ lim sup

s→±∞

f(x, s)

|s|p−2s
:= K±(x)

(HF ) l±(x) := lim inf
s→±∞

pF (x, s)

|s|p
≤ lim sup

s→±∞

pF (x, s)

|s|p
:= L±(x)



Weighted Steklov Problem Under Nonresonance Conditions 93

with F (x, s) =

∫ s

0

f(x, t)dt. We also assume that

(HS) k±,K±, l±, and L± are in Cr(∂Ω)

for some 0 < r < 1 and note that the aforementioned limits are held uniformly
with respect to x ∈ ∂Ω that is for every ε > 0, there exist aε ∈ Lp′

(∂Ω), and
bε ∈ L1(∂Ω) such that for a.e. x ∈ ∂Ω and ∀s ∈ R,

(H1) −aε+
(

k+(x)+K−(x)−ε
)

|s|p−2s ≤ f(x, s) ≤
(

k−(x)+K+(x)+ε
)

|s|p−2s+aε

(H2) − bε +
(

l+(x) + l−(x)− ε
) |s|p

p
≤ F (x, s) ≤

(

L+(x) + L−(x) + ε
) |s|p

p
+ bε.

According to (HS) and (H1), we conclude that there exist a1 > 0 and b1 ∈
Lp′

(∂Ω) such that

(H3) |f(x, s)| ≤ a1|s|
p−1 + b1(x)

for a.e. x ∈ ∂Ω and all s ∈ R.
In addition, we require the above functions to satisfy

(H4)























0 < λ1(V, k±) ≤ 1 and c(K+,K−, V ) ≥ 1

0 < λ1(V, l±) < 1 and c(L+, L−, V ) > 1

λD
1 (V ) > 0, β(V, k±) > 0 and β(V, l±) > 0

(3.2)

where λD
1 (V ), β(V, ·), λ1(V, ·) and c(·, ·, V ) are related to the asymmetric Steklov

problem (2.4).

Remark 3.1. One easily checks from (Hf ) and (HF ) that

k±(x) ≤ l±(x) ≤ L±(x) ≤ K±(x) a.e. on ∂Ω. (3.3)

We state our first result concerning the strict monotonicity of λ1(V, ·) as a
principal positive eigenvalue of (PV,m,m).

Proposition 3.1. If m1(x) � m2(x) on ∂Ω (where � means that one has a large
inequality a.e in ∂Ω and a strict inequality in a subset with a positive measure)
then λ1(V,m1) > λ1(V,m2).

Proof: Let m1(x) and m2(x) be two weight functions satisfying m1(x) � m2(x)
for a.e. x in ∂Ω and ϕm1

be an eigenfunction associated to λ1(V,m1). We know
that ϕm1

is positive and ϕm1
> 0 on ∂Ω. One has

1

λ1(V,m1)
=

1

EV (ϕm1
)

∫

∂Ω

m1(x)ϕ
p
m1

dσ (3.4)
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and then

1

EV (ϕm1
)

∫

∂Ω

m1(x)ϕ
p
m1

dσ <
1

EV (ϕm1
)

∫

∂Ω

m2(x)ϕ
p
m1

dσ. (3.5)

On the other hand,

1

EV (ϕm1
)

∫

∂Ω

m2(x)ϕ
p
m1

dσ ≤ sup

{

1

EV (u)

∫

∂Ω

m2(x)|u|
pdσ : u ∈ W 1,p(Ω)

}

=

=
1

λ1(V,m2)
(3.6)

Combining (3.4), (3.5) and (3.6), we get
1

λ1(V,m1)
<

1

λ1(V,m2)
i.e.

λ1(V,m1) > λ1(V,m2).

✷

3.1. Nonresonance between the first two eigenvalues

We study a nonresonance problem relating to Steklov boundary conditions and
in addition we deal with some indefinite weight as a new feature. To fix one’s
ideas, problem (Pf ) can be found in [4,7] where particular cases of weight were
considered. Throughout this subsection, we work on gathering needed properties
to apply a version of the classical ”Mountain Pass Theorem” for a C1 functional
restricted to a C1 manifold (see [1,8]). Our purpose is of course to obtain existence
results for (Pf ) and by doing so, extend some of the known results in [4,5,7]. In
order to have things well defined in the context of variational approach, we consider
for u ∈ W 1,p(Ω),

Φ(u) :=
1

p
EV (u)−

∫

∂Ω

F (x, u)dσ (3.7)

as the C1 functional which allows to get the weak formulation of (3.1) as follows

〈Φ′(u), v〉 =

∫

Ω

|∇u|p−2∇u.∇v +

∫

Ω

V (x)|u|p−2uv −

∫

∂Ω

f(x, u)vdσ = 0. (3.8)

It follows readily that the critical points of Φ are precisely the weak solutions of
(Pf ). So the search for solutions of (3.1) is transformed in the investigation of
critical points of Φ relying on standard arguments. For convenience, we recall a
version of the well-known ”Mountain Pass Theorem” in a useful and popular form
(see [1]).

