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A posteriori error estimation for incompressible viscous fluid with a

new boundary condition

Abstract This paper describes numerical solutions of incompressible Navier-Stokes equations with

a new boundary condition. To solve this problem, we use the discretization by mixed finite element

method. We use a vector extrapolation method for computing numerical solutions of the steady-state

Navier-Stokes equations. In addition, two types of a posteriori error indicator are introduced and are

shown to give global error estimates that are equivalent to the true error. A numerical experiment on

the driven cavity flow is given to demonstrate the effectiveness of the vector extrapolation method. We

compare the result with the solution from commercial code like ADINA system as well as with values

from other simulations.
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1 Introduction

The idea of mixed finite element is to approximate simultaneously the piezometric head and

the velocity. This approximation gives velocity throughout the field and the normal component

of the velocity is continuous across the inter-element boundaries. Moreover, with the mixed

formulation, the velocity is defined with the help of Raviart Thomas basis functions [1, 2, 3, 45]

and, therefore, a simple integration over the element gives the corresponding streamlines. This

method was widely used for the prediction of the behavior of fluid in the hydrocarbons tank.

In computational mechanics one usually faces the problem of increasing the accuracy of a

solution without adding unnecessary degrees of freedom. It is, therefore, necessary to update

the mesh to ensure that it becomes fine enough in the critical regions while remaining reason-

ably coarse in the rest of the domain. Local a posteriopri error estimator is the adequate tool

for identifying these critical regions automatically, using an input information only the given

data and the numerical solution itself. A large amount of work has already been done in the

construction of error estimators for several problems of computational fluid dynamics. In the

conforming case there are several ways to define error estimators by using the residual equa-

tion. Ainsworth and Oden [5] and Verfurth [6] give a general overview. In the specific case of

the Stokes and Navier-Stokes equations governing the steady flow of a viscous incompressible

fluid, the work of Bank and Welfert [7], Verfurth [8] and Oden and Ainsworth [9] laid the basic

foundation for the mathematical analysis of practical methods. Other works for the stationary

Navier-Stokes problem have been introduced in [10, 11, 12, 13, 14, 15, 16].
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In this paper we explore the potential of vector extrapolation in the context of computing

steady state solutions of incompressible Navier-Stokes equations. Spatial discretization using

mixed approximation of the velocity and pressure variables naturally lead us to consider high-

dimensional nonlinear algebraic systems-so effective iteration methods are crucial for efficient

computation. Existing vector extrapolation methods can be broadly classified into two cat-

egories: polynomial methods and ε-algorithms. The first family includes three approaches:

minimal polynomial extrapolation (MPE) of Cabay and Jackson [17]; reduced rank extrapola-

tion (RRE) of Eddy [18] and Mesina [19], and the modified minimal polynomial extrapolation

(MMPE) derived in [20, 21, 22]. The second family includes the topological ε-algorithm (TEA)

and the scalar and vector ε-algorithms (SEA and VEA).We will restrict our attention to the

RRE methodology in this work.

Some different recursive algorithms for implementing these methods have been presented in [23,

31, 33]. We note that, when applied to linearly generated vector sequences, the MPE, the RRE

and the TEA methods are related to Krylov subspace methods.

The plan of the paper is as follows. The model problem is described in section 2, followed by

the discretization by mixed finite element method in section 3. A vector extrapolation methods

is described in section 4 . Section 5 shows the methods of a posteriori error estimator of the

computed solution and numerical experiment is described in section 6.

2 Governing equations

We consider the steady-state Navier-Stokes equations for a positive constant viscosity ν,
−ν∇2−→u +−→u .∇−→u +∇p =

−→
f in Ω

∇.−→u = 0 in Ω

α −→u + (ν∇−→u − pI)−→n = −→g in Γ =: ∂Ω and
∫
Ω
p dx = 0,

(2.1)

where −→u is the fluid velocity, p is the pressure field, ∇ is the gradient, ∇. is the divergence

operator, −→n denote the outward pointing normal to the boundary and α is a nonzero bounded

continuous function defined on ∂Ω.

This system is the basis for computational modeling of the flow of an incompressible Newtonian

fluid such as air or water. The presence of the nonlinear convection term −→u .∇−→u means that

boundary value problems associated with the Navier-Stokes equations can have more than one

solution.

