

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm

(3s.) **v. 36** 2 (2018): 199–229. ISSN-00378712 IN PRESS doi:10.5269/bspm.v36i2.31818

# Entropy Solutions For Nonlinear Parabolic Inequalities Involving Measure Data In Musielak-Orlicz-Sobolev Spaces

A.Talha, A. Benkirane, M.S.B. Elemine Vall

ABSTRACT: In this paper, we study an existence result of entropy solutions for some nonlinear parabolic problems in the Musielak-Orlicz-Sobolev spaces.

Key Words: Musielak-Orlicz-Sobolev spaces, parabolic equations, entropy solutions, truncations.

#### Contents

| L | Introduction                                    | 199 |
|---|-------------------------------------------------|-----|
| 2 | Preliminary 2.1 Musielak-Orlicz-Sobolev spaces: |     |
| 3 | Essential assumptions                           | 205 |
| 4 | Some technical Lemmas                           | 206 |
| 5 | Approximation and trace results                 | 209 |
| 3 | Compactness Results                             | 212 |
| 7 | Main results                                    | 214 |

## 1. Introduction

Let  $\Omega$  a bounded open subset of  $\mathbb{R}^N$  and let Q be the cylinder  $\Omega \times (0,T)$  with some given T > 0.

We consider the strongly nonlinear parabolic problem

onsider the strongly nonlinear parabolic problem 
$$(\mathfrak{P}) \begin{cases} \frac{\partial u}{\partial t} + A(u) + g(x,t,u,\nabla u) = f - \operatorname{div}(F) & \text{in } Q, \\ u \equiv 0 & \text{on } \partial Q = \partial \Omega \times [0,T] \\ u(\cdot,0) = u_0 & \text{on } \Omega, \end{cases}$$

where  $A: D(A) \subset W_0^{1,x}L_{\varphi}(Q) \longrightarrow W^{-1,x}L_{\psi}(Q)$  (see section 2) defined by A(u) = $-\operatorname{div}(a(x,t,u,\nabla u))$  is an operator of Leray-Lions type, where a is a Carathéodory function such that

$$\frac{|a(x,t,s,\xi)| \le \beta \left(h_1(x,t) + \psi_x^{-1} \gamma(x,\nu|s|) + \psi_x^{-1} \varphi(x,\nu|\xi|)\right)}{\left(h_1(x,t) + \psi_x^{-1} \gamma(x,\nu|s|) + \psi_x^{-1} \varphi(x,\nu|\xi|)\right)}$$

Submitted May 03, 2016. Published July 06, 2016

$$\left(a(x,t,s,\xi) - a(x,t,s,\xi')\right)(\xi - \xi') > 0$$
$$a(x,t,s,\xi).\xi \ge \alpha \varphi(x,|\xi|)$$

with  $h_1 \in L^1(Q)$ ,  $\beta, \nu, \alpha > 0$  and  $\gamma$  a Musielak function such that  $\gamma \ll \varphi$ . Let g be a Carathéodory function such that

$$|g(x,t,s,\xi)| \le b(|s|) \Big( h_2(x,t) + \varphi(x,|\xi|) \Big),$$
$$g(x,t,s,\xi)s \ge 0,$$

is satisfied, where b a positive function in  $L^1(\mathbb{R}^+)$  and  $h_2 \in L^1(Q)$ , and  $f \in L^1(Q)$  and  $F \in (E_{\psi}(Q))^N$ .

Under these assumptions, the above problem does not admit, in general, a weak solution since the field  $a(x,t,u,\nabla u)$  does not belong to  $(L^1_{loc}(Q))^N$  in general. To overcome this difficulty we use in this paper the framework of entropy solutions. This notion was introduced by Bénilan and al. [4] for the study of nonlinear elliptic problems.

In the classical Sobolev spaces, the authors in [9, 17] proved the existence of solutions for the problem ( $\mathcal{P}$ ) in the case where  $F \equiv 0$ , in [7] the authors had proved the existence of solutions for the problem ( $\mathcal{P}$ ) in the elliptic case.

In the setting of Orlicz spaces, the solvability of  $(\mathcal{P})$  was proved by Donaldson [10] and Robert [18], and by Elmahi [12] and Elmahi-Meskine [13]. In Musielak framework, recently M. L. Ahmed Oubeid, A. Benkirane and M. Sidi El Vally in [2] had studied the problem  $(\mathcal{P})$  in the Inhomogeneous case and the data belongs to  $L^1(Q)$ , in the elliptic case the authors in [1] proved the existence of weak solutions for the problem  $(\mathcal{P})$  where the data assume to be measure and  $g \equiv 0$ .

It is our purpose in this paper to prove the existence of entropy solutions for problem  $(\mathcal{P})$  in the setting of Musielak Orlicz spaces for general Musielak function  $\varphi$  with a nonlinearity  $g(x,t,u,\nabla u)$  having natural growth with respect to the gradient.

Our result generalizes that of [13, 1, 2] to the case of inhomogeneous Musielak Orlicz Sobolev spaces.

The plan of the paper is as follows. Section 2 presents the mathematical preliminaries. Section 3 we make precise all the assumptions on a, g, f and  $u_0$ . Section 4 is devoted to some technical lemmas with be used in this paper. Section 5 we establish some compactness and approximation results. Final section is consecrate to define the entropy solution of  $(\mathcal{P})$  and to prove existence of such a solution.

## 2. Preliminary

In this section we list briefly some definitions and facts about Musielak-Orlicz-Sobolev spaces. Standard reference is [16]. We also include the definition of inhomogeneous Musielak-Orlicz-Sobolev spaces and some preliminaries Lemmas to be used later.

