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Unramified extensions of some cyclic quartic fields

Abdelmalek Azizi, Idriss Jerrari* and Mohammed Talbi

ABSTRACT: Let K be a cyclic quartic field such that its 2-class group Ck o is
isomorphic to Z/27Z x Z/27Z x 7Z/27. In this paper we give the generators of Ck 2
and we determine the fourteen unramified extensions of K.
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1. Introduction

Let K be an imaginary cyclic quartic extension of the rational field Q, Kél)
be the Hilbert 2-class field of K, KéQ) be the Hilbert 2-class field of Kél), K™ be
the genus field of K, that is the maximal absolute abelian subfield of K2(1) /K and
let Ck,2 be the 2-class group of K. If Ck o is isomorphic to Z/2Z x Z/2Z, then
A. Azizi and M. Talbi have studied this situation and answered concretely to the
capitulation problem of Ck o in the three subfields of K2(1)/K (see [1,2,3,4]...).

Let K = Q(y/—2peV/¥) where £ = 5 (mod 8) and p = 1 (mod 4) are different
primes and ¢ is the fundamental unit of k = @(\/Z) If (flf) = —1, then Ckp is
isomorphic to Z/27Z x Z/2Z and the capitulation problem has been studied in [3].
But if (%) = 1, then K*) C K2(1) and there exist two prime ideals By, By of k
such that BBy = (p). If ho denotes the class number of k, then B = (a + b\/7)
and Bg" = (a — b\V/€); one can show that four prime ideals of k ramify in K which
are: the prime ideal of k above 2, (v/€), By and By (see [8]), so Ck o is isomorphic
to /27 x 1./2Z x Z,/2Z if and only if (2) = —(}), (see [6, Theorme 4, p. 68]).
By class field theory, there are seven unramified quadratic fields over K and seven
unramified biquadratic fields over K which are contained in Hilbert 2-class field

K2(1). The following diagram illustrates the situation.
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In [5], the authors studied the capitulation problem of the 2-classes of the
biquadratic fields Q(,/p1p=2q, v —1) with 2-class group isomorphic to Z/2Z x Z/27 x
Z/27, in its 14 unramified abelian extension within the first Hilbert 2-class field.

In the case where K = Q(y/ —2pev/¥) with Cl 5 is isomorphic to Z/27Z x Z/27 x
Z /27, we give, in this paper, the generators of Ck 2 and we will build the fourteen

unramified abelian extensions within K2(1) using [7] and [2,3] .
2. The generators of Ck 2
Lemma 2.1. Let p = 1 (mod 4) and ¢ = 5 (mod 8) be different primes. Put

k = Q%) and denote by ¢ its fundamental unit. Let K = Q(\/—2peV/t), then the
genus field of K is K*) = K(\/p, V2).

Proof: As ¢ and p are the unique primes of QQ different from 2 which ramify in K,
of ramification index e, = 4 and e, = 2 respectively, since the relative discriminant
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of K/kis Ak, = (8pV/0); then, according to [9, Theorem 4, p. 48 — 49], we have
K® = M;M,K where M, (respectively M,) is the unique subfield of the ¢-th
(respectively p-th) cyclotomic number field Q(§,) (respectively Q(§,)) of degree
er = 4 (respectively e, = 2). Moreover, it is known that M, = Q(\/ —eV/¥) (see
[10, Proposition 5.9, p. 160]) and M, = Q(,/p). Thus K*) = K(\/p, V2). O

Lemma 2.2. Let k = Q(v/{) where { is a prime number such that £ =5 (mod 8),
ho be the class number of k, and p be a prime number such that p = 1 (mod 4).
Assume that (%) =1, then p" = wimy with m = a + bl and T = a — b2

1. If (%)4 + (%)4, then the equation —m; = x? (mod 4) admits solution in k;
2. If (§)4 = (), then the equation m; = 2* (mod 4) admits solution in k.

Proof: See [2, p. 277-280]. O

Theorem 2.3. Let K = Q(\/—2peV/{) where ¢ is the fundamental unit of k =
Q(W?0), £ =5 (mod 8) and p = 1 (mod 4) are different primes such that 3 =1

and (%) = —(8),- Then Ck o = ([H], [Pho], [Pho]), where Py and Py are the prime
tdeals in K above p and H is the prime ideal in K above 2.

Proof: Recall that pOg = CP%CP% = mm Ok with Ok the ring of integers of K,
™ :a—l—b\/Zandﬂg =a—b/L.