We set

V = H1
0 (Ω)×H1

0 (Ω), (2.2)

and

W = {q ∈ L2(Ω) :

∫
Ω

q(x)dx = 0}. (2.3)

Let the bilinear forms a : V × V −→ R, b : V ×W −→ R, d :W ×W −→ R, and the trilinear

form c : V × V × V −→ R

a(−→u ,−→v ) = ν

∫
Ω

∇−→u .∇−→v dx+

∫
Γ

α −→u .−→v , b(−→v , q) = −
∫
Ω

(q∇.−→v )dx, d(p, q) =

∫
Ω

p q dx,(2.4)
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c(−→z ,−→u ,−→v ) =
∫
Ω

(−→z .∇−→u ).−→v . (2.5)

These inner products induce norms on V and W denoted by ∥.∥V and ∥.∥W respectively.

∥−→v ∥V = a(−→u ,−→u ) 1
2 ∀−→u ∈ V, (2.6)

∥q∥W = d(q, q)
1
2 ∀q ∈W. (2.7)

Given the continuous functional l : V −→ R

l(−→v ) =
∫
Ω

−→
f .−→v dx. (2.8)

Then the standard weak formulation of the Navier-Stokes flow problem (2.1) is the following:

Find (−→u , p) ∈ V ×W such that

a(−→u ,−→v ) + b(−→v , p) + c(−→u ,−→u ,−→v ) = l(−→v ), (2.9)

b(−→u , q) = 0, (2.10)

for all (−→v , q) ∈ V ×W .

Let the subspace of divergence-free velocities be given by

VE0 = {−→z ∈ V ;−→z .−→n = 0 and ∇.−→z = 0 in Ω}. (2.11)

We have c(−→z ;−→u ,−→v ) = −c(−→z ;−→v ,−→u ) in VE0 .

We obtain

c(−→z ;−→u ,−→u ) = 0 ∀−→z ∈ VE0 . (2.12)

The problem (2.9)-(2.10) is known [35] to possess a unique solution whenever the data is suffi-

ciently small. In particular, if there exists a constant C such that

l(−→v ) ≤ ω
ν2

C
|−→v |H1(Ω) ∀−→v ∈ V, (2.13)

for some fixed ω ∈ [0, 1).

Then, there is a unique solution −→u ∈ V satisfying

|−→u |H1(Ω) ≤ ω
ν

C
. (2.14)

3 Mixed finite element discretization

Let P be a regular partitioning of the domain Ω into the union of N subdomains K such that

•N <∝,

•Ω = ∪K∈PK,

• K ∩ J is empty whenever K ̸= J ,

• each K is a convex Lipschitzian domain with piecewise smooth boundary ∂K.

The common boundary between subdomains K and J is denoted by: ΓKJ = ∂K ∩ ∂J .

The finite element subspaces Xh and Mh are constructed in the usual manner so that the

inclusion

Xh ×Mh ⊂ V ×W holds.
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The finite element approximation to (2.9)-(2.10) is then

Find (−→u h, ph) ∈ Xh ×Mh such that

a(−→u h,
−→v h) + b(−→v h, ph) + c(−→u h,

−→u h,
−→v h)) = l(−→v h), (3.1)

b(−→u h, qh) = 0, (3.2)

for all (−→v h, qh) ∈ Xh ×Mh.

We define the appropriate bases for the finite element spaces, leading to a non linear system

of algebraic equations. Linearization of this system using Newton iteration gives the finite

dimensional system:

Find δ−→u h ∈ Xh and δph ∈Mh such that

ν

∫
Ω

∇δ−→u h : ∇−→v h +

∫
∂Ω

α δ−→u h · −→v h + c(δ−→u h,
−→u h,

−→v h) + c(−→u h, δ
−→u h,

−→v h) + b(−→v h, δph) = Rk(
−→v h),(3.3)

b(δ−→u h, qh) = rk(qh), (3.4)

for all −→v h ∈ Xh and qh ∈Mh,

where Rk(
−→v h) and rk(qh) are the non linear residuals associated with the discrete formulations

(3.1)-(3.2) for the iterate (−→u k, pk) .

To define the corresponding linear algebra problem, we use a set of vector-valued basis

functions {−→φ j}, so that

−→u h =

nu∑
j=1

uj
−→φ j +

nu+n∂∑
j=nu+1

uj
−→φ j , δ

−→u h =

nu∑
j=1

∆uj
−→φ j , (3.5)

and we fix the coefficients uj : j = nu + 1, . . . , nu + n∂ , so that the second term interpolates

the boundary data on ∂ΩD.