#### 2.1. Musielak-Orlicz-Sobolev spaces:

Let  $\Omega$  be an open set in  $\mathbb{R}^N$  and let  $\varphi$  be a real-valued function defined in  $\Omega \times \mathbb{R}_+$ , and satisfying the following conditions:

- a)  $\varphi(x,\cdot)$  is an N-function (convex, increasing, continuous,  $\varphi(x,0)=0, \varphi(x,t)>0$ ,  $\forall t>0$ ,  $\sup_{x\in\Omega}\frac{\varphi(x,t)}{t}\longrightarrow 0$  as  $t\longrightarrow 0$ ,  $\inf_{x\in\Omega}\frac{\varphi(x,t)}{t}\longrightarrow \infty$  as  $t\longrightarrow \infty$ ).
- **b)**  $\varphi(\cdot,t)$  is a measurable function.

A function  $\varphi$ , which satisfies the conditions a) and b) is called Musielak-Orlicz function.

For a Musielak-orlicz function  $\varphi$  we put  $\varphi_x(t) = \varphi(x,t)$  and we associate its non-negative reciprocal function  $\varphi_x^{-1}$ , with respect to t that is

$$\varphi_x^{-1}(\varphi(x,t)) = \varphi(x,\varphi_x^{-1}(t)) = t.$$

The Musielak-orlicz function  $\varphi$  is said to satisfy the  $\Delta_2$ -condition if for some k > 0 and a non negative function h integrable in  $\Omega$ , we have

$$\varphi(x, 2t) \le k\varphi(x, t) + h(x) \text{ for all } x \in \Omega \text{ and } t \ge 0.$$
 (2.1)

When (2.1) holds only for  $t \geq t_0 > 0$ ; then  $\varphi$  said to satisfy  $\Delta_2$  near infinity. Let  $\varphi$  and  $\gamma$  be two Musielak-orlicz functions, we say that  $\varphi$  dominate  $\gamma$ , and we write  $\gamma \prec \varphi$ , near infinity (resp. globally) if there exist two positive constants c and  $t_0$  such that for almost all  $x \in \Omega$ 

$$\gamma(x,t) \le \varphi(x,ct)$$
 for all  $t \ge t_0$ , (resp. for all  $t \ge 0$  i.e.  $t_0 = 0$ ).

We say that  $\gamma$  grows essentially less rapidly than  $\varphi$  at 0 (resp. near infinity), and we write  $\gamma \prec \prec \varphi$ , If for every positive constant c we have

$$\lim_{t \to 0} \left( \sup_{x \in \Omega} \frac{\gamma(x, ct)}{\varphi(x, t)} \right) = 0, \quad \text{(resp. } \lim_{t \to \infty} \left( \sup_{x \in \Omega} \frac{\gamma(x, ct)}{\varphi(x, t)} \right) = 0 \text{)}.$$

**Remark 2.1.** [6] If  $\gamma \prec \prec \varphi$  near infinity, then  $\forall \varepsilon > 0$  there exist  $k(\varepsilon) > 0$  such that for almost all  $x \in \Omega$  we have

$$\gamma(x,t) \le k(\varepsilon)\varphi(x,\varepsilon t), \quad \text{for all } t \ge 0.$$
 (2.2)

We define the functional

$$\rho_{\varphi,\Omega}(u) = \int_{\Omega} \varphi(x, |u(x)|) dx.$$

where  $u:\Omega \longrightarrow \mathbb{R}$  a Lebesgue measurable function. In the following, the measurability of a function  $u:\Omega \longrightarrow \mathbb{R}$  means the Lebesgue measurability. The set

$$K_{\varphi}(\Omega) = \left\{ u : \Omega \longrightarrow \mathbb{R} \text{ measurable} : \rho_{\varphi,\Omega}(u) < +\infty \right\}.$$

is called the generalized Orlicz class.

The Musielak-Orlicz space (or the generalized Orlicz spaces)  $L_{\varphi}(\Omega)$  is the vector space generated by  $K_{\varphi}(\Omega)$ , that is,  $L_{\varphi}(\Omega)$  is the smallest linear space containing the set  $K_{\varphi}(\Omega)$ .

Equivalently

$$L_{\varphi}(\Omega) = \left\{ u : \Omega \longrightarrow \mathbb{R} \text{ measurable} : \rho_{\varphi,\Omega}\left(\frac{u}{\lambda}\right) < +\infty, \text{ for some } \lambda > 0 \right\}.$$

Let

$$\psi(x,s) = \sup_{t \ge 0} \{ st - \varphi(x,t) \}.$$

that is,  $\psi$  is the Musielak-Orlicz function complementary to  $\varphi$  in the sens of Young with respect to the variable s.

We define in the space  $L_{\varphi}(\Omega)$  the following two norms

$$||u||_{\varphi,\Omega} = \inf \left\{ \lambda > 0 / \int_{\Omega} \varphi\left(x, \frac{|u(x)|}{\lambda}\right) dx \le 1 \right\}.$$

which is called the Luxemburg norm and the so called Orlicz norm by :

$$|||u|||_{\varphi,\Omega} = \sup_{||v||_{\psi} \le 1} \int_{\Omega} |u(x)v(x)| dx.$$

where  $\psi$  is the Musielak Orlicz function complementary to  $\varphi$ . These two norms are equivalent [16].

The closure in  $L_{\varphi}(\Omega)$  of the bounded measurable functions with compact support in  $\overline{\Omega}$  is denoted by  $E_{\varphi}(\Omega)$ . A Musielak function  $\varphi$  is called locally integrable on  $\Omega$  if  $\rho_{\varphi}(t\chi_E) < \infty$  for all t > 0 and all measurable  $E \subset \Omega$  with meas $(E) < \infty$ . Note that local integrability in the previous definition differs from the one used in  $L^1_{loc}(\Omega)$ , where we assume integrability over compact subsets.

**Lemma 2.1.** [15] Let  $\varphi$  a Musielak function which is locally integrable. Then  $E_{\varphi}(\Omega)$  is separable.

