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tence of eigenvalues for a p(x)-biharmonic equation with Navier boundary conditions
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1. Introduction and statement of main results

The study of problems of elliptic equations and variational problems with p(x)-
growth condition has attracted more and more attention in recent years. It pos-
sesses a solid background in physics and originates from the study on electrorheo-
logical fluids (see [16]) and elastic mechanics (see [18]). It also has wide applications
in different research fields, such as image processing model (see e.g. [11,6], station-
ary thermorheological viscous flows (see [2]) and the mathematical description of
the processes filtration of an ideal barotropic gas through a porous medium (see
[1]).

In the present study, we deal with the following nonlinear eigenvalue problem
with indefinite weight

△
(

|△u|p(x)−2△u
)

= λV (x)|u|q(x)−2u in Ω,

u = △u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
N is a smooth bounded domain, V ∈ Lr(x)(Ω) is an indefinite weight

which can change sign in Ω and p, q, r ∈ C+(Ω̄) :=
{

h;h ∈ C(Ω) and h(x) >

1 for all x ∈ Ω
}

.
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The interest in analyzing this kind of problems is motivated by some recent ad-
vances in the study of fourth order nonlinear eigenvalue problems involving variable
exponents in the last few years. We refer especially to the results in [3,4,10,13,14].

For instance, the case V ≡ 1 and p(x) = q(x) has been studied in [3] and
in [4] when p(x) 6= q(x). In particular, in [3], by the Ljusternik-Schnirelmann
principle on C1-manifolds, the authors proved among others things the existence
of a sequence of eigenvalues and that supΛ = +∞, where Λ is the set of all
nonnegative eigenvalues. In [4], using the mountain pass lemma and Ekeland’s
variational principle, they established several existence criteria for eigenvalues.

Motived by the above-mentioned papers, our purpose in this paper is to extend
the results of [5] to a fourth order nonlinear problem with sign-changing potential.
Our approach follows closely the one in the mentioned paper.

Hereafter, we analyze the problem (1.1) under the following assumptions::

H(p,q,r) p+ < q− ≤ q+ < p∗2(x) and

r(x) >
p∗2(x)

p∗2(x) − q(x)
, for all x ∈ Ω, (1.2)

where
h+ = max

Ω
h(x), h− = min

Ω
h(x), for any h ∈ C+(Ω)

and

for every x ∈ Ω, p∗2(x) =

{

Np(x)
N−2p(x) if p(x) < N

2 ,

+∞ if p(x) ≥ N
2 .

Here, we seek solutions for problem (1.1) belonging to the spaceX :=W 2,p(x)(Ω)

∩W
1,p(x)
0 (Ω) in the sense below.

Definition 1.1. By a weak solution for (1.1) we understand a function u ∈ X

such that
∫

Ω

|∆u|p(x)−2∆u∆v dx− λ

∫

Ω

V (x)|u|q(x)−2uv dx = 0, ∀v ∈ X.

Moreover, we say that λ ∈ R is an eigenvalue of problem 1.1 if the weak solution u
defined above is not trivial.

We point out that, in the case of positive weight V , any possible eigenvalue of
problem 1.1 is necessarily positive.

Define the functionals Φ,Ψ, Iλ : X → R by

Φ(u) =

∫

Ω

1

p(x)
|∆u|p(x) dx, Ψ(u) =

∫

Ω

V (x)

q(x)
|u|q(x) dx.

The energy functional corresponding to problem 1.1 is defined as Iλ : X → R,

Iλ(u) = Φ(u)− λΨ(u).
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Standard arguments imply that Iλ ∈ C1(X,R) and for all u, v ∈ X , we have

〈I
′

λ(u), v〉 = 〈Φ
′

(u), v〉 − λ〈Ψ
′

(u), v〉.

Thus, the weak solutions of (1.1) are exactly the critical points of Iλ.
In the sequel, for the sake of convenience, we put

φ(u) =

∫

Ω

|∆u|p(x) dx, ψ(u) =

∫

Ω

V (x)|u|q(x) dx, for every u ∈ X.

Define

λ∗ = inf
{Φ(u)

Ψ(u)
, u ∈ X and Ψ(u) > 0

}

and λ∗ = inf
{φ(u)

ψ(u)
, u ∈ X and ψ(u) > 0

}

.

The main results of this work are the following.

Theorem 1.1. Suppose V > 0 on Ω. Then, under assumption H(p,q,r) and
satisfy

q+ −
1

2
p− < q−, (1.3)

we have

(i) 0 < λ∗ ≤ λ∗,

(ii) λ∗ is an eigenvalue of problem (1.1),

(iii) any λ > λ∗ is an eigenvalue of problem (1.1) while any λ < λ∗ is not an
eigenvalue.