Proposition 3.2. [1] Let E be a real Banach space and let M := {u ∈ E; g(u) =
1}, where g ∈ C1(E,R) and 1 is a regular value of g. Let f ∈ C1(E,R) and
consider the restriction f̃ of f to M . Let u, v ∈ M with u 6= v and suppose that

H := {h ∈ C([0, 1],M) : h(0) = u and h(1) = v} (3.9)
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is nonempty. Assume also that

c := inf
h∈H

max
w∈h([0,1])

f(w) > max{f(u), f(v)}

and that f̃ satisfies (PS) condition on M . Then c is a critical value of f̃ .

We state our first main result as follows:

Theorem 3.1. Assume that (HV ), (HC), (Hf ), (HF ), (HS) and (H4) are satisfied.
Then the problem (Pf ) admits a solution in W 1,p(Ω).

We will use Proposition 3.2 for the proof of Theorem 3.1 and we start with the
following that proves the required Palais-Smale condition.

Proposition 3.3. Φ satisfies the (PS) condition on W 1,p(Ω) that is for any se-
quence (un) such that







|Φ(un)| ≤ c

|〈Φ′(un), ϕ〉| ≤ εn||ϕ|| ∀ ϕ ∈ W 1,p(Ω)
(3.10)

with c real constant and εn → 0, one has that (un) admits a convergent subsequence.

Proof: The proof adopts the scheme in [7]. Let (un) be a Palais-Smale sequence,
i.e. (3.10) is satisfied. Since W 1,p(Ω) is a Banach space that is reflexive, to prove
that (un) has a convergent subsequence, it suffixes to prove its boundedness. To
this end, let assume by contradiction that (un) is unbounded i.e. ||un|| → ∞ and

set vn =
un

||un||
. We now show that this is not the case, so arriving to contradiction.

As (vn) is bounded in the same space W 1,p(Ω), one can find some v0 in W 1,p(Ω)
such that vn ⇀ v0 in W 1,p(Ω) and vn → v0 in Lp(Ω) and then in Lp(∂Ω). Using
(H3) with s = un(x) and divide it by ||un||p−1, one deduces that f(x, un)/||un||p−1

is bounded in Lp′

(∂Ω) and then converges weakly to some f0. Rewriting the second
inequality of (3.10) by setting ϕ = (vn − v0), we reach

〈Φ′(un), ϕ〉

||un||p−1
=

〈Φ′(un), (vn − v0)〉

||un||p−1

=

∫

Ω

|∇vn|
p−2∇vn · ∇(vn − v0)dx +

∫

Ω

V (x)|vn|
p−2vn(vn − v0)dx

−

∫

∂Ω

f(x, un)

||un||p−1
(vn − v0)dσ −→ 0. (3.11)

Applying Hölder inequality and taking into account the fact that
f(x, un)/||un||p−1 is bounded in Lp′

(∂Ω), one easily checks that
∣

∣

∣

∣

∫

∂Ω

f(x, un)

||un||p−1
(vn − v0)dσ

∣

∣

∣

∣

−→ 0 (3.12)
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and
∣

∣

∣

∣

∫

Ω

V (x)|vn|
p−2vn(vn − v0)dx

∣

∣

∣

∣

−→ 0. (3.13)

Thus
∫

Ω

|∇vn|
p−2∇vn · ∇(vn − v0)dx −→ 0. (3.14)

Moreover,
∫

Ω

(

|∇vn|
p−2∇vn − |∇v0|

p−2∇v0
)

· (∇vn −∇v0) dx −→ 0.