We say that sequence of functions  $u_n \in L_{\varphi}(\Omega)$  is modular convergent to  $u \in L_{\varphi}(\Omega)$  if there exists a constant  $\lambda > 0$  such that

$$\lim_{n \to \infty} \rho_{\varphi,\Omega} \left( \frac{u_n - u}{\lambda} \right) = 0.$$

For any fixed nonnegative integer m we define

$$W^{m}L_{\varphi}(\Omega) = \left\{ u \in L_{\varphi}(\Omega) : \forall |\alpha| \le m, \ D^{\alpha}u \in L_{\varphi}(\Omega) \right\}.$$

and

$$W^m E_{\varphi}(\Omega) = \left\{ u \in E_{\varphi}(\Omega) : \forall |\alpha| \le m, \ D^{\alpha} u \in E_{\varphi}(\Omega) \right\}.$$

where  $\alpha = (\alpha_1, ..., \alpha_n)$  with nonnegative integers  $\alpha_i$ ,  $|\alpha| = |\alpha_1| + ... + |\alpha_n|$  and  $D^{\alpha}u$  denote the distributional derivatives. The space  $W^m L_{\varphi}(\Omega)$  is called the Musielak Orlicz Sobolev space.

Let

$$\overline{\rho}_{\varphi,\Omega}(u) = \sum_{|\alpha| < m} \rho_{\varphi,\Omega} \Big( D^{\alpha} u \Big) \text{ and } \|u\|_{\varphi,\Omega}^m = \inf \Big\{ \lambda > 0 : \overline{\rho}_{\varphi,\Omega} \Big( \frac{u}{\lambda} \Big) \le 1 \Big\}$$

for  $u \in W^m L_{\varphi}(\Omega)$ , these functionals are a convex modular and a norm on  $W^m L_{\varphi}(\Omega)$ , respectively, and the pair  $\left(W^m L_{\varphi}(\Omega), \|\|_{\varphi,\Omega}^m\right)$  is a Banach space if  $\varphi$  satisfies the following condition [16]:

there exist a constant 
$$c > 0$$
 such that  $\inf_{x \in \Omega} \varphi(x, 1) \ge c$ . (2.3)

The space  $W^m L_{\varphi}(\Omega)$  will always be identified to a subspace of the product  $\prod_{|\alpha| < m} L_{\varphi}(\Omega) = \prod L_{\varphi}$ , this subspace is  $\sigma(\prod L_{\varphi}, \prod E_{\psi})$  closed.

We denote by  $\mathcal{D}(\Omega)$  the space of infinitely smooth functions with compact support in  $\Omega$  and by  $\mathcal{D}(\overline{\Omega})$  the restriction of  $\mathcal{D}(\mathbb{R}^N)$  on  $\Omega$ .

Let  $W_0^m L_{\varphi}(\Omega)$  be the  $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$  closure of  $\mathcal{D}(\Omega)$  in  $W^m L_{\varphi}(\Omega)$ .

Let  $W^m E_{\varphi}(\Omega)$  the space of functions u such that u and its distribution derivatives up to order m lie to  $E_{\varphi}(\Omega)$ , and  $W_0^m E_{\varphi}(\Omega)$  is the (norm) closure of  $\mathcal{D}(\Omega)$  in  $W^m L_{\varphi}(\Omega)$ .

The following spaces of distributions will also be used:

$$W^{-m}L_{\psi}(\Omega) = \left\{ f \in D'(\Omega); \ f = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha} \text{ with } f_{\alpha} \in L_{\psi}(\Omega) \right\}.$$

and

$$W^{-m}E_{\psi}(\Omega) = \left\{ f \in D'(\Omega); \ f = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha} \text{ with } f_{\alpha} \in E_{\psi}(\Omega) \right\}.$$

We say that a sequence of functions  $u_n \in W^m L_{\varphi}(\Omega)$  is modular convergent to  $u \in W^m L_{\varphi}(\Omega)$  if there exists a constant k > 0 such that

$$\lim_{n \to \infty} \overline{\rho}_{\varphi,\Omega} \left( \frac{u_n - u}{k} \right) = 0.$$

For  $\varphi$  and her complementary function  $\psi$ , the following inequality is called the Young inequality [16]:

$$ts \le \varphi(x,t) + \psi(x,s), \quad \forall t,s \ge 0, x \in \Omega.$$
 (2.4)

This inequality implies that

$$|||u|||_{\varphi,\Omega} \le \rho_{\varphi,\Omega}(u) + 1. \tag{2.5}$$

In  $L_{\varphi}(\Omega)$  we have the relation between the norm and the modular

$$||u||_{\varphi,\Omega} \le \rho_{\varphi,\Omega}(u) \text{ if } ||u||_{\varphi,\Omega} > 1.$$
 (2.6)

$$||u||_{\varphi,\Omega} \ge \rho_{\varphi,\Omega}(u) \text{ if } ||u||_{\varphi,\Omega} \le 1.$$
 (2.7)

For two complementary Musielak Orlicz functions  $\varphi$  and  $\psi$ , let  $u \in L_{\varphi}(\Omega)$  and  $v \in L_{\psi}(\Omega)$ , then we have the Hölder inequality [16]

$$\left| \int_{\Omega} u(x)v(x)dx \right| \le \|u\|_{\varphi,\Omega} \||v|\|_{\psi,\Omega}. \tag{2.8}$$

## 2.2. Inhomogeneous Musielak-Orlicz-Sobolev spaces:

Let  $\Omega$  a bounded open subset of  $\mathbb{R}^N$  and let  $Q = \Omega \times ]0, T[$  with some given T > 0. Let  $\varphi$  be a Musielak function. For each  $\alpha \in \mathbb{N}^N$ , denote by  $D_x^{\alpha}$  the distributional derivative on Q of order  $\alpha$  with respect to the variable  $x \in \mathbb{R}^N$ . The inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows.