The class [P PE0] is of order 2. In fact, if PHPIo = () for any o in K, this
is equivalent to (p"°) = (a?) in K. Then there exists £ a unit of K such that

phoe’ = a2, thus p™oe’ = (¢ + dy/ —2peV?)? = ¢ — 2peV/1d? 4 2cd\/ —2pe/{ with ¢

and d in k, and as {¢} is a fundamental system of units of K and \/—1 ¢ K, then
poe’ € k therefore ¢ = 0 or d = 0. If d = 0, then p"oe’ = 2, thus +p"° = ¢ or
poe = ¢% in k, which gives that \/Fp € k in the first case and /=1 € Q in the
second case, which is impossible, and similarly, if ¢ = 0 we find that +/ is a square
in Q, which is not the case.

The class [TP?U] is of order 2. In fact, suppose that fPﬁ“’ = (a) for any « in K,
then P?" = (a)?, this is equivalent to (m;) = (?) in K. Then there exists ¢’ a

unit of K such that me’ = a? = (c+dy/ —2peV/)? = @ — 2pe/Id? 4 2cdy/ —2peV/{
with ¢ and d in k, then ¢ = 0 or d = 0. If d = 0, multiplying by 7; for j # i, we
get pMoe’ = ;% So by applying the norm in k/Q, we find that +p"° = Ny g(c)?,
this means that +p is a square in Q, which is impossible. In a similar way if ¢ = 0,
we get +¢p is a square in QQ, which is impossible.

The class [H] is of order 2. In fact, suppose that H = («) for any « in K, then
H? = («)?, this is equivalent to (2) = (a?) in K. Then there exists &’ a unit of K

such that 26" = a2 = (¢+dy/ —2peV/0)? = @ — 2pe/ld? 4 2¢dy/ —2peV/{ with ¢ and
din k,then c=0or d=0. If d = 0, then 2¢’ = ¢?, thus 2 = ¢? or 2¢ = ¢? in k,
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which gives that v/£2 € k in the first case and v/—1 € Q in the second case, which
is impossible. If ¢ = 0, then 2¢’ = —2peV/4d?, so by applying the norm in k/Q, we
find that +[ is a square in QQ, which is impossible.

The class [IHTP?”] is of order 2. In fact, suppose that U{TP?” = () for any v in K,
then H2P2" = (a)?, this is equivalent to (27;) = (@?) in K. Then there exists &’ a
unit of K such that 2me’ = o = (c4+d\/ —2peVl)? = ¢ —2pe\/ld> +2cd\/ —2pe/{
with ¢ and d in k, then ¢ = 0 or d = 0. If d = 0, so by applying the norm in k/Q,
we find that +p is a square in QQ, which is impossible. If ¢ = 0, we get +/p is a
square in QQ, which is impossible.

The class [HP"Pho] is of order 2. In fact, if HPI P = (a) for any a in K,
this is equivalent to (2p°) = (a?) in K. Then there exists ¢/ a unit of K such
that 2poe’ = a? = (¢ + dy/ —2peVl)? =  — 2peV/1d? + 2cdy\/ —2pey/{ with ¢ and
d in k, since 2p™oe’ € k therefore ¢ = 0 or d = 0. If d = 0, then 2p™°e’ = ¢2, thus
+2pho = 2 or 2p"0e = ¢? in k, which gives that /£2p € k in the first case and
v/—1 € Q in the second case, which is impossible. If ¢ = 0, we find that £/ is a

square in QQ, which is absurd.
Thus ([H], [TP]I“’], [TPZO]) is of type (2,2,2), then Ck o = ([H], [fP]fO], [fPZOD O

3. The unramified extensions of K

Let M = N(y/a) be an extension of a number field N contains the 2-roots of
unity, where « is a square free element of N coprime to 2, it is well known that
M is unramified extension of N if and only if the principal ideal generated by « is
the square of an ideal of N and the equation @ = 2% (mod 4) admits solution in
N (see [7]).

Lemma 2.1 and Lemma 2.2 allow us to deduce the following Theorem:

Theorem 3.1. Let K = Q(y\/—2pev/{) where ¢ is the fundamental unit of Q(v/€),
¢ =5 (mod 8) and p = 1 (mod 4) are different primes such that (5) = 1 and

(%) = —(%)4. Then the fourteen unramified extensions of the imaginary cyclic

quartic field K are given by:
LIf (5), # (5),, then
o The unramified quadratic extensions of K are:
Fi=KWV-m) = FR=K\-m), F=KV2), Fi=KWb)
Fs=K(\/2p) and Fo=K(/=2m) =~ Fr=K(/=2m).
e The unramified biquadratic extensions of K are:
Ly =FF=FkF,=FRF), Ly = FyFg = Iy F5 = FoI's,