We introduce a set of pressure basis functions {Ψk} and set

ph =

np∑
k=1

pkΨk, δph =

np∑
k=1

∆pkΨk, (3.6)

where nu and np are the numbers of velocity and pressure basis functions, respectively.

We obtain a system of linear equations A+N +W tB

B 0

 ∆U

∆P

 =

 f

g

 . (3.7)

This system is referred to as the discrete Newton problem.

The matrix A is the vector Laplacian matrix and B is the divergence matrix

A = [aij ], aij = ν

∫
Ω

∇−→φ i : ∇−→φ j +

∫
∂Ω

α−→φ i.
−→φ j , (3.8)

B = [bkj ], bkj = −
∫
Ω

Ψk∇.−→φ j , (3.9)
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for i and j = 1, . . . , nu and k = 1, . . . , np .

The vector-convection matrix N and the Newton derivative matrix W are given by

N = [nij ], nij =

∫
Ω

(−→u h.∇−→φ j).
−→φ i, (3.10)

W = [Wij ], Wij =

∫
Ω

(−→φ j .∇−→u h).
−→φ i, (3.11)

for i and j = 1, . . . , nu.

The Newton derivative matrix is symmetric.

The right-hand side vectors in (3.7) are the non linear residuals associated with the discrete

solution −→u h, ph and the function α ,

f = [fi], fi =

∫
Ω

−→
f .−→φ i −

∫
Ω

(−→u h.∇−→u h).
−→φi − ν

∫
Ω

∇−→u h : ∇−→φ i −
∫
Γ

α −→u h.
−→φ i +

∫
Ω

ph(∇.−→φ i),(3.12)

g = [gk], gk = −
∫
Ω

Ψk(∇.−→u h), (3.13)

for i = 1, ..., nu and k = 1, . . . , np .

For Picard iteration, we give the discrete problem A+N tB

B 0

 ∆U

∆P

 =

 f

g

 . (3.14)

The lowest order mixed approximations like Q1 − P0 and Q1 − Q1 are unstable. We use a

stabilized element pair Q1 − P0, this is the most famous example of an unstable element pair,

using bilinear approximation for velocity and a constant approximation for the pressure.

4 Vector extrapolation methods

We use a vector extrapolation method for computing numerical solutions of the steady-state

Navier-Stokes equations. Extrapolation methods are of interest whenever an iteration process

converges slowly. For a survey of these methods see for example the papers [31, 32] and the

book [33]. The most popular vector extrapolation methods are the minimal polynomial extrap-

olation (MPE) [17], the reduced rank extrapolation (RRE) [18, 19], and the modified minimal

polynomial extrapolation (MMPE) [20, 21, 22]. Convergence analysis of these methods can be

found in [23, 24]. In particular, A. Sidi [25] shows that the MPE and the RRE approaches

are mathematically equivalent to Arnoldis method [26] and to the generalized minimal residual

method (GMRES) [27], respectively. Vector extrapolation methods are considered to be most

effective when applied to nonlinear systems of equations [28, 29, 30, 31]. We use the reduced

rank extrapolation method [18, 19].

To define the RRE method, we will consider the solution of the linear or nonlinear system

of equations:

G(x) = 0, G : RN → RN . (4.1)
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Let l be the solution of the system (4.1), l0 be a given initial approximation, and generate the

sequence of vectors l1, l2,. . ., according to the fixed-point iterative method

ln+1 = H(ln), n = 0, 1, ... H : RN → RN , (4.2)

where x−H(x) = 0 represents a preconditioned form of (4.1).

Let (ln) be a given sequence of N-dimensional column vectors formed by (4.2), and limn→∞ ln =

l , we set

vn = △ln = ln+1 − ln, n = 0, 1, ... (4.3)

wn = △2ln = △ln+1 −△ln, n = 0, 1, ... (4.4)

The RRE method, when applied to the sequence ln, can be shown to generate an approximation

ξRRE
n,k of the limit or the antilimit of (ln).

This approximation can be expressed in the form

ξRRE
n,k =

k∑
j=0

βk
j ln+j , (4.5)

where

k∑
j=0

β
(k)
j = 1 and

(k)∑
j=0

θijβ
(k)
j = 0, i = 0, ..., k − 1, (4.6)

and the scalars θij defined by the l2 inner product:

θij = (△2ln+i,△ln+j). (4.7)

Using (4.5) and (4.6), ξRRE
n,k is given by the ratio of two determinants

ξRRE
n,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ln ln+1 . . . ln+k

θ0,0 θ0,1 . . . θ0,k

. . . . . .

