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Eigenvalues of the p(x)−biharmonic operator with indefinite weight

under Neumann boundary conditions

S.Taarabti, Z. El Allali and K. Ben Hadddouch

abstract: In this paper we will study the existence of solutions for the nonho-
mogeneous elliptic equation with variable exponent ∆2

p(x)
u = λV (x)|u|q(x)−2u, in a

smooth bounded domain,under Neumann boundary conditions, where λ is a positive
real number, p, q : Ω → R, are continuous functions, and V is an indefinite weight
function. Considering different situations concerning the growth rates involved in
the above quoted problem, we will prove the existence of a continuous family of
eigenvalues.

KeyWords: Fourth order elliptic equation, variable exponent, Neumann bound-
ary conditions, Ekeland variational principle.
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1. Introduction

We are concerned here with the eigenvalue problem:

{

∆2
p(x)u = λV (x)|u|q(x)−2u in Ω,

∂u
∂ν

= ∂
∂ν

(|∆u|p(x)−2∆u) = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, N ≥ 1, ∆2

p(x)u =

∆(|∆u|p(x)−2∆u), is the p(x)-biharmonic operator, λ ≥ 0, p, q are continuous func-
tions on Ω, and V is an indefinite weight function.
The aim of this work is to study the existence of solutions for the nonhomogeneous
eigenvalue problem (1.1), by considering different situations concerning the growth
rates involved in the above quoted problem, we will prove the existence of a con-
tinuous family of eigenvalues.

In recent years, the study of differential equations and variational problems
with p(x)-growth conditions is an interesting topic, which arises from nonlinear
electrorheological fluids and other phenomena related to image processing, elastic-
ity and the flow in porous media. In this context we refer to ( [10], [11], [6], [14],
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[12], [13]).
This work is motivated by recent results in mathematical modeling of non Newto-
nian fluids and elastic mechanics, in particular, the electrorheological fluids (Smart
fluids). This important class of fluids is characterized by change of viscosity, which
is not easy to manipulate and depends on the electric field. These fluids, which are
known under the name ER fluids, have many applications in electric mechanics,
fluid dynamics etc...

The same problem, for V (x) = 1 and p(x) = q(x) is studied by Ben Had-
douch, El Allali, Ayoujil and Tsouli [2]. The authors established the existence of
a continuous family of eigenvalues by using the mountain pass lemma and Ekeland
variational principle.

Bin ge and Yuhu Wu in [15], studied the following nonhomogeneous eigenvalue
problem

{

∆2
p(x)u = λV (x)|u|q(x)−2u in Ω,

u = ∆u = 0 on ∂Ω.
(1.2)

They proved the existence of a continuous family of eigenvalues by considering dif-
ferent situations concerning the growth rates involved in the above quoted problem.
In the case where p(x) = q(x), the authors in [14] investigated the eigenvalues of
the p(x)−biharmonic with Navier boundary conditions. Ayoujil and El Amrouss
[1], studied the same nonhomogeneous eigenvalue problem in the particular case
when V (x) = 1.
In the case when max

x∈Ω
q(x) < min

x∈Ω
p(x) it can be proved that the energy functional

associated to problem (1.2) when V (x) = 1, has a nontrivial minimum for any
positive λ (see Theorem 3.1 in [1]).
In the case when min

x∈Ω
q(x) < min

x∈Ω
p(x) and q(x) has a subcritical growth, Ayoujil

and El Amrouss [1] used the Ekelands variational principle in order to prove the
existence of a continuous family of eigenvalues which lies in a neighborhood of the
origin.

In the case when max
x∈Ω

p(x) < min
x∈Ω

q(x) ≤ max
x∈Ω

q(x) <
Np(x)

N − 2p(x)
, by Theorem

3.8 in [1], for every λ > 0, the energy functional Φλ corresponding to (1.2) has a
mountain pass type critical point which is nontrivial and nonnegative, and hence
Λ = (0,+∞). The authors established the existence of infinity many eigenvalues
for problem (1.2) if q(x) = p(x) and V (x) = 1 by using an argument based on the
Ljusternik-Schnirelman critical point theory. Denoting by Λ the set of all nonneg-
ative eigenvalues, they showed that sup Λ = +∞.

Inspired by the above-mentioned paper, we will study the existence of solutions
for the non-homogeneous elliptic eigenvalue problem

{

∆2
p(x)u = λV (x)|u|q(x)−2u in Ω,

∂u
∂ν

= ∂
∂ν

(|∆u|p(x)−2∆u) = 0 on ∂Ω.
(1.3)
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2. Preliminaries

In order to deal with p(x)− biharmonic operator problems, we need some re-
sults on spaces Lp(x)(Ω) and W k,p(x)(Ω) and some properties of p(x)−biharmonic
operator, which we will use later.
Define the generalized Lebesgue space by:

Lp(x)(Ω) =

{

u : Ω −→ R, measurable and

∫

Ω

|u(x)|p(x)dx <∞

}

,

where p ∈ C+(Ω) and

C+(Ω) =
{

h ∈ C(Ω) : h(x) > 1, ∀x ∈ Ω
}

.