In the case when V is a sign-changing function, we define

X+ =
{

u ∈ X :

∫

Ω

V (x)|u|q(x) dx > 0
}

and

X− =
{

u ∈ X :

∫

Ω

V (x)|u|q(x) dx < 0
}

.

α∗ = inf
u∈X+

Φ(u)

Ψ(u)
, α∗ = inf

u∈X+

φ(u)

ψ(u)
, (1.4)

β∗ = inf
u∈X−

Φ(u)

Ψ(u)
, β∗ = inf

u∈X−

φ(u)

ψ(u)
. (1.5)

So, we have

Theorem 1.2. Suppose that H(p,q,r) and

∣

∣

∣

{

x ∈ Ω : V (x) > 0
}∣

∣

∣
6= 0 (1.6)

hold. Then, we have
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(i) β∗ ≤ β∗ < 0 < α∗ ≤ α∗,

(ii) α∗ (resp. β∗) is a positive (resp. negative) eigenvalue of problem (1.1),

(iii) any λ ∈ (−∞, β∗) ∪ (α∗,∞) is an eigenvalue of problem (1.1) while any
λ ∈ (β∗, α∗) is not an eigenvalue.

This article is composed of three sections. Section 2 contains some useful results
on Sobolev spaces with variable exponents. The proofs are given in Section 3.

2. Preliminary results

In order to guarantee the integrity of the paper, we first recall some facts on
variable exponent spaces Lp(x)(Ω) and W k,p(x)(Ω). For details, see [8,9,15].

For p ∈ C+(Ω), define the space

Lp(x)(Ω) = {u; measurable real-valued function and

∫

Ω

|u(x)|p(x)dx <∞}.

Equipped with the so-called Luxemburg norm

|u|p(x) := inf{µ > 0 :

∫

Ω

|
u(x)

µ
|p(x)dx ≤ 1},

Lp(x)(Ω) becomes a separable, reflexive and Banach space. An important role
in manipulating the generalized Lebesgue spaces is played by the mapping ρ :
Lp(x)(Ω) → R, called the modular of the Lp(x)(Ω) space, defined by

ρp(x)(u) =

∫

Ω

|u|p(x)dx.

We recall the following, (see [8,15],

Proposition 2.1. For all u ∈ Lp(x)(Ω), we have

1. |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) if |u|p(x) > 1.

2. |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) if |u|p(x) ≤ 1.

Proposition 2.2. For all un, u ∈ Lp(x)(Ω), we have

1. |u|p(x) = a⇔ ρ(u
a
) = 1, for u 6= 0 and a > 0.

2. |u|p(x) > 1(= 1;< 1) ⇔ ρ(u) > 1(= 1;< 1).

3. |u|p(x) → 0( resp. → +∞) ⇔ ρ(u) → 0( resp. → +∞).

4. The following statements are equivalent each other:

(a) lim
n→∞

|un − u|p(x) = 0,
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(b) lim
n→∞

ρ(un − u) = 0,

(c) un → u in measure in Ω and lim
n→∞

ρ(un) = ρ(u).

As in the constant exponent case, for any positive integer k, set

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k}.

We can define the norm on W k,p(x)(Ω) by

‖u‖k,p(x) =
∑

|α|≤k

|Dαu|p(x)

and W k,p(x)(Ω) also becomes a separable, reflexive and Banach space. We denote

by W
k,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(x)(Ω).

Definition 2.1. Assume that spaces E,F are Banach spaces, we define the norm
on the space E ∩ F as ‖u‖ = ‖u‖E + ‖u‖F .

FromDefinition 2.1, we can know that for any u ∈ X , ‖u‖X = |u|1,p(x)+|u|2,p(x),

thus ‖u‖X = |u|p(x) + |∇u|p(x) +
∑

|α|=2

|Dαu|p(x).

In the Zang and Fu’s paper [17], the equivalence of the norms was proved, and
it was even proved that the norm |△u|p(x) is equivalent to the norm ‖u‖X (see [17,
Theorem 4.4]).

Let us choose on X the norm ‖.‖ defined by

‖u‖ = |∆u|p(x).

Note that, (X, ‖.‖) is also a separable and reflexive Banach space.
Similar to Proposition 2.2, we have the following.