Applying the (S+) property stated in Lemma 3.1 below and Hölder inequality, one
easily derives that (vn) converges strongly to v0 in W 1,p(Ω) with ||v0|| = 1. From
(3.11), we can write
∫

Ω

|∇v0|
p−2∇v0·∇ϕdx+

∫

Ω

V |v0|
p−2v0ϕdx =

∫

∂Ω

f0ϕdσ, ∀ϕ ∈ W 1,p(Ω). (3.15)

Based on (Hf ) (see [9]), there exist α1 and α2 in Lq(∂Ω) such that

f0(x) = α1(x)(v
+
0 )p−1 − α2(x)(v

−
0 )p−1 (3.16)

and almost for every x ∈ ∂Ω,
{

k+(x) ≤ α1(x) ≤ K+(x)
k−(x) ≤ α2(x) ≤ K−(x).

(3.17)

In view of (3.16) and since the values of α1(x) (resp. α2(x)) on {x ∈ ∂Ω : v0(x) ≤ 0}
(resp. on {x ∈ ∂Ω : v0(x) ≥ 0}) are irrelevant, we follow [7] by assuming that







α1(x) = L+(x) on {x ∈ ∂Ω : v0(x) ≤ 0}

α2(x) = L−(x) on {x ∈ ∂Ω : v0(x) ≥ 0}.
(3.18)

Relying on Remark 2.1, we will distinguish the two cases where v0 ≥ 0 a.e.
on ∂Ω or v0 changes sign on ∂Ω and prove that v0 ≥ 0 almost everywhere on ∂Ω
or v0 changes sign on ∂Ω, both lead to a contradiction and thereby get expected
conclusion.

1. Suppose first that v0 ≥ 0 almost everywhere on ∂Ω and consider (3.15).
One shows that v0 > 0 on ∂Ω. Indeed, assume that v0 = 0 on ∂Ω. Then
v0 ∈ W 1,p

0 (Ω) and (3.15) becomes
∫

Ω

|∇v0|
p−2∇v0 · ∇ϕdx+

∫

Ω

V |v0|
p−2v0ϕdx = 0, ∀ϕ ∈ W 1,p(Ω)

and for ϕ = v0 ∈ W 1,p
0 (Ω) ⊂ W 1,p(Ω), we have EV (v0) = 0. Moreover

v0
||v0||

p

Lp(Ω)

is admissible for λD
1 (V ) and consequently,

λD
1 (V ) ≤ EV

(

v0
||v0||

p
Lp(Ω)

)

= 0
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which contradicts the assumption λD
1 (V ) > 0. Thus v0 > 0 on ∂Ω and f(x) =

α1(x)(v
+
0 )p−1 6= 0 since otherwise, we get into the previous case. We deduce

that Bα1,α2(v0) 6= 0 and then λ1(V, α1) ≥ 1 and combining monotonicity of
λ1(V, ·), (3.2) and (3.17), one obtains λ1(V, k+) = 1 and then α1 = k+ almost
everywhere on ∂Ω by strict monotonicity. We have from the first condition
in (3.10)

Φ(un)

||un||p
−→ 0 (3.19)

that is

EV (v0) = lim
n→∞

∫

∂Ω

pF (x, un(x))

||un||p
dσ. (3.20)

Using (H2) and passing to the limit, we have
∫

∂Ω

l+v
p
0dσ ≤ lim

n→∞

∫

∂Ω

pF (x, un(x))

||un||p
dσ = EV (v0) =

∫

∂Ω

α1v
p
0dσ. (3.21)

From Remark 3.1, one write α1 = k+ ≤ l+ almost everywhere on ∂Ω and
then α1 = l+ since v0 > 0. This implies λ1(V, l+) = 1 which contradicts the
strict inequality in (3.2).

2. Suppose now that v0 changes sign on ∂Ω and still consider (3.15). Then
v0 verifies (3.15) which means that v0 is a solution of the following Steklov
problem

{

∆pu = V (x)|u|p−2u in Ω
|∇u|p−2 ∂u

∂ν = α1(u
+)p−1 − α2(u

−)p−1 on ∂Ω.
(3.22)

Let us show that Bα1,α2(v0) 6= 0. Assume by contradiction that

Bα1,α2(v0) =

∫

∂Ω

α1(x)(v
+
0 )

pdσ +

∫

∂Ω

α2(x)(v
−
0 )pdσ = 0.

Repeating similar arguments from the proof of [10, Proposition 3.10], we
reach a contradiction and one can infer c(α1, α2, V ) ≤ 1. Moreover, mono-
tonicity of c(·, ·, V ) together with (3.17) and (3.2) lead to

c(α1, α2, V ) = c(K+,K−, V ) = 1.

