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Derivation on Vinberg Rings

G. Lakshmi Devi and K. Jayalakshmi

ABSTRACT: A nonassociative ring which contains a well-known associative ring or
left symmetric ring also known as Vinberg ring is of great interest. A method to
construct Vinberg nonassociative ring is given; Vinberg nonassociative ring V- Ny m,s
is shown as simple; all the derivations of nonassociative simple Vinberg V Ny 0,1
algebra defined are determined; and finally in solid algebra it is shown that if 6 is a
nonzero endomorphism of V' Npo,1 , then 0 is an epimorphism.
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1. Preliminaries

Let (A, x,+) be a nonassociative algebra then the antisymmetrized algebra
(A7,],],+) with the same set A and the Lie bracket [,] is defined as follows:
[,y] =  xy —y *a for any x,y € A~. Choi proposed an interesting problem
[9]: Does the equality Autp(A) = Autr;.(A~) hold? The answer is no generally.
Any derivation of an algebra A is a derivation of the antisymmetrized algebra A~ .
He also proposed an interesting problem: Is Der(A) = Derp;.(A™)? If 6 is an au-
tomorphism of Vinberg ring VN then the Der(V N) is also an automorphism. For
a p-torsion free Vinberg algebra, we do not know Der(A) generally. Our method
of finding Der(V Ny 1) will give a good modification to find Der(A) of an alge-
bra A. The authors have given the description of a 2-torsion free Vinberg (-1,1)
ring R in [2]. They have shown that if every nonzero root space of R~ for S is
one-dimensional where S is a split abelian Cartan subring of R~ which is nil on R
then R is a Lie ring isomorphic to R~. In this paper we extend the results of [2]
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to V.Ny 0,1 algebra. A nonzero endomorphism of V Ny o1 is an epimorphism.
A nonassociative ring R is called a Vinberg ring if it satisfies the identity

(#,y,2) = (y,2,2) (1.1)

where (x,y,2) = (vy)z — z(yz) for z,y,z € R. Throughout this paper Z and
N are the sets of integers and non-negative integers respectively.
Let (R, +, -) be a Vinberg ring and 0 a derivation of R.Let F[z1,...,Zmys] be
the polynomial ring on the variables 1, ..., Z;m+s. Let g1,..., g, be given polyno-
mials in F[x1,...,Zmts]. For m,m,s € N, we define the F' - algebra F, ,, s =

1 . .
Flet9, .., eigﬂ,xli e Tl Tyna1, oo, Ty s] With the standard basis [3]
— aigi Angn .01 4 G 41 imts . .
B=/{e et Inglt ey e Ay e Gy T ey T € 2

(1.2)

im—i—l; ---aim-l-s € N}

and with the obvious addition and the multiplication [3, 4, 6, 7]. We define the F-
Vector space V N(, , s) with the standard basis

aigi Angn .01 G Sl Tmts . .
{e eI e Oy | Ay Gy T i € 2,

) . (1.3)
Imt1y - imts € N, 1 <w <m+ s}

where 9, is the usual partial derivative with respect to x,, . We define the multi-

plication * on VN, ,, s as

FOu % hdy = fOu(h)Dy (1.4)