Proposition 2.3. Denote I(u) =
∫

|∆u(x)|p(x)dx then,

1. For u ∈ X and ‖u‖ = a, we have

(a) a < 1(= 1, > 1) ⇔ I(u) < 1(= 1 > 1);

(b) a ≥ 1 ⇒ ap
−

≤ I(u) ≤ ap
+

;

(c) a ≤ 1 ⇒ ap
+

≤ I(u) ≤ ap
−

.

2. If u, un ∈ X,n = 1, 2, ..., then the following statements are equivalent each
other:

(i) lim
n→∞

‖un − u‖ = 0;

(ii) lim
n→∞

I(un − u) = 0;

(iii) un → u in measure in Ω and lim
n→∞

I(un) = I(u).
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The following result (see [3, Theorem 3.2]), which will be used later, is an
embedding result between the spaces X and Lq(x)(Ω).

Theorem 2.1. Let p, q ∈ C+(Ω). Assume that

p(x) <
N

2
and q(x) < p∗2(x).

Then, there is a continuous and compact embedding X into Lq(x)(Ω).

We recall also the following proposition, which will be needed later.

Proposition 2.4. ( [7]) Let p(x) and q(x) be measurable functions such that p(x) ∈
L∞(Ω) and
1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≤ 1 ⇒ |u|p
+

p(x)q(x) ≤
∣

∣

∣
|u|p(x)

∣

∣

∣

q(x)
≤ |u|p

−

p(x)q(x),

|u|p(x)q(x) ≥ 1 ⇒ |u|p
−

p(x)q(x) ≤
∣

∣

∣
|u|p(x)

∣

∣

∣

q(x)
≤ |u|p

+

p(x)q(x).

Before given the proofs, we need to establish the following auxiliary result which
will be used later.

Proposition 2.5. (i) Φ is weakly lower semi-continuous, namely, un ⇀ u im-
plies that Φ(u) ≤ lim inf Φ(un).

(ii) Ψ is a weakly-strongly continuous functional, namely, un ⇀ u implies
Ψ(un) → Ψ(u).

Proof.

(i) The convexity of Φ ensures this assertion.

(ii) Let (un) be a sequence in X such that un ⇀ u in X . Denote by r
′

(x)

the conjugate exponent of the function r(x)
(

r
′

(x) = r(x)
r(x)−1

)

. Then, as

q(x)r
′

(x) < p∗2(x), Theorem 2.1 implies un ⇀ u in Lq(x)r
′

(x)(Ω) . This,
together with the continuity of the Nemytski operator NV,q defined by

NV,q(u)(x) = V (x)|u(x)|q(x) if u 6= 0[ and NV,q(u)(x) = 0 otherwise,

yields that Ψ(un) → Ψ(u). The proof is complete.

3. Proofs

At first, we start with the following Lemma which plays a crucial role for proving
Theorem1.1.
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Lemma 3.1. Suppose that assumptions H(p, q, r) and (1.3) hold, then

lim
‖u‖→0

Φ(u)

Ψ(u)
= ∞, (3.1)

and

lim
‖u‖→∞

Φ(u)

Ψ(u)
= ∞. (3.2)

Proof: Applying the Hölder’s inequality, we obtain

|Ψ(u)| ≤
2

q−
|V |r(x)

∣

∣

∣
|u|q(x)|

∣

∣

∣

r
′(x)

.

By help of proposition 2.4, it follows

|Ψ(u)| ≤
2

q−
|V |r(x)|u|

qi

q(x)r′(x)
, (3.3)

where i = + if |u|q(x)r′(x) > 1 and i = − if |u|q(x)r′(x) < 1.

On the other hand, from (1.2), we have p(x) < q(x)r
′

(x) < p∗2(x) for all x ∈ Ω.

So, in view proposition 2.1, X is continuously embedded in Lq(x)r
′

(x)(Ω). Then,
there exists c > 0 such that

|Ψ(u)| ≤
2c

q−
|V |r(x)‖u‖

qi . (3.4)

For any u ∈ X with ‖u‖ ≤ 1 small enough, by relations (3.3) and (3.4), we infer

Φ(u)

Ψ(u)
≥

1
p+ ‖u‖

p+

2c
q−

|V |r(x)‖u‖q
i
. (3.5)

Since p+ < q− ≤ q+, passing to the limit as ‖u‖ → 0 in the above inequality, we
deduce that the assertion (3.1) holds true.