Adapt ideas from the previous case, we have

∫

∂Ω

(α1(v
+
0 )

p + α2(v
−
0 )p)dσ = EV (v0) = lim

n→∞

∫

∂Ω

pF (x, un(x))

||un||p
dσ

≤

∫

∂Ω

(L+(v
+
0 )

p + L−(v
−
0 )p)dσ (3.23)

≤

∫

∂Ω

(K+(v
+
0 )

p +K−(v
−
0 )p)dσ.
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Let assume by contradiction that
∫

∂Ω

(α1(v
+
0 )

p + α2(v
−
0 )

p)dσ <

∫

∂Ω

(K+(v
+
0 )

p +K−(v
−
0 )p)dσ.

Therefore
∫

∂Ω

(

(K+ − α1)(v
+
0 )

p + (K− − α2)(v
−
0 )p
)

dσ > 0

which leads to c(α1, α2, V ) > c(K+,K−, V ) by the strict monotonicity of
c(·, ·, V ). We then reach a contradiction since we have established that
c(α1, α2, V ) = c(K+,K−, V ). Finally, (3.23) reads as

∫

∂Ω

(α1(v
+
0 )

p + α2(v
−
0 )p)dσ = EV (v0) = lim

n→∞

∫

∂Ω

pF (x, un(x))

||un||p
dσ

=

∫

∂Ω

(L+(v
+
0 )

p + L−(v
−
0 )p)dσ (3.24)

=

∫

∂Ω

(K+(v
+
0 )

p +K−(v
−
0 )p)dσ

and then from Remark 3.1 and (3.17),







L+(x) = K+(x) on {x ∈ ∂Ω : v0(x) > 0}

L−(x) = K−(x) on {x ∈ ∂Ω : v0(x) < 0}
(3.25)

and






α1(x) = K+(x) on {x ∈ ∂Ω : v0(x) > 0}

α2(x) = K−(x) on {x ∈ ∂Ω : v0(x) < 0}
(3.26)

hold. Considering (3.18), it follows that

c(α1, α2, V ) = c(L+, L−, V ) = 1

which contradicts the strict inequality in (3.2) and put an end to the proof.

✷

Lemma 3.1. [13][(S+) property] For all x, y ∈ RN , we have

|x− y|p ≤ c
[(

|x|p−2x− |y|p−2y
)

(x− y)
]s/2

[|x|p + |y|p]1−s/2

with c = c(p), s = p if 1 < p < 2 and s = 2 if p ≥ 2.

We now turn to the study of the geometry of Φ and first look for directions
along which Φ goes to −∞.
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Lemma 3.2. If δ+ (resp. δ−) is a positive eigenfunction associated to λ1(V, l+)
(resp. λ1(V, l−)), then lim

r→∞
Φ(rδ+) = −∞ (resp. lim

r→∞
Φ(−rδ−) = −∞).

Proof: Let us show that Φ(rδ+) → −∞ (similar argument for Φ(−rδ−) → −∞).
As in [1] and [7], we recall for simplicity, the meaning of (HF ) being holding
uniformly with respect to x ∈ ∂Ω. That is for every ε > 0, there exists bε ∈ L1(∂Ω)
such that

1

p
l+(x)|s

+|p +
1

p
l−(x)|s

−|p −
ε

p
|s|p − bε

≤ F (x, s) ≤
1

p
L+(x)|s

+|p +
1

p
L−(x)|s

−|p +
ε

p
|s|p + bε (3.27)

for almost every x ∈ ∂Ω and all s ∈ R. Let take r > 0 and get back to Φ to write

Φ(rδ+) =
rp

p
EV (δ+)−

∫

∂Ω

F (x, rδ+)

≤
rp

p
EV (δ+)−

rp

p

∫

∂Ω

(

l+δ
p
+ − εδp+

)

dσ +

∫

∂Ω

bεdσ

≤
rp

p
EV (δ+)−

rp

p
.
EV (δ+)

λ1(V, l+)
+

εrp

p

∫

∂Ω

δp+dσ +

∫

∂Ω

bεdσ

≤
rp

p

(

1−
1

λ1(V, l+)

)

EV (δ+) +
εrp

p

∫

∂Ω

δp+dσ +

∫

∂Ω

bεdσ

≤
rp

p

(

1−
1

λ1(V, l+)
+ ε

∫

∂Ω
δp+dσ

EV (δ+)

)

EV (δ+) +

∫

∂Ω

bεdσ.