. . . . . .

. . . . . .

θk−1,0 θk−1,1 . . . θk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

θ0,0 θ0,1 . . . θ0,k

. . . . . .

. . . . . .

. . . . . .

θk−1,0 θk−1,1 . . . θk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.8)

Let ∆iLn,k−1 (i = 1, 2) the matrices whose columns are ∆iln, ., ., .∆
iln+k−1.

Using Schurs formula, we have

ξRRE
n,k = ln −△Ln,k−1 △2L+

n,k−1△ln , (4.9)
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where △2L+
n,k−1 is defined by

△2L+
n,k−1 = (△2LT

n,k−1△2Ln,k−1)
−1 △2LT

n,k−1. (4.10)

ξRRE
n,k exists and is unique if and only if det(△2LT

n,k−1 △2Ln,k−1) ̸= 0. We uses the algorithms

proposed in [23].

5 A posteriori error Analysis

In this section, we propose two types of a posteriori error indicator : the local Poisson problem

estimator and the residual error estimator, which are shown to give global error estimates.

Theorem 5.1 We have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

∥−→v ∥V + ∥q∥W
≥ 1

2
(∥−→w ∥V + ∥s∥W ), (5.1)

for all (−→w , s) ∈ V ×W .

Proof . Let (−→w , q) ∈ V ×W , we have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

∥−→v ∥V + ∥q∥W
≥ a(−→w ,−→w ) + d(s, 0)

∥−→w ∥V + ∥0∥W
= ∥−→w ∥V , (5.2)

and we have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

∥−→v ∥V + ∥q∥W
≥ a(−→w ,−→0 ) + d(s, s)

∥−→0 ∥V + ∥s∥W
= ∥s∥W . (5.3)

We gather (5.2) and (5.3) to get (5.1).

Let (−→e , E) ∈ V ×W be the error in the finite element approximation, −→e = −→u − −→u h and

E = p− ph and define (
−→
ϕ , ψ) ∈ V ×W to be the Ritz projection of the modified residuals

a(
−→
ϕ ,−→v ) + d(ψ, q) = a(e,−→v ) + b(−→v ,E) + b(−→e , q) +D(−→u ,−→u h,

−→v ), (5.4)

for all (−→v , q) ∈ V ×W , where D(−→u ,−→u h,
−→v ) = c(−→u ,−→u ,−→v )− c(−→u h,

−→u h,
−→v ).

Theorem 5.2 Let (2.14) hold. Then there exist positive constants K1 and K2 such that

K1(∥
−→
ϕ ∥2V + ∥ψ∥2W ) ≤ ∥−→u −−→u h∥2V + ∥p− ph∥2W ≤ K2(∥

−→
ϕ ∥2V + ∥ψ∥2W ). (5.5)

Proof. See T.J. Oden, W. Wu, and M. Ainsworth [5].�

The local velocity space on each subdomain K ∈ P is

VK = {−→v ∈ H1(K)×H1(K) : −→v =
−→
0 on ∂Ω ∩ ∂K}, (5.6)

and the pressure space is

WK = L2(K). (5.7)

Let the bilinear forms aK : VK × VK −→ R, bK : VK ×WK −→ R, dK :WK ×WK −→ R, and
the trilinear form cK : VK × VK × VK −→ R

aK(−→u ,−→v ) = ν

∫
K

∇−→u .∇−→v +

∫
Γ∩ K

α −→u .−→v dx, bK(−→v , q) = −
∫
K

q(∇.−→v ) dx, dK(p, q) =

∫
K

p q dx,(5.8)
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cK(−→z ;−→u ,−→v ) =
∫
K

(−→z .∇−→u ).−→v dx. (5.9)

Given the continuous functional lK : VK −→ R

lK(−→v ) =
∫
K

−→
f .−→v dx. (5.10)

Hence for −→v ,−→w ∈ V and q ∈W we have

b(−→v , q) =
∑
K∈P

bK(−→v K , qK). (5.11)

a(−→v ,−→w ) =
∑
K∈P

aK(−→v K ,
−→wK). (5.12)

c(−→z ;−→u ,−→v ) =
∑
K∈P

cK(−→z K ,
−→u K ,

−→v K). (5.13)

l(−→v ) =
∑
K∈P

lK(−→v K). (5.14)

The velocity space V(P) is defined by

V (P ) =
∏
K∈P

VK . (5.15)

and the broken pressure space W (P ) is defined by

W (P ) = {q ∈
∏
K∈P

WK :

∫
Ω

q(x)dx = 0}. (5.16)

Examining the previous notations reveals that

W (P ) =W. (5.17)

We consider the space of continuous linear functional τ on V (P ) ×W (P ) that vanish on the

space V ×W .