Next, we show that relation the assertion (3.2) holds. From (1.3), there exists
a positive constant δ such that q+ − 1

2p
– < δ < q–, and thus we have

p– > 2(q+ − δ) > 2(q– − δ). (3.6)

Let s(x) be any measurable function s(x) such that

p∗2(x)

p∗2(x) + δ − q(x)
≤ s(x) ≤

p∗2(x)r(x)

p∗2(x) + δr(x)
, (3.7)

holds for almost all x ∈ Ω and

δ
(s+

s−
+ 1
)

≤ q−. (3.8)
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Clearly, s ∈ L∞(Ω) and 1 < s(x) < r(x). Moreover, It is easy to see

δt(x) ≤ p∗2(x) and (q(x)− δ)s
′

(x) ≤ p∗2(x), for all x ∈ Ω, (3.9)

where t(x) := r(x)s(x)
r(x)−s(x) and s

′

(x) = s(x)
s(x)−1 .

Let u ∈ X with ‖u‖ > 1. Thanks to Hölder’s inequality again, we have
∣

∣

∣
Ψ(u)

∣

∣

∣
≤

2

q−

∣

∣

∣
V |u|δ

∣

∣

∣

s(x)

∣

∣

∣
|u|q(x)−δ

∣

∣

∣

s
′ (x)

. (3.10)

Without loss of generality we may suppose that
∣

∣

∣
V |u|δ

∣

∣

∣

s(x)
> 1. Then, from

Proposition 2.1 and using Hölder’s inequality, we get

∣

∣

∣
Ψ(u)

∣

∣

∣
≤

2

q−

(

ρs(x)(V |u|δ)
)

1

s−

∣

∣

∣
|u|q(x)−δ

∣

∣

∣

s
′ (x)

=
2

q−

(

∫

Ω

|V |s(x)u|δs(x) dx)
)

1

s−

∣

∣

∣
|u|q(x)−δ

∣

∣

∣

s
′ (x)

≤
4

q−

∣

∣

∣
|V |s(x)

∣

∣

∣

1

s−

r(x)
s(x)

∣

∣

∣
|u|δs(x)

∣

∣

∣

1

s−

r(x)
r(x)−s(x)

∣

∣

∣
|u|q(x)−δ

∣

∣

∣

s
′ (x)

. (3.11)

In view of proposition 2.4, we write

∣

∣

∣
|u|δs(x)

∣

∣

∣

1

s−

r(x)
r(x)−s(x)

≤
∣

∣

∣
u
∣

∣

∣

δ s
+

s−

δt(x)
+
∣

∣

∣
u
∣

∣

∣

δ

δt(x)

∣

∣

∣
|u|q(x)−δ

∣

∣

∣

s
′ (x)

≤
∣

∣

∣
u
∣

∣

∣

q+−δ

(q(x)−δ)s′ (x)
+
∣

∣

∣
u
∣

∣

∣

q−−δ

(q(x)−δ)s′ (x)

∣

∣

∣
|V |s(x)

∣

∣

∣

1

s−

r(x)
s(x)

≤ |V |νr(x),

with ν =

{

s+

s−
if |V |r(x) > 1,

1 if |V |r(x) ≤ 1.
Hence, substituting the above inequalities into (3.10) and thanks to Young’s

inequality, it follows

∣

∣

∣
Ψ(u)

∣

∣

∣
≤

4

q−
|V |νr(x)

(

∣

∣

∣
u
∣

∣

∣

δ s
+

s−

δt(x)
+
∣

∣

∣
u
∣

∣

∣

δ

δt(x)

)(

∣

∣

∣
u
∣

∣

∣

q+−δ

(q(x)−δ)s′ (x)
+
∣

∣

∣
u
∣

∣

∣

q−−δ

(q(x)−δ)s′ (x)

)

≤
4

q−
|V |j

r(x)

(

∣

∣

∣
u
∣

∣

∣

2δ s
+

s−

δt(x)
+
∣

∣

∣
u
∣

∣

∣

2δ

δt(x)
+
∣

∣

∣
u
∣

∣

∣

2(q+−δ)

(q(x)−δ)s′ (x)
+
∣

∣

∣
u
∣

∣

∣

2(q−−δ)

(q(x)−δ)s′ (x)

)

(3.12)

From (3.9), we infer by Theorem 2.1 that X is continuously embedded both in

L
δ

(

r(x)
s(x)

)′

(Ω) and L(q(x)−δ)s
′

(x)(Ω). Therefore, there exists positive constants c
such that

∣

∣

∣
Ψ(u)

∣

∣

∣
≤

4c

q−
|V |νr(x)

(

‖u‖2δ
s
+

s− + ‖u‖2δ + ‖u‖2(q
+−δ) + ‖u‖2(q

−−δ)

)

. (3.13)
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Finally, we obtain

Φ(u)

Ψ(u)
≥

q−‖u‖p
−

4cp+|V |ν
r(x)

(

‖u‖2δ
s+

s− + ‖u‖2δ + ‖u‖2(q+−δ) + ‖u‖2(q−−δ)

) .