for f0, and hO, € VNy 1 s. Thus we can define the Vinberg-type nonassociative
ring VN, s with the multiplication in (1.4) and with the set VN(, 1 5). The
nonassociative ring V.N,, ,, s(s > 2) is not a Vinberg ring as it does not satisfy (1.1).
But VN1 is a Vinberg ring. For any element [ = e®191 ... 9n gt .. x:;'j;a (1<
w < m+s), let us call iy, ..., iy+s the powers of [. An ideal in a nonassociative ring is
a two sided ideal of it. In this paper, we prove that the ring VN, ,,, 5 is simple. The
ring V IV, s is not a Jordan ring. The right annihilators of V.N,, ,, s is the sub ring
Ty ={>,_, ctdy | ¢, € F}, and the left annihilator of VN, s is {0}. We can see
that the center of V.N,, , s is {0} since for nce for any | € VNn m.s , there is Iy € VNn m.s
such that [I,11] = lxl1—l1x] # 0. In VN, s, {xtat—l—ct@tﬂ <t<m+s,¢ € Flisa
set of orthogonal idempotents in VN, ,, 5 , and {ths L0y +Zm+15 cpOy 1 cy € F}
is the set of right units of V.N,, ,, s , where n < m + s. A nonassociative ring V.V
is called power-associative if the subring F'[a]generated by any element a of VN is
associative (see [8]). From (a0 x a"0) *x a0 = a"d x (a0 x a"0) , we know that
the algebra VN, ., s is not power associative.

2. Main results

Theorem 2.1. The algebra VN, p, s is simple.
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Proof: First we show that the ideal (J,,) generated by ,,, where 1 < w < m + s,

is VN, m,s. For any basis element e®9t - .. ¢n9n x”x}c" x;fjll . mga of VNom.s
with a # 0, we have O * aie‘“gl ce e“”gnxzf . xk x;c’j:ll ce x:;"j;@ = e®191 .

~e“"'g"':vzf . z;f:c;f_:ll cee :;"I;@ € (Ow) for ag, .oy Qk—1, Qg 1, --Apy i1y vy iy € Z
and 41, ..., zm+5 € N, where x}j means that the term x}j is omitted. For any
191 ~~~ea”9”zi xk x;’“_:ll . j;;;ﬁ;a € (Ow) with ay # 0, we have xi’“@k*Lealgl .

~ea”9”zzf z}c":c;kjll . :cj,’;j;a = ™91 ... aﬂgnx? . z}c"z;f_:f . j;;:ﬁ;a This
implies that €19t . .. endngil ... gV x;c’j:ll o :;"I;@ € (Dy) holds for any iy, € Z

or iy € N. Therefore, we have proved that (9,) = VN, 1, 5. Let I be a non - zero
ideal of V' N, p, 5. Let us prove the theorem by induction on the number of distinct
homogeneous components of any non - zero element [ in I. Assume that [ has only
one (0, ..., 0) - homogeneous component. We may assume that [ has positive powers
from Iy = l; * [ € I by taking an appropriate element [y € VN, ,, ;. We can get
the element

alh * 'alh * ( X (alh * ( : '(*(ath * 12) : ) = Caqk (2'1)

by taking appropriate qi,...,q:,1 < q1,...,¢¢ < m + s, and applying O, ..., O,
in (2.1) with appropriate times, where ¢ is a non- zero scalar. This implies that
VINpm.s = (Ow) C I . Therefore, we have the theorem. Assume that [ is in
the (a1,...,a,) - homogeneous component, then 0 # e 9t ... e %Ing, x| €
V' N(o,...,0) by taking an appropriate t,1 <t < m + s, where atleast one of a1, ..., a,
is not zero. In this case, we have the theorem already. We may assume that
[ has n homogeneous components by induction. Let us assume that [ has the
(0,...,0,ay,...,a,)- homogeneous component such that a, # 0.By taking l; =
e dwlw . .. e*‘lsgssc?”'l1 S i,’l’i;@t, where 41, ..., %,+s are sufficiently large positive
integers so that [y x [ € I has positive powers. By taking an appropriate J;, 1 <
kE<m+s, we have 0 # O x (- - % (O * (I1 %) - -) € I with appropriate times so
that O * (- -+ % (O x (I1 % 1) - --) # 0 has atmost n — 1 homogeneous components.
Therefore, we have the theorem by induction.