Therefore, let H(div,Ω) denote the space

H(div,Ω) = {A ∈ L2(Ω)2×2 : div(A) ∈ L2(Ω)2}, (5.18)

equipped with norm

∥A∥H(div,Ω) = {∥A∥2L2(Ω) + ∥divA∥2L2(Ω)}
1
2 . (5.19)

Theorem 5.3 A continuous linear functional τ on the space V (P ))×W (P ) vanishes on the

space V ×W if and only if there exists A ∈ H(div,Ω) such that

τ [(−→v , q)] =
∑
K∈P

∮
∂K

−→nK .A.
−→v Kds, (5.20)

where −→nK denotes the unit outward normal vector on the boundary of K.

Proof. See M. Ainsworth and J. Oden [4].�
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It will be useful to introduce the stresslike tensor σ(−→v , q) formally defined to be

σij(
−→v , q) = ν

∂vi
∂xj

− qδij , (5.21)

Where δij is the Kronecker symbol.

In order to define the value of the normal component of the stress on the interelement boundaries

it is convenient to introduce notations for the jump on ΓKJ :

[[−→v .σ(−→v h, qh)]] =
−→nK .σ(

−→v h,K , qh,K) +−→n J .σ(
−→v h,J , qh,J). (5.22)

An averaged normal stress on ΓKJ is defined by

⟨−→nK .σ(
−→v h, qh)⟩ =

 α
(1)
KJ 0

0 α
(2)
KJ

−→nK .σ(
−→v h,K , qh,K) +

 α
(1)
JK 0

0 α(2)
JK

−→nK .σ(
−→v h,J , qh,J),(5.23)

where α
(i)
KJ : ΓKJ −→ R are smooth polynomial functions. Naturally, the stress should be

continuous then it is required that the averaged stress coincide with this value. On ΓKJ , we

have  α
(1)
KJ 0

0 α
(2)
KJ

+

 α
(1)
JK 0

0 α(2)
JK

 =

 1 0

0 1

 . (5.24)

The notation [[ . ]] is used to define jumps in the elements of V(P) between subdomains. We

define

[[−→v ]] =

 VK − VJ , K > J ,

VJ − VK , K < J ,
(5.25)

and

[[−→n ]] =

 −→nK −−→n J , K > J ,

−→n J −−→nK , K < J .
(5.26)

For −→v ∈ V (P ), we have∑
K∈P

∮
∂K

−→nK .σ(
−→u h, ph).

−→v ds =
∑
ΓKJ

∫
ΓKJ

⟨−→nK .σ(
−→u h, ph)⟩.[[−→v ]]ds. (5.27)

Lemma 1. There exists µ̂ ∈ H(div,Ω) such that

µ̂[(−→w , q)] =
∑
ΓKJ

∫
ΓKJ

⟨−→nK .σ(
−→u h, qh)⟩.[[−→w ]]ds, (5.28)

for all (−→w , q) ∈ V (P )×W (P ).

Proof. The right-hand side of equation (5.28) vanishes en V ×W . Applying theorem 3, we

obtain (5.28).

We define the linear functional R : V (P )×W (P ) −→ R by

R[(−→w , q)] =
∑
K∈P

{lk(−→w )− aK(−→u h,
−→w )− bK(−→w , ph)− bK(−→u h, q)− cK(−→u h,

−→u h,
−→w )}

+

∮
∂K

−→nK .σ(
−→u h, ph).

−→wKds− µ̂[(−→w , q)], (5.29)
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for all (−→w , q) ∈ V (P )×W (P ).