As λ1(V, l+) < 1, we just have to choose ε less than (1−λ1(V,l+))EV (δ+)
λ1(V,l+)

∫
∂Ω

δp+dσ
to get

Φ(rδ+) → −∞ when r → +∞. ✷

Proposition 3.4. There exists r0 > 0 such that for all r ≥ r0 and for all γ ∈ Γr

with

Γr := {γ ∈ C([0, 1],W 1,p(Ω)) : γ(0) = rδ+ and γ(1) = −rδ−},

one obtains
max

w∈γ([0,1])
Φ(w) > max{Φ(rδ+),Φ(−rδ−)}.

Once Proposition 3.4 is proved, we can pick r ≥ r0 and apply Proposition 3.2 by
setting H = Γr and f ≡ Φ in Proposition 3.2 to conclude on the solvability of (Pf ).

Proof: [Proof of Proposition 3.4.] Keeping bε as in (3.27), it follows that there is
a possibility to pick r0 > 0 by Lemma 3.2 and get for all r > r0,

−

∫

∂Ω

bεdσ > max{Φ(rδ+),Φ(−rδ−)}. (3.28)



100 J. Doumatè and A. Marcos

Thus let r > r0 and take γ ∈ Γr. We now face the two cases that arise here that
is either BL+,L−

(γ(t)) > 0 for all t ∈ [0, 1] or there exists t0 ∈ [0, 1] such that
BL+,L−

(γ(t0)) ≤ 0.

1. In the first case, BL+,L−
(γ(t)) > 0 for all t ∈ [0, 1] and we set

γ̃(t) :=
γ(t)

(

BL+,L−
(γ(t))

)1/p

which is a path in ML+,L−
(which is defined in (2.10)) that verifies

max
w∈γ̃([0,1])

EV (w) ≥ c(L+, L−, V ). (3.29)

On the other hand

Φ(w) ≥
1

p
EV (w) −

1

p

∫

∂Ω

(

L+(x)(w
+)p + L−(x)(w

−)p
)

dσ

−
ε

p

∫

∂Ω

|w|pdσ −

∫

∂Ω

aεdσ

≥
1

p
EV (w) −

1

p
BL+,L−

(w)− ε

∫

∂Ω

|w|pdσ −

∫

∂Ω

bεdσ (3.30)

and from (3.29),

max
w∈γ̃([0,1])

1

BL+,L−
(w)

×

[

pΦ(w) + pBL+,L−
(w) + ε

∫

∂Ω

|w|pdσ

+p

∫

∂Ω

bεdσ

]

≥ c(L+, L−, V )

which means that one can find some w0 in γ([0, 1]) such that

Φ(w0)+
1

p
BL+,L−

(w0)+
ε

p

∫

∂Ω

|w0|
pdσ+

∫

∂Ω

bεdσ ≥ c(L+, L−, V )BL+,L−
(w0)

that is

Φ(w0) ≥

(

c(L+, L−, V )−
1

p

)

BL+,L−
(w0)− ε

∫

∂Ω

|w0|
pdσ −

∫

∂Ω

bεdσ,

for all ε > 0. Thus one can choose ε small enough, to get

(

c(L+, L−, V )−
1

p

)

BL+,L−
(w0)− ε

∫

∂Ω

|w0|
pdσ > 0

and then

Φ(w0) > −

∫

∂Ω

bεdσ.
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Consequently,

Φ(w0) > −

∫

∂Ω

bεdσ > max{Φ(rδ+),Φ(−rδ−)} (3.31)

and it reads max
w∈γ([0,1])

Φ(w) > max{Φ(rδ+),Φ(−rδ−)}.

2. In the second case, there exists t0 ∈ [0, 1] such that BL+,L−
(γ(t0)) ≤ 0. From

(3.27), we get

max
w∈γ([0,1])

Φ(w) ≥ Φ(γ(t0))

≥
1

p
EV (γ(t0))−

1

p
BL+,L−

(γ(t0))−
ε

p

∫

∂Ω

|γ(t0)|
pdσ

−

∫

∂Ω

bεdσ. (3.32)

• If BL+,L−
(γ(t0)) ≤ 0 and

∫

∂Ω

|γ(t0)|
pdσ = 0 then γ(t0) = 0 almost ev-

erywhere on ∂Ω and γ(t0) ∈ W 1,p
0 (Ω). Assuming that γ(t0) = 0 in Ω, the

relation (3.32) reads

max
w∈γ([0,1])

Φ(w) ≥ −

∫

∂Ω

bεdσ (which is our expected result).