Combining (3.6) and (3.8), we deduce p− > 2(q+ − δ) > 2(q− − δ) > 2δ s+

s−
> 2δ.

Then, passing to the limit as ‖u‖ → ∞ in the above inequality we conclude that
relation (3.2) holds true. This ends the proof of lemma 3.1. ✷

Proof of Theorem1.1.

(i) Observe that λ∗ ≥ 0 and q−

p+ λ∗ ≤ λ∗ ≤ q+

p−
λ∗. Then, λ∗ ≤ λ∗ because

p+ < q−.

Suppose, to the contrary, that λ∗ = 0, so λ∗ = 0. Let (un) be a sequence in X \{0}
such that

lim
n

Φ(un)

Ψ(un)
= 0.

As in (3.5), we have
Φ(un)

Ψ(un)
≥ C‖un‖

p+−q− ,

for some positive constant C. Since p+ < q−, we obtain ‖un‖ → ∞. Hence, it
follows from 3.1 that

lim
n

Φ(un)

Ψ(un)
= ∞,

which contradicts with the hypothesis.

(ii) Let (un) ∈ X \ {0} be a minimizing sequence for λ∗, that is

lim
n

Φ(un)

Ψ(un)
= λ∗. (3.14)

By 3.2, (un) is bounded in X which is reflexive. Then, there exists u ∈ X such
that un ⇀ u in X . This together with proposition 2.5 yields that

Ψ(un) → Ψ(u). (3.15)

and

lim inf Φ(un) ≥ Φ(u). (3.16)

Combining (3.14), (3.15) and (3.16), we obtain that if u 6= 0,

Φ(u)

Ψ(u)
= λ∗.
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It remains to show that u is nontrivial. Let suppose by contradiction that u = 0.
Then, limΨ(un) = 0 and so, via (3.14), we deduce

limΦ(un) = lim
Φ(un)

Ψ(un)
Ψ(un) = 0.

This fact combined with proposition 2.3 implies that ‖un‖ → 0. According to (3.2),
we get

lim
Φ(un)

Ψ(un)
= ∞,

and this is a contradiction. Thus, u 6= 0.

(iii) Assume that λ > λ∗ is fixed. Let u ∈ X with ‖u‖ > 1. It follows from
inequality (3.13) that

Iλ(u) ≥
1

p+
‖u‖p

−

− λK

(

‖u‖2δ
s
+

s− + ‖u‖2δ + ‖u‖2(q
+−δ) + ‖u‖2(q

−−δ)

)

.

with K = 4c
q−

|V |ν
r(x). As p

− > 2(q+ − δ) > 2(q− − δ) > 2δ s+

s−
, the inequality above

implies that Iλ(u) → ∞ as ‖u‖ → ∞, that is, Iλ is coercive. Also, by proposition
2.5, the functional Iλ is weakly lower semi-continuous. These two facts enable us to
apply [12, Proposition 1.2, Chapter 32], there exists a global minimizer u0 of Iλ in
X . Since λ > λ∗, we verify by definition of λ∗ that there is an element v ∈ X \ {0}

such that Φ(v)
Ψ(v) < λ. Then, Iλ(v) < 0 which assures that

Iλ(u0) = inf
u∈X\{0}

Iλ(u) < 0.

Consequently, we conclude that u0 6= 0.
Now, assuming by contradiction that there exists λ ∈ (0, λ∗) an eigenvalue of

problem 1.1. Then, there exists uλ ∈ X \ {0} such that

〈Φ
′

(uλ), v〉 = λ〈Ψ
′

(uλ), v〉, ∀v ∈ X.

In particular, for v = uλ, we obtain

φ(uλ) = λψ(uλ).

As uλ 6= 0, we have ψ(uλ) > 0. This, together with the fact λ < λ∗ yields

φ(uλ) > λ∗ψ(uλ) > λψ(uλ) = φ(uλ)

This a contradiction. The theorem 1.1 is proved.

Proof of Theorem1.2.

Precise that if λ > 0 is an eigenvalue of problem (1.1) with weight V then,
−λ is an eigenvalue of problem (1.1) with weight ?V . Hence, it is enough to show
Theorem 1.1 only for λ > 0. So, the problem 1.1 has only to be considered in X+

and in this case, the proof is similar to that of Theorem 1.1 and thus it will be
omitted here.
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