$$W^{1,x}L_{\varphi}(Q) = \{ u \in L_{\varphi}(Q) : \forall |\alpha| \le 1 \ D_x^{\alpha}u \in L_{\varphi}(Q) \}$$

et

$$W^{1,x}E_{\varphi}(Q) = \{ u \in E_{\varphi}(Q) : \forall |\alpha| \le 1 \ D_x^{\alpha}u \in E_{\varphi}(Q) \}$$

The last space is a subspace of the first one, and both are Banach spaces under the norm

$$||u|| = \sum_{|\alpha| \le m} ||D_x^{\alpha} u||_{\varphi, Q}.$$

We can easily show that they form a complementary system when  $\Omega$  is a Lipschitz domain [5]. These spaces are considered as subspaces of the product space  $\Pi L_{\varphi}(Q)$  which has (N+1) copies. We shall also consider the weak topologies  $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$  and  $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$ . If  $u \in W^{1,x}L_{\varphi}(Q)$  then the function :  $t \longmapsto u(t) = u(t,\cdot)$  is defined on [0,T] with values in  $W^1L_{\varphi}(\Omega)$ . If, further,  $u \in W^{1,x}E_{\varphi}(Q)$  then this function is  $W^1E_{\varphi}(\Omega)$  valued and is strongly measurable. Furthermore the following imbedding holds::  $W^{1,x}E_{\varphi}(Q) \subset L^1(0,T;W^1E_{\varphi}(\Omega))$ . The space  $W^{1,x}L_{\varphi}(Q)$  is not in general separable, if  $u \in W^{1,x}L_{\varphi}(Q)$ , we can not conclude that the function u(t) is measurable on [0,T].

However, the scalar function  $t \mapsto ||u(t)||_{\varphi,\Omega}$  is in  $L^1(0,T)$ . The space  $W_0^{1,x}E_{\varphi}(Q)$  is defined as the (norm) closure in  $W^{1,x}E_{\varphi}(Q)$  of  $\mathcal{D}(Q)$ .

We can easily show as in [5] that when  $\Omega$  a Lipschitz domain then each element u of the closure of  $\mathcal{D}(Q)$  with respect of the weak \* topology  $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$  is limit, in  $W^{1,x}L_{\varphi}(Q)$ , of some subsequence  $(u_i) \subset \mathcal{D}(Q)$  for the modular convergence; i.e., there exists  $\exists \lambda > 0$  such that for all  $|\alpha| \leq 1$ ,

$$\int_{Q} \varphi(x, (\frac{D_x^{\alpha} u_i - D_x^{\alpha} u}{\lambda})) dx dt \to 0 \text{ as } i \to \infty,$$

this implies that  $(u_i)$  converges to u in  $W^{1,x}L_{\varphi}(Q)$  for the weak topology  $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$ . Consequently

 $\overline{\mathcal{D}(Q)}^{\sigma(\Pi L_{\varphi}, \Pi E_{\psi})} = \overline{\mathcal{D}(Q)}^{\sigma(\Pi L_{\varphi}, \Pi L_{\psi})}.$ 

this space will be denoted by  $W_0^{1,x}L_{\psi}(Q)$ . Furthermore,  $W_0^{1,x}E_{\varphi}(Q)=W_0^{1,x}L_{\varphi}(Q)\cap \Pi E_{\omega}$ .

We have the following complementary system

$$\begin{pmatrix} W_0^{1,x} L_{\varphi}(Q) & F \\ W_0^{1,x} E_{\varphi}(Q) & F_0 \end{pmatrix},$$

F being the dual space of  $W_0^{1,x}E_{\varphi}(Q)$ . It is also, except for an isomorphism, the quotient of  $\Pi L_{\psi}$  by the polar set  $W_0^{1,x}E_{\varphi}(Q)^{\perp}$ , and will be denoted by  $F=W^{-1,x}L_{\psi}(Q)$  and it is shown that

$$W^{-1,x}L_{\psi}(Q) = \left\{ f = \sum_{|\alpha| < 1} D_x^{\alpha} f_{\alpha} : f_{\alpha} \in L_{\psi}(Q) \right\}.$$

This space will be equipped with the usual quotient norm

$$||f|| = \inf \sum_{|\alpha| \le 1} ||f_{\alpha}||_{\psi,Q}$$

where the inf is taken on all possible decompositions

$$f = \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha}, \quad f_{\alpha} \in L_{\psi}(Q).$$

The space  $F_0$  is then given by

$$F_0 = \left\{ f = \sum_{|\alpha| \le 1} D_x^{\alpha} f_{\alpha} : f_{\alpha} \in E_{\psi}(Q) \right\}$$

and is denoted by  $F_0 = W^{-1,x} E_{\psi}(Q)$ .

# 3. Essential assumptions

Let  $\Omega$  be a bounded open subset of  $\mathbb{R}^N$  satisfying the segment property and T>0 we denote  $Q=\Omega\times[0,T]$ , and let  $\varphi$  and  $\gamma$  be two Musielak-Orlicz functions such that  $\gamma\prec\prec\varphi$ .

Let  $A: D(A) \subset W_0^{1,x}L_{\varphi}(Q) \longrightarrow W^{-1,x}L_{\psi}(Q)$  be a mapping given by

$$A(u) = -\operatorname{div}(a(x, t, u, \nabla u)),$$

where  $a:a(x,t,s,\xi):\Omega\times[0,t]\times\mathbb{R}\times\mathbb{R}^N\longrightarrow\mathbb{R}^N$  is a Carathéodory function satisfying, for a.e  $(x,t)\in Q$  and for all  $s\in\mathbb{R}$  and all  $\xi,\xi'\in\mathbb{R}^N,\,\xi\neq\xi'$ :

$$|a(x,t,s,\xi)| \le \beta \left( h_1(x,t) + \psi_x^{-1} \gamma(x,\nu|s|) + \psi_x^{-1} \varphi(x,\nu|\xi|) \right)$$
 (3.1)