Now suppose rather that γ(t0) 6= 0 in Ω. Hence we can normalize the path
γ(t0) and get

ζ0 :=
γ(t0)

||γ(t0)||
1/p
Lp(Ω)

as an admissible function for the definition of λD
1 (V ) and write

0 < λD
1 (V ) ≤ EV (ζ0) =

EV (γ(t0))

||γ(t0)||Lp(Ω)
.

This leads to EV (γ(t0)) > 0 and we can conclude that

1

p
EV (γ(t0))−

1

p
BL+,L−

(γ(t0)) > 0.

As a consequence,

max
w∈γ([0,1])

Φ(w) ≥ −

∫

∂Ω

bεdσ

and the result follows.
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• If BL+,L−
(γ(t0)) ≤ 0 and

∫

∂Ω

|γ(t0)|
pdσ > 0 then one can define

γ̃ :=
γ(t0)

||γ(t0)||Lp(∂Ω)

and easily check that B1,1(γ̃) = 1 refering to the problem tackled in [14] with
constant weight 1 on the boundary. The function γ̃ is therefore admissible
for λ1(V, 1) and plugging a right ε > 0 in (3.32), we obtain again

max
w∈γ([0,1])

Φ(w) ≥ −

∫

∂Ω

bεdσ

and consequently

max
w∈γ([0,1])

Φ(w) > max{Φ(rδ+),Φ(−rδ−)}.

This achieves the proof of Proposition 3.4 and also of Theorem 3.1. ✷

3.2. Nonresonance under the First Eigenvalue

We are mainly interested in this subsection in the situation where the condi-
tion of nonresonance lies below the first eigenvalue. Precisely, for a Carathéodory

function f : ∂Ω × R → R satisfying (HC) and define F (x, s) =

∫ s

0

f(x, t)dt, we

assume

g(x) := lim sup
|s|→+∞

pF (x, s)

|s|p
(3.33)

to have nontrivial positive parts, lying in Cr(∂Ω) and verifies

λ1(V, g) > 1. (3.34)

Remark 3.2. The conditions g(x) := lim sup
|s|→+∞

pF (x, s)

|s|p
imply that for all ε > 0,

∃ dε ∈ Lp′

(∂Ω) such that

F (x, s) ≤ (g(x) + ε)
|s|p

p
+ dε(x) (3.35)

for a.e. x in ∂Ω and ∀s ∈ R.

Theorem 3.2. If λD
1 (V ) > 0, β(V, g) > 0, (HC), (HS) and (3.34) are satisfied

then the problem (Pf ) has (at least) one solution in Mg,g.

Proof: Let us show first that the energy functional Φ is coercive. Indeed, assume
by contradiction that there exists a sequence (un) in Mg,g such that

||un||W 1,p :=

∫

Ω

|∇un|
pdx+

∫

∂Ω

|un|
pdσ → ∞ (3.36)
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(where the norm || · ||W 1,p is a equivalent to the usual norm on W 1,p(Ω)) and

K ≥
1

p
EV (un)−

∫

∂Ω

F (x, un)dσ = Φ(un) (3.37)

for some constantK. One shows by contradiction that tn :=

(
∫

Ω

|un|
pdx

)1/p

→ ∞.

Indeed, assume by contradiction that (tn) is bounded. We first deduce that
∫

∂Ω

|un|
pdσ is bounded and in addition we write from (3.7),

∫

Ω

|∇un|
pdx = pΦ(un)−

∫

Ω

V (x)|un|
pdx+ p

∫

∂Ω

F (x, un)dσ (3.38)

and using (3.35), it reads
∫

Ω

|∇un|
pdx ≤ pΦ(un)−

∫

Ω

V |un|
pdx+

∫

∂Ω

(g + ε)|un|
pdσ + p

∫

∂Ω

dεdσ. (3.39)

Recall that
∫

Ω

V (x)|un|
pdx ≤ ||V ||L∞(Ω)t

p
n

and
∫

∂Ω

F (x, un)dσ ≤

∫

∂Ω

(g(x) + ε)
|un|p

p
dσ +

∫

∂Ω

dε(x)dσ

which make

∫

Ω

V (x)|un|
pdx and

∫

∂Ω

F (x, un)dσ bounded and therefore
∫

Ω

|∇un|
pdx also is bounded. Thus this contradicts (3.36) and we conclude that

tn =

(
∫

Ω

|un|
pdx

)1/p

−→ ∞.

