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Derivation on Vinberg Rings ∗

G. Lakshmi Devi and K. Jayalakshmi

abstract: A nonassociative ring which contains a well-known associative ring or

left symmetric ring also known as Vinberg ring is of great interest. A method to

construct Vinberg nonassociative ring is given; Vinberg nonassociative ring V Nn,m,s

is shown as simple; all the derivations of nonassociative simple Vinberg V N0,0,1

algebra defined are determined; and finally in solid algebra it is shown that if θ is a

nonzero endomorphism of V N0,0,1 , then θ is an epimorphism.

Key Words:Nonassociative ring, Simple, Vinberg ring, Derivation, Solid al-
gebra.
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1. Preliminaries

Let (A, ∗,+) be a nonassociative algebra then the antisymmetrized algebra
(A−, [, ],+) with the same set A and the Lie bracket [,] is defined as follows:
[x, y] = x ∗ y − y ∗ x for any x, y ∈ A−. Choi proposed an interesting problem
[9]: Does the equality AutF (A) = AutLie(A

−) hold? The answer is no generally.
Any derivation of an algebra A is a derivation of the antisymmetrized algebra A− .
He also proposed an interesting problem: Is Der(A) = DerLie(A

−)? If θ is an au-
tomorphism of Vinberg ring V N then the Der(V N) is also an automorphism. For
a p-torsion free Vinberg algebra, we do not know Der(A) generally. Our method
of finding Der(V N0,0,1) will give a good modification to find Der(A) of an alge-
bra A. The authors have given the description of a 2-torsion free Vinberg (-1,1)
ring R in [2]. They have shown that if every nonzero root space of R− for S is
one-dimensional where S is a split abelian Cartan subring of R− which is nil on R

then R is a Lie ring isomorphic to R−. In this paper we extend the results of [2]
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to V N0,0,1 algebra. A nonzero endomorphism of V N0,0,1 is an epimorphism.
A nonassociative ring R is called a Vinberg ring if it satisfies the identity

(x, y, z) = (y, x, z) (1.1)

where (x, y, z) = (xy)z − x(yz) for x, y, z ∈ R. Throughout this paper Z and
N are the sets of integers and non-negative integers respectively.
Let (R, +, ·) be a Vinberg ring and ∂ a derivation of R.Let F [x1, ..., xm+s] be
the polynomial ring on the variables x1, ..., xm+s. Let g1, ..., gn be given polyno-
mials in F [x1, ..., xm+s]. For n,m, s ∈ N , we define the F - algebra Fn,m,s =
F [e±g1 , ..., e±gn , x±1

1 , ..., x±1
m , xm+1, ..., xm+s] with the standard basis [3]

B = {ea1g1 · · · ·eangnxi1
1 · · · xim

m x
im+1

m+1 · · · x
im+s

m+s | a1, ..., an, i1, ..., im ∈ Z,

im+1, ..., im+s ∈ N}
(1.2)

and with the obvious addition and the multiplication [3, 4, 6, 7]. We define the F -
Vector space V N(n,m,s) with the standard basis

{ea1g1 · · · ·eangnxi1
1 · · · xim

m x
im+1

m+1 · · · x
im+s

m+s∂w | a1, ..., an, i1, ..., im ∈ Z,

im+1, ..., im+s ∈ N, 1 ≤ w ≤ m+ s}
(1.3)

where ∂w is the usual partial derivative with respect to xw . We define the multi-
plication ∗ on V Nn,m,s as

f∂w ∗ h∂u = f∂w(h)∂u (1.4)

for f∂w and h∂u ∈ V Nn,m,s. Thus we can define the Vinberg-type nonassociative
ring V Nn,m,s with the multiplication in (1.4) and with the set V N(n,m,s). The

nonassociative ring V Nn,m,s(s ≥ 2) is not a Vinberg ring as it does not satisfy (1.1).

But V N1,0,1 is a Vinberg ring. For any element l = ea1g1 ···eangnxi1
1 ···x

im+s

m+s∂w (1 ≤
w ≤ m+s), let us call i1, ..., im+s the powers of l. An ideal in a nonassociative ring is
a two sided ideal of it. In this paper, we prove that the ring V Nn,m,s is simple. The
ring V Nn,m,s is not a Jordan ring. The right annihilators of V Nn,m,s is the sub ring
Ts = {

∑s

t=1 ctdt | ct ∈ F}, and the left annihilator of V Nn,m,s is {0}. We can see
that the center of V Nn,m,s is {0} since for any l ∈ V Nn,m,s , there is l1 ∈ V Nn,m,s

such that [l, l1] = l∗l1−l1∗l 6= 0. In V Nn,m,s, {xt∂t+ct∂t|1 ≤ t ≤ m+s, ct ∈ F} is a

set of orthogonal idempotents in V Nn,m,s , and {
∑m+s

v=1 xv∂v+
∑m+s

v=1 cv∂v : cv ∈ F}
is the set of right units of V Nn,m,s , where n ≤ m+ s. A nonassociative ring V N

is called power-associative if the subring F [a]generated by any element a of V N is
associative (see [8]). From (an∂ ∗ an∂) ∗ an∂ = an∂ ∗ (an∂ ∗ an∂) , we know that
the algebra V Nn,m,s is not power associative.