$$\left(a(x,t,s,\xi) - a(x,t,s,\xi')\right)(\xi - \xi') > 0 \tag{3.2}$$

$$a(x,t,s,\xi).\xi \ge \alpha \varphi(x,|\xi|) \tag{3.3}$$

where c(x,t) a positive function,  $c(x,t) \in E_{\psi}(Q)$  and positive constants  $\nu, \alpha$ . Furthermore, let  $g(x,t,s,\xi): \Omega \times ]0, T[\times \mathbb{R} \times \mathbb{R}^N \longrightarrow \mathbb{R}$  be a Caratheodory function such that for a.e.  $(x,t) \in \Omega \times ]0, T[$  and for all  $s \in \mathbb{R}, \ \xi \in \mathbb{R}^N,$  the following conditions

$$|g(x,t,s,\xi)| \le b(|s|) \Big( h_2(x,t) + \varphi(x,|\xi|) \Big),$$
 (3.4)

$$g(x,t,s,\xi)s \ge 0, (3.5)$$

are satisfied, where  $b: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$  is a continuous positive function which belongs to  $L^1(\mathbb{R})$  and  $h_2(x,t) \in L^1(Q)$ .

$$f \in L^1(Q)$$
 and  $F \in (E_{\psi}(Q))^N$ . (3.6)

$$u_0 \in L^1(\Omega). \tag{3.7}$$

#### 4. Some technical Lemmas

**Lemma 4.1.** [5]. Let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^N$  and let  $\varphi$  and  $\psi$  be two complementary Musielak-Orlicz functions which satisfy the following conditions:

- i) There exist a constant c > 0 such that  $\inf_{x \in \Omega} \varphi(x, 1) \ge c$ .
- ii) There exist a constant A > 0 such that for all  $x, y \in \Omega$  with  $|x y| \le \frac{1}{2}$  we have

$$\frac{\varphi(x,t)}{\varphi(y,t)} \le t^{\left(\frac{A}{\log\left(\frac{1}{|x-y|}\right)}\right)}, \quad \forall t \ge 1.$$
(4.1)

iii) If 
$$D \subset \Omega$$
 is a bounded measurable set, then  $\int_{\Omega} \varphi(x,1)dx < \infty$ . (4.2)

iv) There exist a constant C > 0 such that  $\psi(x, 1) \leq C$  a.e in  $\Omega$ .

Under this assumptions,  $\mathcal{D}(\Omega)$  is dense in  $L_{\varphi}(\Omega)$  with respect to the modular topology,  $\mathcal{D}(\Omega)$  is dense in  $W_0^1 L_{\varphi}(\Omega)$  for the modular convergence and  $\mathcal{D}(\overline{\Omega})$  is dense in  $W^1 L_{\varphi}(\Omega)$  the modular convergence.

Consequently, the action of a distribution S in  $W^{-1}L_{\psi}(\Omega)$  on an element u of  $W_0^1L_{\varphi}(\Omega)$  is well defined. It will be denoted by < S, u >.

**Lemma 4.2.** [6]. Let  $F: \mathbb{R} \longrightarrow \mathbb{R}$  be uniformly Lipschitzian, with F(0) = 0. Let  $\varphi$  be a Musielak- Orlicz function and let  $u \in W_0^1 L_{\varphi}(\Omega)$ . Then  $F(u) \in W_0^1 L_{\varphi}(\Omega)$ . Moreover, if the set D of discontinuity points of F' is finite, we have

$$\frac{\partial}{\partial x_i} F(u) = \left\{ \begin{array}{l} F'(u) \frac{\partial u}{\partial x_i} \ a.e \ in \ \{x \in \Omega : u(x) \in D\}. \\ 0 \quad a.e \ in \ \{x \in \Omega : u(x) \not\in D\}. \end{array} \right.$$

**Lemma 4.3.** Let  $(f_n), f \in L^1(\Omega)$  such that

- i)  $f_n \geq 0$  a.e in  $\Omega$ .
- ii)  $f_n \longrightarrow f$  a.e in  $\Omega$
- iii)  $\int_{\Omega} f_n(x) dx \longrightarrow \int_{\Omega} f(x) dx$ .

then  $f_n \longrightarrow f$  strongly in  $L^1(\Omega)$ .

**Lemma 4.4** (Jensen inequality). [19]. Let  $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$  a convex function and g  $: \Omega \longrightarrow \mathbb{R}$  is function measurable, then

$$\varphi\left(\int_{\Omega} g \ d\mu\right) \leq \int_{\Omega} \varphi \circ g \ d\mu.$$

Lemma 4.5 (Poincaré inequality). [11].Let  $\varphi$  a Musielak Orlicz function which satisfies the assumptions of lemma 4.1, suppose that  $\varphi(x,t)$  decreases with respect of one of coordinate of x.

Then, that exists a constant c > 0 depends only of  $\Omega$  such that

$$\int_{\Omega} \varphi(x, |u(x)|) dx \le \int_{\Omega} \varphi(x, c|\nabla u(x)|) dx, \quad \forall u \in W_0^1 L_{\varphi}(\Omega). \tag{4.3}$$

**Proof** Since  $\varphi(x,t)$  decreases with respect to one of coordinates of x, there exists  $i_0 \in \{1, ..., N\}$  such that the function  $\sigma \longrightarrow \varphi(x_1, ..., x_{i_0-1}, \sigma, x_{i_0+1}, ..., x_N, t)$  is decreasing for every  $x_1, ..., x_{i_0-1}, x_{i_0+1}, ..., x_N \in \mathbb{R}$  and  $\forall t > 0$ .

To prove our result, it suffices to show that

$$\int_{\Omega} \varphi(x, |u(x)|) dx \le \int_{\Omega} \varphi\left(x, 2d \left| \frac{\partial u}{\partial x_{i_0}}(x) \right| \right) dx, \quad \forall u \in W_0^1 L_{\varphi}(\Omega).$$
 (4.4)

with  $d = \max (\operatorname{diam}(\Omega), 1)$  and  $\operatorname{diam}(\Omega)$  is the diameter of  $\Omega$ .