Denote
p+ = max

x∈Ω
p(x), p− = min

x∈Ω
p(x),

and for all x ∈ Ω and k ≥ 1

p∗(x) =

{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,

and

p∗k(x) =

{

Np(x)
N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

One introduces in Lp(x)(Ω) the following norm

|u|p(x) = inf

{

µ > 0;

∫

Ω

∣

∣

∣

∣

u(x)

µ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

,

and the space (Lp(x)(Ω), |.|p(x)) is a Banach.

Proposition 2.1. [28] The space (Lp(x)(Ω), |.|p(x)) is separable, uniformly convex,

reflexive and its conjugate space is Lq(x)(Ω) where q(x) is the conjugate function
of p(x) i.e

1

p(x)
+

1

q(x)
= 1, ∀x ∈ Ω.

For all u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) the Hölder’s type inequality

∣

∣

∣

∣

∫

Ω

uvdx

∣

∣

∣

∣

≤

(

1

p−
+

1

q−

)

|u|p(x)|v|q(x) (2.1)

holds true.

Moreover, if p1, p2, p3 ∈ C+(Ω) and
1

p1(x)
+

1

p2(x)
+

1

p3(x)
= 1, then for any
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u ∈ Lp1(x)(Ω), v ∈ Lp2(x)(Ω) and w ∈ Lp3(x)(Ω) the following inequality holds (see
[24],proposition 2.5):

∫

Ω

|uvw|dx 6

(

1

p−1
+

1

p−2
+

1

p−3

)

|u|p1(x)|v|p2(x)|w|p3(x). (2.2)

Furthermore, if we define the mapping ρ : Lp(x)(Ω) → R by

ρ(u) =

∫

Ω

|u|p(x)dx,

then the following relations hold

|u|p(x) < 1(= 1, > 1) ⇔ ρ(u) < 1(= 1, > 1), (2.3)

|u|p(x) > 1 ⇒ |u|p
−

p(x) 6 ρ(u) 6 |u|p
+

p(x) (2.4)

|u|p(x) < 1 ⇒ |u|p
+

p(x) 6 ρ(u) 6 |u|p
−

p(x) (2.5)

|un − u|p(x) −→ 0 ⇔ ρ(un − u) −→ 0. (2.6)

We recall also the following proposition, which will be needed later:

Proposition 2.2. ( [3]) Let p and q be measurable functions such that p ∈ L∞(Ω)
and 1 < p(x)q(x) 6 ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) 6 1 ⇒ |u|p
+

p(x)q(x) 6
∣

∣|u|p(x)
∣

∣

q(x)
6 |u|p

−

p(x)q(x),

|u|p(x)q(x) > 1 ⇒ |u|p
−

p(x)q(x) 6
∣

∣|u|p(x)
∣

∣

q(x)
6 |u|p

+

p(x)q(x) (2.7)

The Sobolev space with variable exponent W k,p(x)(Ω) is defined by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 ...∂xαN

N

,

is the derivation in distribution sense, with α = (α1, α2, ..., αN ) is a multi-index

and |α| =
i=N
∑

i=1

αi.

The space W k,p(x)(Ω), equipped with the norm

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x),

also becomes a Banach, separable and reflexive space. For more details, we refer
to ( [25], [4], [12], [28]).
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Remark 2.1. [29] The norm ‖u‖2,p(x) is equivalent to the norm ‖u‖ = |∆u|p(x)
and (W 2,p(x)(Ω); ‖.‖) is a Banach, separable and reflexive space.

Through this paper, we will consider the following space

X = {u ∈W 2,p(x)(Ω) :
∂u

∂ν
|∂Ω = 0}.

which is considered in ([18]) and ([2]). They have proved thatX is a nonempty, well
defined and closed subspace ofW 2,p(x)(Ω). For this they have showed the following
boundary trace embedding theorem for variable exponent Sobolev spaces.

Theorem 2.3. ( [18]) Let Ω be a bounded domain in R
N with C2 boundary. If

2p(x) ≥ N ≥ 2 for all x ∈ Ω, then for all q ∈ C+(Ω) there is a continuous boundary
trace embedding

W 2,p(x)(Ω) →֒ Lq(x)(∂Ω), (2.8)

and
W 2,p(x)(Ω) →֒ W 1,p(x)(∂Ω). (2.9)

Proposition 2.4. ( [18]) If 2p(x) ≥ N for all x ∈ Ω, then the set

X = {u ∈W 2,p(x)(Ω) :
∂u

∂ν
|∂Ω = 0}

is a closed subspace of W 2,p(x)(Ω).

Remark 2.2. (X ; ‖.‖) is a Banach, separable and reflexive space.