For (−→w , q) ∈ V ×W , we obtain

R[(−→w , q)] = a(
−→
ϕ ,−→w ) + d(ψ, q). (5.30)

Let the lagrangian functional L : V (P )×W (P )×H(div,Ω) −→ R such that

L[(−→w , q), µ] = 1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)]− µ[(−→w , q)], (5.31)

So that

supµ∈H(div,Ω)L[(
−→w , q), q] =

 1
2{a(

−→w ,−→w ) + d(q, q)} −R[(−→w , q)] if (−→w , q) ∈ V ×W,

= + ∝ otherwise,
(5.32)

and, for (−→w , q) ∈ V ×W ,

1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)] =

1

2
{a(−→w −

−→
ϕ ,−→w −

−→
ϕ ) + d(q − ψ, q − ψ)− a(

−→
ϕ ,

−→
ϕ )− d(ψ,ψ)}

≥ −1

2
{a(

−→
ϕ ,

−→
ϕ ) + d(ψ,ψ)}

= −1

2
(∥
−→
ϕ ∥2V + ∥ψ∥2W ). (5.33)

Therefore,

−1

2
(∥
−→
ϕ ∥2V + ∥ψ∥2W ) = inf(−→w,q)∈V (P )×W (P ) supµ∈H(div,Ω)L[(

−→w , q), µ]

= supµ∈H(div,Ω) inf(−→w,q)∈V (P )×W (P )L[(
−→w , q), µ]

≥ inf(−→w,q)∈V (P )×W (P )L[(
−→w , q), µ] (5.34)

=
∑
K∈P

inf−→wK∈VK
{1
2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(−→u h,

−→wK)

+bK(−→wK , ph) + cK(−→u h,
−→u h,

−→wK)−
∮
∂K

−→nK .σ(
−→u h, ph).

−→wKds−
1

2
dK(∇.−→u h,∇.−→u h)}.

Using (5.34), we obtain:

Theorem 5.4 Let JK : VK → R be a quadratic functional

JK(−→wK) =
1

2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(−→u h,

−→wK) + bK(−→wK , ph) + cK(−→u h,
−→u h,

−→wK)

−
∮
∂K

−→nK .σ(
−→u h, ph).

−→wKds. (5.35)

Then

∥
−→
ϕ ∥2V + ∥ψ∥2W ≤

∑
K∈P

{−2 inf−→wK∈VK
JK(−→wK) + dK(∇.−→u h,K ,∇.−→u h,K)}. (5.36)

�

We have the problems on each subdomain

inf−→wK∈VK
JK(−→wK). (5.37)

Suppose that the minimum exists, then the minimising element is characterized by finding
−→
ϕ K ∈ VK such that

a(
−→
ϕ K ,

−→v ) = lK(−→v )− aK(−→u h,
−→v )− bK(−→u , ph)− cK(−→u h,

−→u h,
−→v ) +

∮
∂K

⟨−→nK .σ(
−→u h, ph).

−→v ⟩ds,(5.38)
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for all −→v ∈ VK .

The necessary and sufficient conditions for the existence of a minimum are that the data satisfy

the following equilibration condition:

0 = lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph)− cK(−→u h,

−→u h,
−→
θ ) +

∮
∂K

⟨−→nK .σ(
−→u h, ph)⟩.

−→
θ ds, (5.39)

for all
−→
θ ∈ Ker[a, VK ],

where

Ker[a, VK ] = {
−→
θ ∈ VK : aK(−→w ,

−→
θ ) = 0 for all −→w ∈ VK}. (5.40)

When the subdomain K lies on the boundary ∂Ω the local problem (5.38) will be subject to a

homogeneous Dirichlet condition on a portion of their boundaries and thus will be automatically

well posed. However, elements away from the boundary are subject to pure Neumann conditions

and the null space of the operator a ( . , . ) will contain the rigid motions

Ker[a, VK ] = Span{
−→
θ 1,

−→
θ 2}, (5.41)

where
−→
θ 1 =

 1

0

 ,
−→
θ 2 =

 0

1

 . (5.42)

We construct data which satisfy the condition (5.39). We define λ
(1)
KJ 0

0 λ
(2)
KJ

 =

 λ
(1)
JK 0

0 λ
(2)
JK

− 1

2

 1 0

0 1

 . (5.43)

Using (5.21), we obtain λ
(1)
KJ 0

0 λ
(2)
KJ

+

 λ
(1)
JK 0

0 λ
(2)
JK

 =

 0 0

0 0

 . (5.44)

The averaged interelement stress may be rewritten

⟨−→nK .σ(
−→w h, qh)⟩ = ⟨−→nK .σ(

−→v h, qh)⟩ 1
2
+ [[−→n .σ(−→v h, qh)]]

 λ
(1)
KJ 0

0 λ
(2)
KJ

 , (5.45)

where ⟨−→nK .σ(
−→v h, qh)⟩ 1

2
denotes the interelement averaged stress obtained using the symmet-

rical weighting corresponding to α = 1
2 . Then

lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph)− cK(−→u h,

−→u h,
−→
θ ) +

∮
∂K

⟨−→nK .σ(
−→u h, ph)⟩.