First, suppose that  $u \in \mathcal{D}(\Omega)$ , then so by the Jensen integral inequality we obtain

$$\varphi(x, |u(x_1, ..., x_N)|) 
\leq \varphi\left(x, \int_{-\infty}^{x_{i_0}} \left| \frac{\partial u}{\partial x_{i_0}} \right| (x_1, ..., x_{i_0-1}, \sigma, x_{i_0+1}, ..., x_N) d\sigma\right), 
\leq \frac{1}{d} \int_{-\infty}^{+\infty} \varphi\left(x, d \left| \frac{\partial u}{\partial x_{i_0}} \right| (x_1, ..., x_{i_0-1}, \sigma, x_{i_0+1}, ..., x_N)\right) d\sigma 
\leq \frac{1}{d} \int_{-\infty}^{+\infty} f(\sigma) d\sigma,$$

where  $f(\sigma) = \varphi\Big(x_1,...,x_{i_0-1},\sigma,x_{i_0+1},...,x_N,d\Big|\frac{\partial u}{\partial x_{i_0}}\Big|(x_1,...,x_{i_0-1},\sigma,x_{i_0+1},...,x_N)\Big).$ By integrating with respect to x, we get

$$\int_{\Omega} \varphi(x, |u(x_1, ..., x_N)|) dx$$

$$\leq \int_{\Omega} \frac{1}{d} \int_{-\infty}^{+\infty} f(\sigma) d\sigma dx,$$

since  $\varphi\left(x_1,...,x_{i_0-1},\sigma,x_{i_0+1},...,x_N,d\Big|\frac{\partial u}{\partial x_{i_0}}\Big|(x_1,...,x_{i_0-1},\sigma,x_{i_0+1},...,x_N)\right)$  independent of  $x_{i_0}$ , we can get it out of the integral to respect of  $x_{i_0}$  and by the fact that  $\sigma$  is arbitrary, then by Fubini's Theorem we get

$$\int_{\Omega} \varphi(x, |u(x)|) dx \le \int_{\Omega} \varphi\left(x, d \left| \frac{\partial u}{\partial x_{i_0}} \right| (x) \right) dx, \quad \forall u \in \mathcal{D}(\Omega).$$
 (4.5)

For  $u \in W_0^1 L_{\varphi}(\Omega)$  according to Lemma 4.1, we have the existence of  $u_n \in \mathcal{D}(\Omega)$  and  $\lambda > 0$  such that

$$\overline{\varrho}_{\varphi,\Omega}\left(\frac{u_n-u}{\lambda}\right) = 0, \quad \text{as } n \longrightarrow +\infty,$$

hence

$$\begin{cases} \int_{\Omega} \varphi \left( x, \frac{|u_n - u|}{\lambda} \right) dx \longrightarrow 0, & \text{as } n \longrightarrow +\infty, \\ \int_{\Omega} \varphi \left( x, \frac{|\nabla u_n - \nabla u|}{\lambda} \right) dx \longrightarrow 0, & \text{as } n \longrightarrow +\infty, \\ u_n \longrightarrow u & \text{a.e in } \Omega, & \text{( for a subsequence still denote } u_n \text{)}. \end{cases}$$

Then, we have

$$\begin{split} \int_{\Omega} \varphi \Big( x, \frac{|u(x)|}{2d\lambda} \Big) dx & \leq & \liminf_{n \to +\infty} \int_{\Omega} \varphi \Big( x, \frac{|u_n(x)|}{2d\lambda} \Big) dx \\ & \leq & \liminf_{n \to +\infty} \int_{\Omega} \varphi \Big( x, \frac{1}{2\lambda} \Big| \frac{\partial u_n}{\partial x_{i_0}}(x) \Big| \Big) dx \\ & = & \liminf_{n \to +\infty} \int_{\Omega} \varphi \Big( x, \frac{1}{2\lambda} \Big| \frac{\partial u_n}{\partial x_{i_0}}(x) - \frac{\partial u}{\partial x_{i_0}}(x) + \frac{\partial u}{\partial x_{i_0}}(x) \Big| \Big) dx \\ & \leq & \frac{1}{2} \liminf_{n \to +\infty} \int_{\Omega} \varphi \Big( x, \frac{1}{\lambda} \Big| \frac{\partial u_n}{\partial x_{i_0}}(x) - \frac{\partial u}{\partial x_{i_0}}(x) \Big| \Big) dx \\ & + & \frac{1}{2} \int_{\Omega} \varphi \Big( x, \frac{1}{\lambda} \Big| \frac{\partial u}{\partial x_{i_0}}(x) \Big| \Big) dx \\ & \leq & \int_{\Omega} \varphi \Big( x, \frac{1}{\lambda} \Big| \frac{\partial u}{\partial x_{i_0}}(x) \Big| \Big) dx. \end{split}$$

Hence

$$\int_{\Omega} \varphi\Big(x,|u(x)|\Big) dx \leq \int_{\Omega} \varphi\Big(x,2d\Big|\frac{\partial u}{\partial x_{i_0}}(x)\Big|\Big) dx, \quad \forall u \in W_0^1 L_{\varphi}(\Omega).$$

**Lemma 4.6** (The Nemytskii Operator). Let  $\Omega$  be an open subset of  $\mathbb{R}^N$  with finite measure and let  $\varphi$  and  $\psi$  be two Musielak Orlicz functions. Let  $f: \Omega \times \mathbb{R}^p \longrightarrow \mathbb{R}^q$ be a Carathodory function such that for a.e.  $x \in \Omega$  and all  $s \in \mathbb{R}^p$ :

$$|f(x,s)| \le c(x) + k_1 \psi_x^{-1} \varphi(x, k_2|s|).$$
 (4.6)

where  $k_1$  and  $k_2$  are real positives constants and  $c(.) \in E_{\psi}(\Omega)$ .