2. Main results

Theorem 2.1. The algebra V Nn,m,s is simple.
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Proof: First we show that the ideal 〈∂w〉 generated by ∂w, where 1 ≤ w ≤ m+ s,

is V Nn,m,s. For any basis element ea1g1 · · · eangnxi1
1 xik

k x
ik+1

k+1 · · ·x
im+s

m+s∂u of V Nn,m,s

with ak 6= 0, we have ∂k ∗ 1
ak

ea1g1 · · · eangnxi1
1 · · · x̂ik

k x
ik+1

k+1 · · · x
im+s

m+s∂u = ea1g1 ·

· · eangnxi1
1 · · · x̂ik

k x
ik+1

k+1 · · · x
im+s

m+s∂u ∈ 〈∂w〉 for a1, ..., ak−1, ak+1, ...an, i1, ..., im ∈ Z

and im+1, , ..., im+s ∈ N , where x̂ik
k means that the term xik

k is omitted. For any

ea1g1 · · ·eangnxi1
1 · · · x̂ik

k x
ik+1

k+1 · · ·x
im+s

m+s∂u ∈ 〈∂w〉 with ak 6= 0, we have xik
k ∂k ∗

1
ak

ea1g1 ·

· · eangnxi1
1 · · · x̂ik

k x
ik+1

k+1 · · ·x
im+s

m+s∂u = ea1g1 · · · eangnxi1
1 · · ·xik

k x
ik+1

k+1 · · ·x
im+s

m+s∂u. This

implies that ea1g1 · · · eangnxi1
1 · · · xik

k x
ik+1

k+1 · · · x
im+s

m+s∂u ∈ 〈∂w〉 holds for any ik ∈ Z

or ik ∈ N . Therefore, we have proved that 〈∂w〉 = V Nn,m,s. Let I be a non - zero
ideal of V Nn,m,s. Let us prove the theorem by induction on the number of distinct
homogeneous components of any non - zero element l in I. Assume that l has only
one (0, ..., 0) - homogeneous component. We may assume that l has positive powers
from l2 = l1 ∗ l ∈ I by taking an appropriate element l1 ∈ V Nn,m,s. We can get
the element

∂q1 ∗ · · ·∂q1 ∗ (· · · ∗ (∂qt ∗ (· · ·(∗(∂qt ∗ l2) · ··) = c∂qk (2.1)

by taking appropriate q1, ..., qt, 1 ≤ q1, ..., qt ≤ m + s, and applying ∂q1 , ..., ∂qt
in (2.1) with appropriate times, where c is a non- zero scalar. This implies that
V Nn,m,s = 〈∂w〉 ⊂ I . Therefore, we have the theorem. Assume that l is in
the (a1, ..., an) - homogeneous component, then 0 6= e−a1g1 · · · e−angn∂t ∗ l ∈
V N(0,...,0) by taking an appropriate t, 1 ≤ t ≤ m+ s, where atleast one of a1, ..., an
is not zero. In this case, we have the theorem already. We may assume that
l has n homogeneous components by induction. Let us assume that l has the
(0, ..., 0, aw, ..., an)- homogeneous component such that aw 6= 0.By taking l1 =

e−awgw · · · e−asgsxi1
1 · · · x

im+s

m+s∂t, where i1, ..., im+s are sufficiently large positive
integers so that l1 ∗ l ∈ I has positive powers. By taking an appropriate ∂k, 1 ≤
k ≤ m+ s, we have 0 6= ∂k ∗ (· · · ∗ (∂k ∗ (l1 ∗ l) · ··) ∈ I with appropriate times so
that ∂k ∗ (· · · ∗ (∂k ∗ (l1 ∗ l) · ··) 6= 0 has atmost n − 1 homogeneous components.
Therefore, we have the theorem by induction.

✷

3. Derivations of V N0,0,1

The right annihilator of l in V Nn,m,s is the set {l1 ∈ V Nn,m,s|l ∗ l1 = 0} and
similarly the left annihilator is the set {l2 ∈ V Nn,m,s|l2 ∗ l = 0} . An additive F -
linear map D of V Nn,m,s is a derivation if D(l1 ∗ l2) = D(l1) ∗ l2 + l1 ∗D(l2) holds
for any l1, l2 ∈ V Nn,m,s [1].