Ly =F\Fy=F Fs=FFs, L;=KY., Ls=FF,=FF;=FF;,
L6 = F6F7 = F6F4 = F7F4 and L7 = F2F3 = F2F7 = F3F7.
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2. If (§)4 = (%)4, then

e The unramified quadratic extensions of K are:
F=K(/m) =~ FR=KW\m), Fk=KW?2), F=K(\b),
F; = K(\/2p) and Fs=K(V2m) =~ F;=K(H2m2).

e The unramified biquadratic extensions of K are:
Ly =FFy = FiFy = FyFy, Ly = F>Fs = FoF5 = Fgks,

Ly = F\Fs = F\Fs = FsFs, Ly=K", Ls=FF =FF=FF;,
L6 = F6F7 = F6F4 = F7F4 and L7 = F2F3 = F2F7 = F3F7.
Note that m; is defined in the Lemma 2.2.

Proof: According to Lemma 2.1, K*) = K(,/p,v/2), then F3 = K(V/2), Fy =
K(yp) and Fs = K (/).

1. If (2)4 # (§),» then, from Lemma 2.2, the equation —7; = 2* (mod 4) admits
solution in k i.e. admits solution in K. Since B" = (7;) and B; ramifies
in K, then (—m;) = ()2 with P; an ideal of K. Therefore K (\/—7;) is
an unramified quadratic extension of K, this implies that F; = K (\/—m;) for
i =1,2. Since K(y/—2m;) is a subfield of K (v/2,+/—7;) which is unramified
over K, then K(v/—2m;) is unramified over K, thus Fg = K(1/—2m1) and
F; = K(v/=2m3). On the other hand, the extensions F; are pairwise different
for i = 1,2,6,7, because for example if F; = F5, then there exists t € K
such that m; = t2my, this yields that p"® = t273, which is not the case,
since \/p ¢ K. Similarly, we show the other cases. Also F; # F; for (i,j) €
{1,2,6,7} x{3,4,5} (see the following Remark). It is easy to see that F} ~ %
and Fy ~ F75.

2. We proceed as in 1. We conclude easily that
Ly =FF, = FiF, = FoFy, Ly = b Fg = FoFs = Fgks,
Ly = F\Fy = R Fs = FyFs, Ly=KY, Ls=FF =FF;=FF,
LG - F6F7 - F6F4 - F7F4 and L7 = F2F3 = F2F7 = F3F7.

O
Remark 3.1. The base field K admits tree unramified quadratic extensions abso-
lutely abelian of type (2,4), which are intermediate fields between K and its genus
field K&, and four unramified quadratic extensions absolutely non-Galois which
are Fy, Fs, Fg and F;. Moreover, the field K admits tree unramified biquadratic ex-

tensions absolutely Galois which are L1, Ly and Lg, and four unramified biquadratic
extensions absolutely non-Galois which are Lo, L3, Ls and Lr.
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Example 3.1. Let K = Q(\/—2.172/13) where e = % As 13 =5 (mod 8),

17=1 (mod 4) and (&) = —(%)4 = ($2), =1, then

FlzK(\/TM)v FQZK(ﬁ)v FBZK(\/§)7 F4:K(\/ﬁ)a
Fy= K(V217), Fs=K(V=2m) and Fr=K(J/—2m),

with m =15+ 4V/13 and Ty =15 — 4V/13.

Moreover,
leK(\/—ﬂ'l,\/—ﬂ'g), LQZK(\/—27T1,\/—7T2), L3:K(\/—7T1,\/§),

Ly =K% = K(v2,V17), Ls=K(v/=71,V/—2m3), Ls=K(/—2m1,V/—2m3),
Ly =K(N2,v=m) and K& =K(2,VI1T,v=m).

Example 3.2. Let K = Q(v/—2.89¢/5) where ¢ = %5 As 5 =5 (mod 8),
89 =1 (mod 4) and (5) 7(%)4 = —(%)4 =1, then

Fl:K(\/ﬂ-_l)’ FQ:K(\/T‘-_Q)a F3:K(\/§)a F4:K(\/@)’

F5 :K(\/289), FS :K(\/Qﬂ'l) and F7:K(\/27T2),
with T =13+ 45 and Ty = 13 — 44/5.

Moreover,
LliK(\/ﬂl,\/ﬂg), LQZK(\/27T1,\/7T2), LgZK(\/Wl,\/ﬁ),

Li=K% = K(V2,V89), Ls=K(J/71,V2m2), Le¢=K(\/2m1,/2m2),
Ly =K(W2,ym) and  K$Y = K(V2,V89, /).
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