Then the Nemytskii Operator  $N_f$  defined by  $N_f(u)(x) = f(x, u(x))$  is continuous from

$$\mathcal{P}\Big(E_{\varphi}(\Omega), \frac{1}{k_2}\Big)^p = \prod \left\{ u \in L_{\varphi}(\Omega) : d(u, E_{\varphi}(\Omega)) < \frac{1}{k_2} \right\}.$$

into  $(L_{\psi}(\Omega))^q$  for the modular convergence.

Furthermore if  $c(\cdot) \in E_{\gamma}(\Omega)$  and  $\gamma \prec \prec \psi$  then  $N_f$  is strongly continuous from  $\mathcal{P}\left(E_{\varphi}(\Omega), \frac{1}{k_2}\right)^p$  to  $(E_{\gamma}(\Omega))^q$ 

## 5. Approximation and trace results

In this section,  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^N$  with the segment property and I is a subinterval of  $\mathbb{R}$  (both possibly unbounded) and  $Q = \Omega \times I$ . It is easy to see that Q also satisfies Lipschitz domain. We say that  $u_n \longrightarrow u$  in  $W^{-1,x}L_{\psi}(Q) + L^{2}(Q)$  for the modular convergence if we can write

$$u_n = \sum_{|\alpha| \le 1} D_x^{\alpha} u_n^{\alpha} + u_n^0 \text{ and } u = \sum_{|\alpha| \le 1} D_x^{\alpha} u^{\alpha} + u^0,$$

with  $u_n^{\alpha} \longrightarrow u^{\alpha}$  in  $L_{\psi}(Q)$  for the modular convergence for all  $|\alpha| \leq 1$ , and  $u_n^0 \longrightarrow u^0$ strongly in  $L^2(Q)$ . We shall prove the following approximation theorem, which plays a fundamental role when the existence of solutions for parabolic problems is proved. [2] Let  $\varphi$  be an Musielak-Orlicz function satisfies the assumption (4.1). If  $u \in W^{1,x}L_{\varphi}(Q)$  (respectively  $u \in W_0^{1,x}L_{\varphi}(Q)$ ) and  $\frac{\partial u}{\partial t} \in W^{-1,x}L_{\psi}(Q) + L^1(Q)$ , then there exists a sequence  $(v_j) \in \mathcal{D}(\overline{Q})$  (respectively  $\mathcal{D}(\overline{I}, \mathcal{D}(\Omega))$ ) such that  $v_j \longrightarrow u$  in  $W^{1,x}L_{\varphi}(Q)$  and  $\frac{\partial v_j}{\partial t} \longrightarrow \frac{\partial u}{\partial t}$  in  $W^{-1,x}L_{\psi}(Q) + L^1(Q)$  for the modular

**Lemma 5.1.** [2] Let  $a < b \in \mathbb{R}$  and let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^N$ . Then

$$\left\{ u \in W_0^{1,x} L_{\varphi}(\Omega \times ]a, b[) : \frac{\partial u}{\partial t} \in W^{-1,x} L_{\psi}(\Omega \times ]a, b[) + L^1(\Omega \times ]a, b[) \right\}$$

is a subset of  $\mathfrak{C}(]a,b[,L^1(\Omega))$ .

In order to deal with the time derivative, we introduce a time mollification of a function  $u \in W_0^{1,x} L_{\varphi}(Q)$ .

Thus we define, for all  $\mu > 0$  and all  $(x, t) \in Q$ 

$$u_{\mu}(x,t) = \int_{-\infty}^{t} \tilde{u}(x,\sigma) \exp(\mu(\sigma - t)) d\sigma$$
 (5.1)

where  $\tilde{u}(x,t) = u(x,t)\chi_{[0,T]}(t)$ .

Throughout the paper the index i always indicates this mollification.

**Lemma 5.2.** [2] If  $u \in L_{\varphi}(Q)$  then  $u_{\mu}$  is measurable in Q and  $\frac{\partial u_{\mu}}{\partial t} = \mu(u - u_{\mu})$  and if  $u \in K_{\varphi}(Q)$  then

$$\int_{Q} \varphi(x, u_{\mu}) dx dt \le \int_{Q} \varphi(x, u) dx dt.$$

**Lemma 5.3.** 1. If  $u \in L_{\varphi}(Q)$  then  $u_{\mu} \longrightarrow u$  for the modular convergence in  $L_{\varphi}(Q)$  as  $\mu \longrightarrow \infty$ .

2. If  $u \in W_0^{1,x}L_{\varphi}(Q)$  then  $u_{\mu} \longrightarrow u$  for the modular convergence in  $W_0^{1,x}L_{\varphi}(Q)$  as  $\mu \longrightarrow \infty$ .

#### Proof

1. Let  $(v_k)_k \subset \mathcal{D}(Q)$  such that  $v_k \longrightarrow u$  in  $L_{\varphi}(Q)$  for the modular convergence. Let  $\lambda > 0$  large enough such that

$$\frac{u}{\lambda} \in K_{\varphi}(Q), \quad \int_{Q} \varphi\left(x, \frac{|v_k - u|}{\lambda}\right) dx dt \longrightarrow 0 \text{ as } k \longrightarrow +\infty.$$

On the one hand, for a.e  $(x,t) \in Q$ , we have

$$\left| (v_k)_{\mu}(x,t) - v_k(x,t) \right| = \frac{1}{\mu} \left| \frac{\partial v_k}{\partial t}(x,t) \right| \le \left\| \frac{\partial v_k}{\partial t} \right\|_{L^{\infty}(Q)}$$