Proposition 2.5. If we put

I(u) =

∫

Ω

|∆u|p(x)dx,

then for all u ∈ X then the following relations hold true

(i) ‖u‖ < 1 (= 1;> 1) ⇐⇒ I(u) < 1 (= 1;> 1),

(ii) ‖u‖ ≤ 1 =⇒ ‖u‖p
+

≤ I(u) ≤ ‖u‖p
−

,

(iii) ‖u‖ ≥ 1 =⇒ ‖u‖p
−

≤ I(u) ≤ ‖u‖p
+

,
for all un ∈ X, we have

(iv) ‖un‖ −→ 0 ⇐⇒ I(un) −→ 0,

(v) ‖un‖ −→ ∞ ⇐⇒ I(un) −→ ∞

A pair (u, λ) ∈ X × R is a weak solution of (1.3) provided that
∫

Ω

|∆u|p(x)−2∆u∆vdx = λ

∫

Ω

V (x)|u|q(x)−2uvdx, ∀v ∈ X.

In the case where u is a nontrivial solution, such a pair (u, λ) is called an eigenpair,
λ is an eigenvalue and u is called an associated eigenfunction.
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Proposition 2.6. If u ∈ X is a weak solution of (1.3) and u ∈ C4(Ω) then u is a
classical solution of (1.3).

Proof:

Let u ∈ C4(Ω) be a weak solution of problem (1.3) then for every ϕ ∈ X , we have
∫

Ω

|∆u|p(x)−2∆u∆ϕdx = λ

∫

Ω

V (x)|u|q(x)−2uϕdx. (2.10)

By applying Green formula, we have:
∫

Ω

∆(|∆u|p(x)−2∆u)ϕdx = −

∫

Ω

∇(|∆u|p(x)−2∆u).∇ϕdx

+

∫

∂Ω

ϕ
∂

∂ν
(|∆u|p(x)−2∆u)dx, (2.11)

and
∫

Ω

|∆u|p(x)−2∆u∆ϕdx = −

∫

Ω

∇(|∆u|p(x)−2∆u).∇ϕdx

+

∫

∂Ω

|∆u|p(x)−2∆u
∂

∂ν
(ϕ)dx, (2.12)

As ϕ ∈ X , then
∂

∂ν
(ϕ) = 0. For ϕ ∈ D(Ω), we have

∆(|∆u|p(x)−2∆u) = λV (x)|u|q(x)−2u a.e x ∈ Ω.

For each ϕ ∈ X , we have
∫

∂Ω

∂

∂ν
(|∆u|p(x)−2∆u)ϕdx = 0,

then for ϕ ∈ D(Ω), we have
∫

∂Ω

∂

∂ν
(|∆u|p(x)−2∆u)ϕdx = 0,

which implies that
∂

∂ν
(|∆u|p(x)−2∆u) = 0 a.e x ∈ Ω

the result follows.

Proposition 2.7. [2] Let p ∈ C+(Ω) such that 2p(x) > N for all x ∈ Ω, then

(1) there exists a continuous and compact embedding of W 2,p(x)(Ω) into Lq(x)(Ω),
for all q ∈ C+(Ω).

(2) there exists a continuous embedding of W 2,p(x)(Ω) into C(Ω).

In what follows, we assume that the functions p, q ∈ C+(Ω).
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3. Main results and proofs

In this section we prove two theorems for problem (1.1). First, we prove the
existence of a continuous family of eigenvalues for problem (1.1), in a neighborhood
of the origin.

Theorem 3.1. If
H1(p, q, s): q+ < p− < N

2 < s(x), ∀x ∈ Ω, where s(x) ∈ C+(Ω).

H1(V ) : V (x) ∈ Ls(x)(Ω) and there exists a measurable set Ω0 ⊂ Ω of positive
measure such that V (x) > 0, a.e.x ∈ Ω0.

Then any λ > 0 is an eigenvalue for problem (1.1). Moreover, for any λ > 0
there exists a sequence (un) of nontrivial weak solutions for problem (1.1) such that
un → 0 in X.

In order to formulate the variational problem (1.1), let us introduce the func-
tionals F,G,Φλ : X −→ R defined by

F (u) =

∫

Ω

1

p(x)
|∆u|p(x)dx, G(u) =

∫

Ω

1

q(x)
V (x)|u|q(x)dx

and

Φλ(u) = F (u)− λG(u).

Denote by s
′

(x) the conjugate exponent of the function s(x) and put α(x) =
s(x)q(x)
s(x)−q(x) . Thus, by the proposition 2.7 the embeddings X →֒ Ls

′

(x)q(x)(Ω) and

X →֒ Lα(x)(Ω) are compact and continuous.

The Euler-Lagrange functional associated with (1.1) is defined as Φλ : X → R,

Φλ(u) =

∫

Ω

1

p(x)
|∆u|p(x) dx− λ

∫

Ω

1

q(x)
V (x)|u|q(x)dx.

We will show that Φλ ∈ C1(X,R) and

〈Φ′
λ(u), v〉 =

∫

Ω

|∆u|p(x)−2∆u∆v dx− λ

∫

Ω

V (x)|u|q(x)−2uvdx, ∀v ∈ X.