Define vn =
un

tn
and note that ||vn||Lp(Ω) = 1. Dividing (3.39) by tpn, we can easily

see that

∫

Ω

|∇vn|
pdx becomes bounded and then (vn) is a bounded sequence in

W 1,p(Ω) and by standard arguments, one derives that (vn) converges weakly to
some v in W 1,p(Ω) and vn → v in Lp(Ω) ∩ Lp(∂Ω).

Using (3.35), we have

Φ(un) ≥
1

p
EV (un)−

∫

∂Ω

(g(x) + ε)
|un|

p

p
dσ −

∫

∂Ω

dε(x)dσ. (3.40)

Choosing ε > 0 such that λ1(V, g + ε) > 1, it comes

K ≥
1

p
EV (un)

(

1−
1

λ1(V, g + ε)

)

−

∫

∂Ω

dε(x)dσ. (3.41)
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Dividing (3.41) by tpn and passing to the limit, one writes lim inf
n→∞

EV (vn) ≤ 0.

Moreover, we face two cases regarding

∫

∂Ω

|v|pdσ that are

∫

∂Ω

|v|pdσ = 0 and
∫

∂Ω

|v|pdσ > 0.

• In the case

∫

∂Ω

|v|pdσ = 0, one has v ≡ 0 a.e. in ∂Ω and as ||v||Lp(Ω) = 1,

we get v ∈ W 1,p
0 (Ω) and v is therefore admissible for λD

1 (V ). This leads to

λD
1 (V ) ≤ EV (v) ≤ lim inf

n→∞
EV (vn) ≤ 0 (3.42)

which contradicts the assumption λD
1 (V ) > 0.

• Taking the case

∫

∂Ω

|v|pdσ > 0, we have

∫

∂Ω

|vn|
pdσ > 0 and then

∫

∂Ω

|un|
pdσ > 0. Let us set sn :=

(
∫

∂Ω

|un|
pdσ

)1/p

and show that sn → ∞.

By contradiction, assume that the sequence (sn) is bounded. Then one shows

(using (3.39)) that it is so for

∫

Ω

|∇un|
pdx but this, once again, contradicts

(3.36) and the result follows. Now we define wn :=
un

sn
and get ||wn||Lp(∂Ω) =

1. We show by contradiction that

∫

Ω
|un|pdx

spn
is bounded and as

∣

∣

∣

∣

∫

∂Ω

g(x)|wn|
pdσ

∣

∣

∣

∣

≤
1

spn
−→ 0 when n → ∞, (3.43)

we conclude by dividing (3.39) by spn that

∫

Ω

|∇wn|
pdx is bounded and

as a consequence (wn) is a bounded sequence in W 1,p(Ω) and there exists
w ∈ W 1,p(Ω) such that wn ⇀ w. By standard argument, one reaches
wn → w in Lp(Ω) ∩ Lp(∂Ω) and write ||w||Lp(∂Ω) = 1 and Bg,g(w) = 0
which mean that w can be seen as an admissible function in the definition
of β(V, g). Furthermore, dividing (3.41) by spn and passing to the limit, one
gets lim inf

n→∞
EV (wn) ≤ 0 and consequently

β(V, g) ≤ EV (w) ≤ lim inf
n→∞

EV (wn) ≤ 0. (3.44)

This leads to a contradiction with the assumption β(V, g) > 0 and we get
expected result that is Φ is coercive on Mg,g. Since Φ is sequentially weakly
lower semicontinuous, Φ attains a minimum value and this ends the proof.

✷
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Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi,
01 BP: 613 Porto-Novo, Benin Republic (West Africa)
E-mail address: abmarcos@yahoo.fr, abmarcos@imsp-uac.org


	Introduction
	Relevant background
	The functional framework
	Detour on an asymmetric Steklov prob. with sign-changing weights
	On the Nemytskii operator

	Assumptions and nonresonance results
	Nonresonance between the first two eigenvalues
	Nonresonance under the First Eigenvalue