O

3. Derivations of V. Ny .1

The right annihilator of I in VN, ., s is the set {l1 € VN, 5|l % 1 = 0} and
similarly the left annihilator is the set {lo € VN, y s|l2 *1 = 0} . An additive F' -
linear map D of VN, ,,, s is a derivation if D(ly *l3) = D(l1) *l2 + 11 * D(l3) holds
for any l1,l2 € VN, s [1]-

Remark 3.1. Let ¢ € F. The map Dy such that Dy (cx'd) = ciz*=10 for any basis
element x'0 can be extended linearly on V' No,0,1 , which is a derivation of V. Ny, 1.

Similarly, the F-linear map Dy on VN o1 such that Do(2'0) = (1 —14)2'd for any
basis element ' of V.Ng o1 is a derivation of VNo o1 -
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Lemma 3.2. The left annihilator of 0 is V.Nyo,1 , and the right annihilator of O
is {cO|c € F}.

Proof: The proof is straightforward by the definitions of the right and left anni-
hilators of @ in V. Ny .1 - O

Theorem 3.3. For any derivation D of VNyo1, D = c1D1 + caDa,c1,¢c2 € F,
where Dy and Dy are the derivations of V Ny o1 in Remark 3.1.

Proof: Let D be any derivation of V Ny 1. Then
D(@*0)=D(0)x0+ 0 D(J)=09xD(9) =0.
By Lemma 3.1, we have
D(9) = C(0)0forsomeC(0) € F. (3.1)
By D(9* x0) = D(9) * 20 + 0 * D(xz9) = C'(0)0 = C(0)0 + 9 * D(x9), we have
D(z0) = C(1)0forsomeC(1) € F. (3.2)
This implies that D(d x 220) = 2D(2d) = 2C(1)d. But,

D(9) * 220 + 0 * D(220) = C(0)9 x 220 4+ 9 x D(2?9) = 2C(0)zd + d x D(x?9).
This implies that 9 x D(220) = —2C(0)zd + 2C(1)d. Then D(229) = —C(0)z20 +
2C(1)z0 4+ C(2,0)0 for some C(2,0) € F. We have

D(zd * 2°9) = 2D(2%9) = —2C(0)x20) + 4C(1)zd + C(2,0)0. (3.3)
Also, we have
D(x0) * 220 + 20 * D(220) = 2C(1)xd + x0 * (—C(0)2?9) 4+ 2C(1)zd + C(2,0)0).

Thus

D(z0) * 220 + x0 * D(2*0) = —2C(0)2?0 + 4C(1)x0. (3.4)
By (3.3) and (3.4), we have C'(2,0) = 0. Let us assume that
D(z"9) = C(0)(1 —n)x™d + C(1)na" 19 for some fixed n € N, by induction.
Thus we have

D(@ % 2™+19) = (n + 1)D(z"8) = (n + 1)C(0)(1 — n)a"d + (n + 1)C(1)nz"18.

But we have D(9) * 2"t10 + 0 x D(z"™19) = C(0)(n + 1)a"d + d * D(z"10).
This implies that

9% D(x"t19) = —C(0)(n + 1)2"d + C(0)(n + 1)(1 — n)a™d + C(1)n(n + 1)z" 10
= —nC(0)(n + 1)a"d + C(1)n(n + 1)z"~ 1.

Hence,

D(2"19) = —nC(0)z" 10 + C(1)(n + 1)2"d + C(n,0)d, C(n,0) € F.
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Then

D(x0 % 2" t19) = (n + 1)D(2"+19)
= —nC(0)(n+ 1)a" "9 + C(1)(n + 1)22"0 + C(n, 0)(n + 1)0.

On the other hand, we have

C(1)0* 2" + 20 * (—nC(0)2" 10 + C(1)(n + 1)2"0 + C(n,0)9)
= —nC(0)(n+ 1)a"Ttd + C(1)(n + 1)%22"0.

This implies that C'(n,0) = 0. Therefore, we have proved that
D(z"9) = C(0)(1 —n)z"d + C(1)nz""'d,n € N.