We only need to prove that G ∈ C1(X,R), that is, we show for all h ∈ X,

lim
t→0

G(u+ th)−G(u)

t
= 〈dG(u), h〉,

and dG : X −→ X
′

is continous, where we denote by X
′

the dual space of X .
For all h ∈ X , we have



202 S.Taarabti, Z. El Allali and K. Ben Hadddouch

lim
t→0

G(u+ th)−G(u)

t
=

d

dt
G(u + th)|t=0

=

(

d

dt

∫

Ω

V (x)

q(x)
|u+ th|q(x)dx

)

|t=0

=

∫

Ω

d

dt

(

V (x)

q(x)
|u+ th|q(x)

)

|t=0dx

=

∫

Ω

V (x)|u + th|q(x)−2(u+ th)h|t=0dx

=

∫

Ω

V (x)|u|q(x)−2uhdx

= 〈dG(u), h〉.

The differentiation under the integral is allowed for t close to zero. indeed, for
|t| < 1, using inequalities (2.2), (2.7) and condition H1(p, q, s), we have

∫

Ω

|V (x)|u + th|q(x)−2(u+ th)h|dx 6

∫

Ω

|V (x)||u + th|q(x)−1|h|dx

6

∫

Ω

|V (x)|(|u| + |h|)q(x)−1|h|dx

6 3|V |s(x) ||u|+ |h||q
i−1

q(x) |h|α(x)

< +∞,

where i = + if ||u|+ |h||q(x) > 1 and i = − if ||u| + |h||q(x) 6 1. Since

X →֒ Lα(x)(Ω), X →֒ Lq(x)(Ω) and V ∈ Ls(x)((Ω)).
On the other hand, we have X →֒ Lα(x)(Ω) (compact embedding). Furthermore,
there exists c1 such that |h|α(x) 6 c1‖h‖. Therefore, by condition H1(p, q, s), we
have

|〈dG(h), h〉| =

∣

∣

∣

∣

∫

Ω

V (x)|u|q(x)−2uhdx

∣

∣

∣

∣

6

∫

Ω

|V (x)||u|q(x)−1|h|dx

6 (
1

s−
+

q+

q+ − 1
+

1

α−
)|V |s(x)||u|

q(x)−1| q(x)
q(x)−1

|h|α(x)

6 (
1

s−
+

q+

q+ − 1
+

1

α−
)|V |s(x)|u|

qi−1
q(x) |h|α(x)

6 c1(
1

s−
+

q+

q+ − 1
+

1

α−
)|V |s(x)|u|

qi−1
q(x) ‖h‖,

for any h ∈ X . Thus there exists c2 = c1(
1
s−

+ q+

q+−1 +
1
α−

)|V |s(x)|u|
qi−1
q(x) such that

|〈dG(u), h〉| 6 c2‖h‖.
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Using the linearity of dG(u) and the above inequality we deduce that dG(u) ∈ X∗.

The map defined in Lq(x)(Ω) by u 7−→ |u|q(x)−2u ∈ L
q(x)

q(x)−1 (Ω) is continuous. For
the Fréchet differentiability, we conclude that G is Fréchet differentiable. Further-
more,

〈G
′

(u), v〉 =

∫

Ω

V (x)|u|q(x)−2uvdx,

for all u, v ∈ X . Similarly, we can also show that F ∈ C1(X,R).
Which implies that Φλ ∈ C1(X,R) and

〈Φ′
λ(u), v〉 =

∫

Ω

|∆u|p(x)−2∆u∆v dx− λ

∫

Ω

V (x)|u|q(x)−2uvdx.

for all u, v ∈ X . Thus the weak solutions of (1.1) coincide with the critical points
of Φλ. If such a weak solution exists and is nontrivial, then the corresponding λ is
an eigenvalue of problem (1.1).

Next, we write Φ′
λ as

Φ′
λ = F ′ − λG′,

where F ′, G′ : X → X ′ are defined by

〈F ′(u), v〉 =

∫

Ω

|∆u|p(x)−2∆u∆v dx,

〈G′(u), v〉 =

∫

Ω

V (x)|u|q(x)−2uv dx.

We have

Proposition 3.2. [17, Proposition 2.5]

(i) G
′

is completely continuous, namely, un ⇀ u in X implies G′(un) → G′(u)
in X ′.

(ii) F
′

satisfies condition (S+), namely, un ⇀ u, in X and lim sup〈F
′

(un), un −
u〉 ≤ 0, imply un → u in X.

We want to apply the symmetric mountain pass lemma in [8] to prove the
Theorem 3.1.

Theorem 3.3. (Symmetric mountain pass lemma) Let E be an infinite dimen-
sional Banach space and I ∈ C1(E,R) satisfy the following two assumptions:

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale
condition (PS), namely, any sequence un in E such that I(un) is bounded and
I ′(un) → 0 in E as n→ ∞ has a convergent subsequence.