−→
θ ds

= −
∑
J∈P

∫
ΓKJ

[[−→n .σ(−→v h, ph)]]

 λ
(1)
KJ 0

0 λ
(2)
KJ

−→
θ .ds, (5.46)

for all
−→
θ ∈ Ker[a, VK ].

Let {XA} be chosen so that: Span {XA} × Span{XA} ⊂ X and

∑
A

XA(x) = 1. (5.47)
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For example, one might choose the piecewise bilinear pyramid functions associated with interior

nodes in the partition. The relation (5.47) must hold at all points x contained in elements which

do not interest the boundary of the domain.

The functions λ
(k)
KJ : ΓKJ −→ R are chosen to be of the form

λ
(k)
KJ(s) =

∑
A

λ
(k)
KJ,AXA(s), (5.48)

where λkKJ,A are constants to be determined. Owing the constraint (5.44), it is required that

λkKJ,A + λ
(k)
JK,A = 0, (5.49)

for each A.

Lemma 2. Suppose that for each XA the constants {λ(k)KJ,A} satisfy

−
∑
J∈P

λ
(k)
KJ,Aρ

(k)
KJ,A = b

(k)
K,A, (5.50)

for k=1, 2, where

b
(k)
K,A = lK(XA

−→
θ k)− aK(−→u h, XA

−→
θ k)− bK(XA

−→
θ k, ph)− cK(−→u h,

−→u h, XA
−→
θ k)

+

∮
∂K

XA(s)⟨−→nK .σ(
−→u h, ph)⟩.

−→
θ kds, (5.51)

and

ρ
(k)
KJ,A =

∫
ΓKJ

[[−→n .σ(−→u h, ph)]].
−→
θ kds. (5.52)

Then

0 = lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph)− cK(−→u h,

−→u h,
−→
θ ) +

∮
∂K

⟨−→nK .σ(
−→u h, ph)⟩.

−→
θ ds, (5.53)

for all
−→
θ ∈ Ker[a, VK ].

Proof. The result follows immediately by using (5.50), (5.48) and 5.44).

Summarizing and incorporating the results of section 5 we have

Theorem 5.5 Let the conditions of Theorem 1 hold. Then there exists a constant C > 0 such

that

∥−→u −−→u h∥2V + ∥p− ph∥2W ≤ C
∑
K∈P

η2K , (5.54)

where

ηK = {aK(
−→
ϕ K ,

−→
ϕ K) + dK(∇.−→u h,∇.−→u h)}

1
2 . (5.55)

�
We define the global error estimator η by

η = (
∑
K∈P

η2K)
1
2 . (5.56)

We define the stress jump across edge or face E adjoining elements T and K

[[ν∇−→u h − ph
−→
I ]] = ((ν∇−→u h − ph

−→
I )|T − (ν∇−→u h − ph

−→
I )|K)−→n E,K ,
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where −→n E,K is the outward pointing normal.

We define the equidistributed stress jump operator

−→
R ∗

E =

 1
2 [|ν∇u⃗h − phI|] if E ∈ εh,Ω,

−→g − [α−→u h + (ν∇−→u h − phI)
−→n ] if E ∈ εh,Γ,

(5.57)

and the interior residuals

−→
RK = {

−→
f + ν∇2−→u h −−→u h.∇−→u h −∇ph}|K , (5.58)

and

RK = {∇.−→u h}|K . (5.59)

The element contribution ηr,K of the residual error estimator is given by

η2r,K = h2K∥
−→
RK∥20,K + ∥RK∥20,K +

∑
E∈∂K

hE∥
−→
R ∗

E∥20,E , (5.60)

and the global residual error estimator ηr is given by

ηr = (
∑

K∈P η2r,K)
1
2 .

Theorem 5.6 The estimator ηr,K is equivalent to the ηK estimator : there exist positive

constants c1 and C2 such that

c1 ηK ≤ ηr,K ≤ C2 ηK . (5.61)

Proof. Same steps of the prof of Theorem 3.9 in [44].