Remark 3.1. Let c ∈ F . The map D1 such that D1(cx
i∂) = cixi−1∂ for any basis

element xi∂ can be extended linearly on V N0,0,1 , which is a derivation of V N0,0,1.
Similarly, the F -linear map D2 on V N0,0,1 such that D2(x

i∂) = (1− i)xi∂ for any
basis element xi∂ of V N0,0,1 is a derivation of V N0,0,1 .



12 G. Lakshmi Devi and K. Jayalakshmi

Lemma 3.2. The left annihilator of ∂ is V N0,0,1 , and the right annihilator of ∂
is {c∂|c ∈ F}.

Proof: The proof is straightforward by the definitions of the right and left anni-
hilators of ∂ in V N0,0,1 . ✷

Theorem 3.3. For any derivation D of V N0,0,1, D = c1D1 + c2D2, c1, c2 ∈ F ,
where D1 and D2 are the derivations of V N0,0,1 in Remark 3.1.

Proof: Let D be any derivation of V N0,0,1. Then

D(∂ ∗ ∂) = D(∂) ∗ ∂ + ∂ ∗D(∂) = ∂ ∗D(∂) = 0.

By Lemma 3.1, we have

D(∂) = C(0)∂forsomeC(0) ∈ F. (3.1)

By D(∂ ∗ x∂) = D(∂) ∗ x∂ + ∂ ∗D(x∂) = C(0)∂ = C(0)∂ + ∂ ∗D(x∂), we have

D(x∂) = C(1)∂forsomeC(1) ∈ F. (3.2)

This implies that D(∂ ∗ x2∂) = 2D(x∂) = 2C(1)∂. But,

D(∂) ∗ x2∂ + ∂ ∗D(x2∂) = C(0)∂ ∗ x2∂ + ∂ ∗D(x2∂) = 2C(0)x∂ + ∂ ∗D(x2∂).

This implies that ∂ ∗D(x2∂) = −2C(0)x∂ + 2C(1)∂. Then D(x2∂) = −C(0)x2∂ +
2C(1)x∂ + C(2, 0)∂ for some C(2, 0) ∈ F . We have

D(x∂ ∗ x2∂) = 2D(x2∂) = −2C(0)x2∂) + 4C(1)x∂ + C(2, 0)∂. (3.3)

Also, we have

D(x∂) ∗ x2∂ + x∂ ∗D(x2∂) = 2C(1)x∂ + x∂ ∗ (−C(0)x2∂) + 2C(1)x∂ + C(2, 0)∂).

Thus
D(x∂) ∗ x2∂ + x∂ ∗D(x2∂) = −2C(0)x2∂ + 4C(1)x∂. (3.4)

By (3.3) and (3.4), we have C(2, 0) = 0. Let us assume that
D(xn∂) = C(0)(1− n)xn∂ + C(1)nxn−1∂ for some fixed n ∈ N , by induction.
Thus we have

D(∂ ∗ xn+1∂) = (n+ 1)D(xn∂) = (n+ 1)C(0)(1 − n)xn∂ + (n+ 1)C(1)nxn−1∂.

But we have D(∂) ∗ xn+1∂ + ∂ ∗D(xn+1∂) = C(0)(n+ 1)xn∂ + ∂ ∗D(xn+1∂).
This implies that
∂ ∗D(xn+1∂) = −C(0)(n+ 1)xn∂ + C(0)(n+ 1)(1− n)xn∂ + C(1)n(n+ 1)xn−1∂

= −nC(0)(n+ 1)xn∂ + C(1)n(n+ 1)xn−1∂.
Hence,

D(xn+1∂) = −nC(0)xn+1∂ + C(1)(n+ 1)xn∂ + C(n, 0)∂, C(n, 0) ∈ F .
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Then

D(x∂ ∗ xn+1∂) = (n+ 1)D(xn+1∂)
= −nC(0)(n+ 1)xn+1∂ + C(1)(n+ 1)2xn∂ + C(n, 0)(n+ 1)∂.

On the other hand, we have

C(1)∂ ∗ xn+1∂ + x∂ ∗ (−nC(0)xn+1∂ + C(1)(n+ 1)xn∂ + C(n, 0)∂)
= −nC(0)(n+ 1)xn+1∂ + C(1)(n+ 1)2xn∂.

This implies that C(n, 0) = 0. Therefore, we have proved that

D(xn∂) = C(0)(1 − n)xn∂ + C(1)nxn−1∂, n ∈ N.