(A2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak
I(u) < 0.
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Then, I(u) admits a sequence of critical points uk such that

I(uk) < 0, uk 6= 0 and lim
k
uk = 0,

where Γk denote the family of closed symmetric subsets A of E such that 0 /∈ A
and γ(A) ≥ k with γ(A) is the genus of A, i.e.,

γ(K) = inf{k ∈ N : ∃h : K → R
k\{0} such that h is continuous and odd }.

We start with two auxiliary results.

Lemma 3.4. The functional Φλ is even, bounded from below, satisfies the (PS)
condition and Φλ(0) = 0.

Proof:

It is clear that Φλ is even and Φλ(0) = 0. Since the embedding X →֒ Ls′(x)q(x)(Ω)
is continuous, we can find a constant c3 > 0 such that

|u|s′ (x)q(x) ≤ c3‖u‖, ∀u ∈ X. (3.1)

According to the fact that

|u(x)|q(x) ≤ |u(x)|q
+

+ |u(x)|q
−

, ∀x ∈ Ω. (3.2)

From the (3.2), we obtain:

∫

Ω

V (x)|u|q(x)dx ≤ |V |s(x)

∣

∣

∣
|u|q(x)

∣

∣

∣

s
′ (x)

≤ |V |s(x)

(

|u|q
+

q(x)s′ (x)
+ |u|q

−

q(x)s′ (x)

)

.

(3.3)
Combining ((3.1)) and ((3.3)), we obtain

∫

Ω

V (x)|u|q(x)dx ≤ |V |s(x)

(

cq
+

3 ‖u‖q
+

+ cq
−

3 ‖u‖q
−

)

. (3.4)

Hence, from (3.4), we deduce that for any u ∈ X , we have

Φλ(u) =

∫

Ω

1

p(x)
|∆u|p(x)dx− λ

∫

Ω

V (x)

q(x)
|u|q(x)dx

≥
1

p+
α(‖u‖)−

λ

q−
|V |s(x)

(

cq
+

3 ‖u‖q
+

+ cq
−

3 ‖u‖q
−

)

,

where α : [0,+∞[→ R is defined by

α(t) =

{

tp
+

, if t ≤ 1,

tp
−

, if t > 1.
(3.5)

As q+ < p−, Φλ is bounded from below and coercive because, that is, Φλ(u) → ∞
as ‖u‖ → ∞.



Eigenvalues of the p(x)−biharmonic operator with indefinite weight 205

It remains to show that the functional Φλ satisfies the (PS) condition to com-
plete the proof. Let (un) ⊂ X be a (PS) sequence of Φλ in X ; that is,

Φλ(un) is bounded and Φ′
λ(un) → 0 in X ′. (3.6)

Then, by the coercivity of Φλ, the sequence (un) is bounded inX . By the reflexivity
of X , for a subsequence still denoted (un), we have

un ⇀ u in X.

Since q+ < p−, it follows from proposition 2.7 that un ⇀ u in Lq(x)(Ω). We will
show that

lim
n→∞

∫

Ω

V (x)|un|
q(x)−2un(un − u)dx = 0. (3.7)

In fact, from the Hölder type inequality, we have
∫

Ω

V (x)|un|
q(x)−2un(un − u)dx ≤ |V (x)|s(x)

∣

∣

∣
|un|

q(x)−2un(un − u)
∣

∣

∣

s
′ (x)

≤ |V (x)|s(x)

∣

∣

∣
|un|

q(x)−2un

∣

∣

∣

q(x)
q(x)−1

|un − u|α(x)

≤ |V |s(x)(1 + |un|
q+−1
q(x) )|un − u|α(x).

Since X is continuously embedded in Lq(x)(Ω) and (un) is bounded in X , so un
is bounded in Lq(x)(Ω). On the other hand, since the embedding X →֒ Lα(x)(Ω)

is compact where α(x) = s(x)q(x)
s(x)−q(x) , we deduce that |un−u|α(x) −→ 0 as n −→ +∞.

we deduce that

〈G
′

(un), un − u〉 =

∫

Ω

V (x)|un|
q(x)−2un(un − u)dx→ 0. (3.8)

In view of (3.6) and (3.8), we obtain

Φ′
λ(un) + λ〈G

′

(un), un − u〉 = 〈F
′

(un), un − u〉 → 0 as n→ ∞.

According to the fact that F
′

satisfies condition (S+), we have un → u in X . The
proof is complete.

Lemma 3.5. For each n ∈ N
∗, there exists an Hn ∈ Γn such that

sup
u∈Hn

Φλ(u) < 0.