Theorem 5.7 There exist positive constant C ′ such that

∥−→u −−→u h∥2V + ∥p− ph∥2W ≤ C ′
∑
K∈P

η2r,K . (5.62)

6 Numerical examples

In this section some numerical results of calculations with finite element method and ADINA

system will be presented. Using our solver, we run the test problem driven cavity flow [37, 38,

39, 40, 41, 42, 43, ].

This is a classic test problem used in fluid dynamics, known as driven-cavity flow. It is a model

of the flow in a square cavity with the lid moving from left to right. Let the computational

model:

{y = 1,−1 ≤ x ≤ 1/ux = 1} a leaky cavity.

The streamlines are computed from the velocity solution by solving the Poisson equation nu-

merically subject to a zero Dirichlet boundary condition.
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Fig. 1. Uniform streamline plot with MFE (left), and uniform streamline plot computed

with ADINA system (right) using Q1 − P0 approximation, a 32× 32 square grid and Reynolds

number Re=100.

Fig. 2. Uniform streamline plot with MFE (left), and uniform streamline plot computed with

ADINA system (right) using Q1−P0 approximation, a 32×32 square grid and Reynolds number

Re=2000.

The solution shown in figure 1 corresponds to a Reynolds number of 100. The particles in

the body of the fluid move in a circular trajectory.
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Fig. 3. Velocity component u at vertical center line (left plot), and the velocity component v

at horizontal center line (right plot) with a 129× 129 grid and Re=100.

Fig. 4. Velocity component u at vertical center line (left plot), and the velocity component v

at horizontal center line (right plot) with a 129× 129 grid and Re=1000.

Fig. 5. Nonlinear convergence for Re = 600 with Q2 − P−1 (left), and and stabilized Q1 − P0

(right).
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Fig. 6. local Poisson problem error estimator η (left) and residual error estimator ηr (right) for

leaky driven cavity, with 32× 32 square grid and Re=600.

grid ∥−→u −−→u h∥V ηr η

8× 8 8.704739× 10−2 1.720480× 100 9.722432× 10−1

16× 16 3.115002× 10−2 1.084737× 100 5.052819× 10−1

32× 32 9.545524× 10−3 5.919904× 10−1 2.782035× 10−1

64× 64 2.676623× 10−3 3.160964× 10−1 1.220784× 10−1

Table 1. ηr is the residual error estimator and η is the local Poisson problem error estimator

for leaky driven cavity, with Reynolds number Re =600.

The solution shown in Figure 2 corresponds to a Reynolds number of 2000. The particles

in the body of the fluid move in a circular trajectory. Steady flow in a two dimensional cavity

is not stable for Reynolds number much greater than 104. Indeed, we have made calculations

for Reynolds number 104. In addition, our code does not converge because the turbulence phe-

nomena is not taken into account in our model. At a critical Reynolds number (approximately

13,000) the flow pattern develops into a time-periodic state with ”waves” running around the

cavity walls.

The profiles of the u-velocity component along the vertical center line and the v-velocity com-

ponent along the horizontal center line are shown in Figures 3 and 4 for Re=100 and Re=1000,

respectively.

In these figures, we have also included numerical predictions from [42] and ADINA system.

There is an excellent agreement between the computed results, those published in [42] and the

results computed with ADINA system.

Figure 5 show the evolution of the nonlinear residual norm, using a logarithmic scale, for the

simple Picard method, the Picard-Newton method and reduced rank extrapolation method

(RRE), for two types of finite element discretization: a high order Q2 −P−1 solution and a low

order Q1 − P0 solution. We observes that the RRE method can be seen to accelerate the the
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fixed-point (Picard) iteration.

The computational results of Figure 6 and Table 1 suggest that all two estimators seem to be

able to correctly indicate the structure of the error.

7 Conclusion

We were interested in this work in the numeric solution for two dimensional partial differen-

tial equations modelling (or arising from) model steady incompressible fluid flow with a new

boundary condition. It includes algorithms for discretization by finite element methods and

a posteriori error estimation of the computed solutions. We use a reduced rank extrapolation

method for computing numerical solutions of the steady-state Navier-Stokes equations. RRE is

an effective techniques that have been used in accelerating the convergence of vector sequences.

Two types of a posteriori error indicator are introduced and are shown to give global error es-

timates that are equivalent to the true discretization error. The computational results suggest

that all two estimators seem to be able to correctly indicate the structure of the error.
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