This shows that D = C(0)Dy + C(1)D; and completes the proof of the theorem.
O

4. Solid Algebras

Let A be an F-algebra. Let Endr(A) be the set of all F-endomorphisms of A,
and Autp(A) the set of all automorphisms of A. An F-algebra A is solid if every
non-zero endomorphism of A is surjective.

Proposition 4.1. A simple algebra A is solid if and only if Endpr(A) = {0} U

Proof: It is straightforward by the fact that A is a simple algebra and the definition
of the solid algebra. O

Lemma 4.2. For any 0 € Endp(VINoo,1) , if 0(0) =0, then 0 is the zero map of
VNoo,1 -

Proof: We have 0(0 * 2"0) = nf(2"~9) = 0 for any n € N, which implies that 6
is the zero map by induction on the degree of x™d. O

Lemma 4.3. For any non-zero F-endomorphism 0 of V Ny o1 , 0(0) = ¢,0 holds
for some fized 0 # ¢y € F.

Proof: We have 0(9 *« 9) = 6(9) * 6(0) = 0. Since 6(9) # 0, by Lemma 4.1, we
have 0(0) = ¢,0, 0 # ¢o € F. O

Proposition 4.4. If 0 is a non-zero endomorphism of V.Ng o1, then 0 is an epi-
morphism.

Proof: By Lemma 4.3 we have 6(9) = ¢y0 for some non-zero ¢y € F. From

0(0 * x0) = 6(0),
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we have ¢g0 * 0(x0) = cp0. This implies that 0(xd) = ¢10 + x0 for some ¢; € F.
By 6(0 * 220) = 20(x0), we have 0(2%0) = c,.0 + 22—(1)960 + ﬁ—j@ for ¢, € F. By
0(x0 x 120) = 20(29), we have

2c1x derx

2 2 2
O+ 0) = 2,0+ —20+ =20, (4.1)

Co Co o o

(c10 4+ 20) * (¢, 0 +

By comparing the coefficients of both sides of (4.1), we have ¢, = g Thus, we
have 0(220) = c5'(z + ¢1)?0. Let us assume that 0(2"9) = ¢ "(z + ¢1)"0 for
some fixed non-negative integer n inductively.
From 6(9 * 2"19) = (n + 1)0(2"0), we have

9% 0(z" 1) = (n + 1)y (x4 c1)"0.
This implies that 0(z""19) = ¢ " (z + ¢1)"'0 + ¢,0 for some ¢, € F. By
0(z0 + 2"T19) = (n + 1)0(2"119), (4.2)
we have (z+¢1)0%*(cg " (z+c1)" T 04¢,0) = ¢g " (n+1)(z+c1)" 10+ (n+1)c,d. By
comparing the coefficients of both sides of (4.2), we have ¢, = 0. Thus,§(z™9) =

1-m

¢y " (x + ¢1)™0 holds for any m € F inductively.
Therefore, any [ € V. Ny o,1 can be written as

l=ciey M@ +e)' 0+ - +cyegtd=c0(xtd) + - -+ cy0(0),

Where ¢, ...,cy € F. This implies that 6 is surjective. The following corollary is
the version of Jacobian conjecture on V.Ny g 1. O

Corollary 4.5. For any non-zero endomorphism 0 of V.Ng o1, 0 is an automor-
phism of VNgo.1.

Proof: By Lemma 4.3, 6(9) = ¢¢0 for some non-zero ¢y € F. Since V Ny is
simple, 0 is one to one. By Proposition 4.4, 6 is onto. O

Corollary 4.6. End(VNo1) = Aut (VNg,,1)U{0},where 0 is the zero map of
VNo,o,1-

Proof: It is straightforward by Corollary 4.5. O

By Corollary 4.6, we know that V' Ny ¢ 1 is solid.
Proposition 4.7. For any 0 € Aut(V N, 1, s), we have 0(Ts,) =Ty, .

Proof: Since T, is the unique maximal right annihilator of VN, ,, 5, 0(Ts, ) = T,
holds for any 0 € Aut(V Ny m.s)- O
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