Proof: Let v1, v2, . . . , vn ∈ C∞
0 (Ω) such that supp(vi) ∩ supp(vj) = ∅ if i 6= j

and meas(supp(vj)) > 0 for i, j ∈ {1, 2, . . . , n}. Take Fn = span{v1, v2, . . . , vn}, it
is clear that dimFn = n, supp(vi) ⊂ Ω0 and

∫

Ω

|v(x)|q(x)dx > 0 for all v ∈ Fn \ {0}.
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Denote S = {v ∈ X : ‖v‖ = 1} and Hn(t) = t(S ∩ Fn) for 0 < t ≤ 1. Obviously,
γ(Hn(t)) = n, for all t ∈]0, 1].

Now, we show that, for any n ∈ N
∗, there exist tn ∈]0, 1] such that

sup
u∈Hn(tn)

Φλ(u) < 0.

Indeed, for 0 < t ≤ 1, we have

sup
u∈Hn(t)

Φλ(u) ≤ sup
v∈S∩Fn

Φλ(tv)

= sup
v∈S∩Fn

{

∫

Ω

tp(x)

p(x)
|∆v(x)|p(x)dx− λ

∫

Ω

tq(x)

q(x)
V (x)|v(x)|q(x) dx

}

≤ sup
v∈S∩Fn

{ tp
−

p−

∫

Ω

∣

∣∆v(x)|p(x)dx−
λtq

+

q+

∫

Ω0

V (x)|v(x)|q(x) dx
}

≤ sup
v∈S∩Fn

{

tp
−( 1

p−
−

λ

q+
1

tp−−q+

∫

Ω0

V (x)|v(x)|q(x) dx
)}

.

Since m := min
v∈S∩Fn

∫

Ω0

V (x)|v(x)|q(x) dx > 0, we may choose tn ∈]0, 1] which is

small enough such that
1

p−
−

λ

q+
1

tp
−−q+

n

m < 0.

This completes the proof.

Proof:[Proof of Theorem 3.1]
By lemmas 3.4, 3.5 and theorem 3.3, Φλ admits a sequence of nontrivial weak
solutions (un)n such that for any n, we have

un 6= 0, Φ′
λ(un) = 0, Φλ(un) ≤ 0, lim

n
un = 0. (3.9)

Theorem 3.6. If
H2(p, q, s): q− < p− and q+ < p∗2(x), for all x ∈ Ω.
H2(V ): V ∈ Ls(x)(Ω) and there exists a mesurable set Ω0 ⊂ Ω of positive measure
such that V (x) > 0 a.e.x ∈ Ω0.
Then there exists λ∗ such that any λ ∈ (0, λ∗) is an eigenvalue for problem (1.1).

For applying Ekeland’s variational principle. We start with two auxiliary re-
sults.

Lemma 3.7. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist ρ, a > 0
such that Φλ(u) ≥ a > 0 for any u ∈ X with ‖u‖ = ρ.

Proof:

Since the embedding X →֒ Ls
′

(x)q(x)(Ω) is continuous, we can find a constant
c3 > 0 such that:

|u|s′ (x)q(x) ≤ c3‖u‖, ∀u ∈ X. (3.10)



Eigenvalues of the p(x)−biharmonic operator with indefinite weight 207

Let us fixe ρ ∈ (0, 1) such that ρ < 1
c3
. Then relation (3.10) implies |u|s′(x)q(x) < 1,

for all u ∈ X with ‖u‖ = ρ. Thus,

∫

Ω

V (x)|u|q(x)dx ≤ |V |s(x)

∣

∣

∣
|u|q(x)

∣

∣

∣

s
′ (x)

≤ |V |s(x)|u|
q−

q(x)s′ (x)
, (3.11)

for all u ∈ X with ‖u‖ = ρ.
Combining (3.10) and (3.11), we obtain

∫

Ω

V (x)|u|q(x)dx ≤ cq
−

3 |V |s(x)‖u‖
q− . (3.12)

Hence, from (3.12) we deduce that for any u ∈ X , with ‖u‖ = ρ < 1 we have

Φλ(u) =

∫

Ω

1

p(x)
|∆u|p(x)dx− λ

∫

Ω

V (x)

q(x)
|u|q(x)dx

≥
1

p+
α(‖u‖)−

λcq
−

3

q−
|V |s(x)‖u‖

q−

=
1

p+
ρp

+

−
λcq

−

3

q−
|V |s(x)ρ

q−

= ρq
−

(

1

p+
ρp

+−q− −
λcq

−

3

q−
|V |s(x)

)

.

Putting

λ∗ =
ρp

+−q−

2p+
q−

cq
−

3 |V |s(x)
,

then for any λ ∈ (0, λ∗) and u ∈ X with ‖u‖ = ρ, there exists a = ρp+−q−

2p+ such
that

Φλ(u) ≥ a ≥ 0.

Lemma 3.8. There exists ψ ∈ X such that ψ ≥ 0, ψ 6= 0 and Φλ(tψ) < 0, for
t > 0 small enough.

Proof:

Since q− < p−, there exist ε0 > 0 such that

q− + ε0 < p−.

Since q ∈ C(Ω0), there exist an open set Ω1 ⊂ Ω0 such that

|q(x)− q−| < ε0, for all x ∈ Ω1 ∩Ω0.