This shows that D = C(0)D2 + C(1)D1 and completes the proof of the theorem.
✷

4. Solid Algebras

Let A be an F -algebra. Let EndF (A) be the set of all F -endomorphisms of A,
and AutF (A) the set of all automorphisms of A. An F -algebra A is solid if every
non-zero endomorphism of A is surjective.

Proposition 4.1. A simple algebra A is solid if and only if EndF (A) = {0} ∪
AutF (A).

Proof: It is straightforward by the fact that A is a simple algebra and the definition
of the solid algebra. ✷

Lemma 4.2. For any θ ∈ EndF (V N0,0,1) , if θ(∂) = 0, then θ is the zero map of
V N0,0,1 .

Proof: We have θ(∂ ∗ xn∂) = nθ(xn−1∂) = 0 for any n ∈ N , which implies that θ
is the zero map by induction on the degree of xn∂. ✷

Lemma 4.3. For any non-zero F -endomorphism θ of V N0,0,1 , θ(∂) = co∂ holds
for some fixed 0 6= c0 ∈ F .

Proof: We have θ(∂ ∗ ∂) = θ(∂) ∗ θ(∂) = 0. Since θ(∂) 6= 0, by Lemma 4.1, we
have θ(∂) = co∂, 0 6= c0 ∈ F . ✷

Proposition 4.4. If θ is a non-zero endomorphism of V N0,0,1, then θ is an epi-
morphism.

Proof: By Lemma 4.3 we have θ(∂) = c0∂ for some non-zero c0 ∈ F . From

θ(∂ ∗ x∂) = θ(∂),
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we have c0∂ ∗ θ(x∂) = c0∂. This implies that θ(x∂) = c1∂ + x∂ for some c1 ∈ F .

By θ(∂ ∗ x2∂) = 2θ(x∂), we have θ(x2∂) = cr∂ + 2c1x
c0

∂ + x2

c0
∂ for cr ∈ F . By

θ(x∂ ∗ x2∂) = 2θ(x2∂), we have

(c1∂ + x∂) ∗ (cr∂ +
2c1x

c0
∂ +

x2

c0
∂) = 2cr∂ +

4c1x

c0
∂ +

2x2

c0
∂. (4.1)

By comparing the coefficients of both sides of (4.1), we have cr =
c21
c0
. Thus, we

have θ(x2∂) = c−1
0 (x + c1)

2∂. Let us assume that θ(xn∂) = c1−n
0 (x + c1)

n∂ for
some fixed non-negative integer n inductively.
From θ(∂ ∗ xn+1∂) = (n+ 1)θ(xn∂), we have

∂ ∗ θ(xn+1∂) = (n+ 1)c1−n
0 (x+ c1)

n∂.

This implies that θ(xn+1∂) = c−n
0 (x+ c1)

n+1∂ + cu∂ for some cu ∈ F . By

θ(x∂ ∗ xn+1∂) = (n+ 1)θ(xn+1∂), (4.2)

we have (x+c1)∂∗(c
−n
0 (x+c1)

n+1∂+cu∂) = c−n
0 (n+1)(x+c1)

n+1∂+(n+1)cu∂. By
comparing the coefficients of both sides of (4.2), we have cu = 0. Thus,θ(xm∂) =
c1−m
0 (x+ c1)

m∂ holds for any m ∈ F inductively.
Therefore, any l ∈ V N0,0,1 can be written as

l = c”t c
1−t
0 (x+ c1)

t∂ + · · ·+ c”0c
−1
0 ∂ = c”t θ(x

t∂) + · · ·+ c”0θ(∂),

Where c”t , ..., c
”
0 ∈ F . This implies that θ is surjective. The following corollary is

the version of Jacobian conjecture on V N0,0,1. ✷

Corollary 4.5. For any non-zero endomorphism θ of V N0,0,1, θ is an automor-
phism of V N0,0,1.

Proof: By Lemma 4.3, θ(∂) = c0∂ for some non-zero c0 ∈ F . Since V N0,0,1 is
simple, θ is one to one. By Proposition 4.4, θ is onto. ✷

Corollary 4.6. End(V N0,0,1) = Aut (V N0,0,1)
⋃
{0},where 0 is the zero map of

V N0,0,1.

Proof: It is straightforward by Corollary 4.5. ✷

By Corollary 4.6, we know that V N0,0,1 is solid.

Proposition 4.7. For any θ ∈ Aut(V Nn,m,s), we have θ(Ts1) = Ts1 .

Proof: Since Ts1 is the unique maximal right annihilator of V Nn,m,s, θ(Ts1) = Ts1

holds for any θ ∈ Aut(V Nn,m,s). ✷
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