Thus, we deduce

q(x) ≤ q− + ε0 < p−, for all x ∈ Ω1 ∩ Ω0. (3.13)
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Take ψ ∈ C∞
0 (Ω0) such that Ω1 ⊂ suppψ, ψ(x) = 1 for x ∈ Ω1 and 0 ≤ ψ ≤ 1 in

Ω0. Without loss of generality, we may assume ‖ψ‖ = 1, that is

∫

Ω0

|∆ψ|p(x) dx = 1. (3.14)

By using (3.13), (3.14), for all t ∈]0, 1[, we obtain

Φλ(tψ) =

∫

Ω

tp(x)

p(x)
|∆ψ|p(x) dx− λ

∫

Ω

tq(x)

q(x)
V (x)|ψ|q(x)dx

≤
tp

−

p−

∫

Ω

|∆ψ|p(x) dx−
λ

q+

∫

Ω1

tq(x)V (x)|ψ|q(x)dx

≤
tp

−

p−
−

λ

q+

∫

Ω1

tq(x)V (x)|ψ|q(x)dx

≤
tp

−

p−
−
λtq

−+ε0

q+

∫

Ω1

V (x)|ψ|q(x)dx.

Then, for any t < δ
1

p−−q−−ε0 , with 0 < δ < min{1, λp
−

q+

∫

Ω1

V (x)|ψ|q(x)dx}, we

conclude that

Φλ(tψ) < 0.

The proof is complete.

Proof: [Proof of theorem 3.6]
By lemma 3.7, we have

inf
∂Bρ(0)

Φλ(u) > 0. (3.15)

On the other hand, from lemma (3.8), there exist ψ ∈ X such that Φλ(tψ) < 0 for
t > 0 small enough. Using 3.12, it follows that

Φλ(u) ≥
1

p+
‖u‖p

+

−
λ

q−
cq

−

3 |V |s(x)‖u‖
q− for u ∈ Bρ(0).

Thus,

−∞ < cλ := inf
Bρ(o)

Φλ < 0,

Let

0 < ε < inf
∂Bρ(0)

Φλ − inf
Bρ(0)

Φλ.

Then, by applying Ekeland?s variational principle to the functional

Φλ : Bρ(0) → R,
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there exists uε ∈ Bρ(0) such that

Φλ(uε) ≤ inf
Bρ(0)

Φλ + ε,

Φλ(uε) < Φλ(u) + ε‖u− uε‖ for u 6= uε.

Since Φλ(uε) < inf
Bρ(0)

Φλ + ε < inf∂Bρ(0) Φλ, we deduce uε ∈ Bρ(0). Now, define

Iλ : Bρ(0) → R by
Iλ(u) = Φλ(u) + ε‖u− uε‖.

It is clear that uε is an minimum of Iλ. Therefore, for t > 0 and v ∈ B1(0), we
have

Iλ(uε + tv)− Iλ(uε)

t
≥ 0

for t > 0 small enough and v ∈ B1(0); that is,

Φλ(uε + tv)− Φλ(uε)

t
+ ε‖v‖ ≥ 0

for t positive and small enough, and v ∈ B1(0). As t→ 0, we obtain

〈Φ′
λ(uε), v〉 + ε‖v‖ ≥ 0 for all v ∈ B1(0).

Hence, ‖Φ′
λ(uε)‖X′ ≤ ε. We deduce that there exists a sequence (un)n ⊂ Bρ(0)

such that
Φλ(un) → cλ and Φ′

λ(un) → 0. (3.16)

It is clear that (un) is bounded in X . Thus, there exists u in X such that un ⇀ u
in X , we will show that un → u in X .

We have limn→∞

∫

Ω

V (x)|un|
q(x)−2un(un−u)dx = 0. Moreover, since Φ

′

λ(un) → 0

and (un)n is bounded in X , we have

|〈Φ
′

λ(un), un − u〉| ≤ |〈Φ
′

λ(un), un〉|+ |〈Φ
′

λ(un), u〉|

≤ ‖Φ
′

λ(un)‖X∗‖un‖+ ‖Φ
′

λ(un)‖X∗‖u‖,

that is,
lim

n→+∞
〈Φ

′

λ(un), un − u〉 = 0.

Using the last relation we deduce that

lim
n→+∞

∫

Ω

|∆un|
p(x)−2∆un∆(un − u)dx = 0. (3.17)

From (3.17) and the fact that un ⇀ u in X it follows that

lim
n→+∞

〈F
′

(un), un − u〉 = 0,
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and by proposition 2.5 (ii) [1], we deduce that un → u in X . Thus, in view of
(3.16), we obtain

Φλ(u) = cλ < 0 and Φ
′

λ(u) = 0.

The proof is complete.

Theorem 3.9. If
H3(p, q): p+ < q− ≤ q+ < p∗2(x) for all x ∈ Ω,
H3(V ) : V (x) ∈ Ls(x) and there exists a measurable set Ω0 ⊂ Ω of positive
measure such that V (x) > 0, a.e.x ∈ Ω0,

then for any λ > 0, problem (1.1) possesses a nontrivial weak solution.

We want to construct a mountain geometry, and first need two lemmas.

Lemma 3.10. There exist η, b > 0 such that Φλ(u) ≥ b, for u ∈ X with ‖u‖ = η.

Proof:

Since the embeddingX →֒ Ls′(x)q(x)(Ω) is continuous, we can find a constant c3 > 0
such that

|u|s′ (x)q(x) ≤ c3‖u‖, ∀u ∈ X. (3.18)

According to the fact that

|u(x)|q(x) ≤ |u(x)|q
+

+ |u(x)|q
−

, ∀x ∈ Ω. (3.19)

From the (3.19), we obtain :
∫

Ω

V (x)|u|q(x)dx ≤ |V |s(x)

∣

∣

∣
|u|q(x)

∣

∣

∣

s
′ (x)

≤ |V |s(x)

(

|u|q
+

q(x)s′ (x)
+ |u|q

−

q(x)s′ (x)

)

.

(3.20)
Combining 3.18 and 3.20, we obtain

∫

Ω

V (x)|u|q(x)dx ≤ |V |s(x)

(

cq
+

3 ‖u‖q
+

+ cq
−

3 ‖u‖q
−

)

. (3.21)

Hence, from (3.21), we deduce that for any u ∈ X , we have

Φλ(u) =

∫

Ω

1

p(x)
|∆u|p(x)dx− λ

∫

Ω

V (x)

q(x)
|u|q(x)dx

≥
1

p+
α(‖u‖)−

λ

q−
|V |s(x)

(

cq
+

3 ‖u‖q
+

+ cq
−

3 ‖u‖q
−

)

,

=







(

1
p+ − λ

q−
M1

(

cq
+

3 ‖u‖q
+−p+

+ cq
−

3 ‖u‖q
−−p+

))

‖u‖p
+

if ‖u‖ ≤ 1,
(

1
p+ − λ

q−
M1

(

cq
+

3 ‖u‖q
+−p−

+ cq
−

3 ‖u‖q
−−p−

))

‖u‖p
−

if ‖u‖ > 1.

Since p+ < q− ≤ q+, the functional g : [0, 1] → R defined by

g(s) =
1

p+
−

λ

q−
M1

(

cq
+

3 sq
+−p+

+ cq
−

3 sq
−−p+

)

is positive on neighborhood of the origin. So, the result of lemma 3.10 follows.



Eigenvalues of the p(x)−biharmonic operator with indefinite weight 211

Lemma 3.11. There exists e ∈ X with ‖e‖ ≥ η such that Φλ(e) < 0, where η is
given in lemma 3.10.

Proof:

Choose ϕ ∈ C∞
0 (Ω), ϕ ≥ 0 and ϕ 6= 0. For t > 1, we have

Φλ(tϕ) ≤
tp

+

p−

∫

Ω

∣

∣∆ϕ(x)|p(x)dx−
λtq

−

q+

∫

Ω

V (x)|ϕ(x)|q(x)dx.

Then, since p+ < q−, we deduce that

lim
t→∞

Φλ(tϕ) = −∞.

Therefore, for t > 1 large enough, there is e = tϕ such that ‖e‖ ≥ η and Φλ(e) < 0.
This completes the proof.

Lemma 3.12. The functional Φλ satisfies the condition (PS).

Proof:

Let (un) ⊂ X be a sequence such that d := supn Φλ(un) < ∞ and Φ′
λ(un) →

0 in X ′. By contradiction suppose that

‖un‖ → +∞ as n→ ∞ and ‖un‖ > 1 for any n.

Thus, for sufficiently large n we have

d+ 1 + ‖un‖ ≥ Φλ(un)−
1

q−
〈Φ′

λ(un), un〉

=

∫

Ω

1

p(x)

∣

∣∆un|
p(x)dx−

λ

q−

∫

Ω

|∆un|
p(x)dx+ λ

∫

Ω

(
1

q−
−

1

q(x)
)V (x)|un|

q(x) dx

≥ (
1

p+
−

1

q−
)

∫

Ω

|∆un|
p(x)dx

≥ (
1

p+
−

1

q−
)‖un‖

p−

.

This contradicts the fact that p− > 1. So, the sequence (un) is bounded in X and
similar arguments as those used in the proof of lemma 3.5 completes the proof.

Proof:[Proof of theorem 3.9]
From Lemmas 3.10 and 3.11, we deduce

max(Φλ(0),Φλ(e)) = Φλ(0) < inf
‖u‖=η

Φλ(u) =: β.

By lemma 3.12 and the mountain pass theorem, we deduce the existence of critical
points u of Φλ associated of the critical value given by

c := inf
γ∈Γ

sup
t∈[0,1]

Φλ(γ(t)) ≥ β, (3.22)

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = e}. This completes the proof.
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