On the other hand, one has

$$\int_{Q} \varphi\left(x, \frac{|u_{\mu} - u|}{3\lambda}\right) dxdt \leq \frac{1}{3} \int_{Q} \varphi\left(x, \frac{|u_{\mu} - (v_{k})_{\mu}|}{\lambda}\right) dxdt 
+ \frac{1}{3} \int_{Q} \varphi\left(x, \frac{|(v_{k})_{\mu} - v_{k}|}{\lambda}\right) dxdt 
+ \frac{1}{3} \int_{Q} \varphi\left(x, \frac{|v_{k} - u|}{\lambda}\right) dxdt 
\leq \frac{1}{3} \int_{Q} \varphi\left(x, \frac{|(u - v_{k})_{\mu}|}{\lambda}\right) dxdt 
+ \frac{1}{3} \int_{Q} \varphi\left(x, \frac{|(v_{k})_{\mu} - v_{k}|}{\lambda}\right) dxdt 
+ \frac{1}{3} \int_{Q} \varphi\left(x, \frac{|v_{k} - u|}{\lambda}\right) dxdt.$$

This implies that

$$\int_{Q} \varphi\left(x, \frac{|u_{\mu} - u|}{3\lambda}\right) dx dt \leq \frac{2}{3} \int_{Q} \varphi\left(x, \frac{|v_{k} - u|}{\lambda}\right) dx dt + \int_{Q} \varphi\left(x, \frac{1}{\lambda \mu} \left\|\frac{\partial v_{k}}{\partial t}\right\|_{L^{\infty}(Q)}\right) dx dt.$$

Let  $\varepsilon > 0$  there exists  $k_0 > 0$  such that  $\forall k > k_0$ , we have

$$\int_{Q} \varphi\left(x, \frac{|v_k - u|}{\lambda}\right) dx dt < \varepsilon$$

and there exists  $\mu_0>0$  such that  $\forall \mu>\mu_0$  and for all  $k>k_0$ 

$$\frac{1}{\lambda \mu} \left\| \frac{\partial v_k}{\partial t} \right\|_{L^{\infty}(Q)} \le 1$$

Then, we get

$$\int_{Q} \varphi\left(x, \frac{|u_{\mu} - u|}{3\lambda}\right) dx dt \leq \varepsilon + \frac{1}{\lambda \mu} \left\| \frac{\partial v_{k}}{\partial t} \right\|_{L^{\infty}(Q)} T \int_{\Omega} \varphi(x, 1) dx dt$$

Finely, by using (iii) of Lemma 4.1 and by letting  $\mu \longrightarrow +\infty$ , there exits  $\mu_1 > 0$  such that

$$\int_{Q} \varphi\left(x, \frac{|u_{\mu} - u|}{3\lambda}\right) dx dt \le \varepsilon, \quad \text{for all } \mu > \mu_{1}.$$

2. Since for all indice  $\alpha$  such that  $|\alpha| \leq 1$ , we have  $D_x^{\alpha}(u_{\mu}) = (D_x^{\alpha}u)_{\mu}$ , consequently, the first part above applied on each  $D_x^{\alpha}u$ , gives the result.

**Remark 5.1.** If  $u \in E_{\varphi}(Q)$ , we can choose  $\lambda$  arbitrary small since  $\mathcal{D}(Q)$  is

(norm) dense in  $E_{\varphi}(Q)$ . Thus, for all  $\lambda > 0$ , we have

$$\int_{\Omega} \varphi\left(x, \frac{|u_{\mu} - u|}{\lambda}\right) dx dt \quad \text{as } \mu \longrightarrow +\infty.$$

and  $u_{\mu} \longrightarrow u$  strongly in  $E_{\varphi}(Q)$ . Idem for  $W^{1,x}E_{\varphi}(Q)$ .

**Lemma 5.4.** If  $u_n \longrightarrow u$  in  $W_0^{1,x}L_{\varphi}(Q)$  strongly (resp., for the modular convergence), then  $(u_n)_{\mu} \longrightarrow u_{\mu}$  strongly (resp., for the modular convergence).

**Proof** For all  $\lambda > 0$  (resp., for some  $\lambda > 0$ ),

$$\int_{O} \varphi\left(x, \frac{|D_{x}^{\alpha}((u_{n}))_{\mu} - D_{x}^{\alpha}(u)_{\mu}|}{\lambda}\right) dx dt \longrightarrow \int_{O} \varphi\left(x, \frac{|D_{x}^{\alpha}u_{n} - D_{x}^{\alpha}u|}{\lambda}\right) dx dt \longrightarrow 0,$$

as  $n \longrightarrow +\infty$ . Then  $(u_n)_{\mu} \longrightarrow u_{\mu}$  in  $W^{1,x}L_{\varphi}(Q)$  strongly (resp., for the modular convergence).

#### 6. Compactness Results

For each h > 0, define the usual translated  $\tau_h f$  of the function f by  $\tau_h f(t) = f(t+h)$ .

If f is defined on [0,T] then  $\tau_h f$  is defined on [-h,T-h].

First of all, recall the following compactness results proved by the authors in [2].

**Lemma 6.1.** Let  $\varphi$  be a Musielak function. Let Y be a Banach space such that the following continuous imbedding holds  $L^1(\Omega) \subset Y$ . Then for all  $\varepsilon > 0$  and all  $\lambda > 0$ , there is  $C_{\varepsilon} > 0$  such that for all  $u \in W_0^{1,x}L_{\varphi}(Q)$  with  $\frac{|\nabla u|}{\lambda} \in K_{\varphi}(Q)$ , we have

$$||u||_1 \le \varepsilon \lambda \left( \int_Q \varphi\left(x, \frac{|\nabla u|}{\lambda}\right) dx dt + T \right) + C_\varepsilon ||u||_{L^1(0, T, Y)}.$$

**Proof** Since  $W_0^1 L_{\varphi}(\Omega) \subset L^1(\Omega)$  with compact imbedding, then for all  $\varepsilon > 0$ , there is  $C_{\varepsilon} > 0$  such that for all  $v \in W_0^1 L_{\varphi}(\Omega)$ 

$$||v||_{L^1(\Omega)} \le \varepsilon ||\nabla u||_{L_{\omega}(\Omega)} + C_{\varepsilon} ||v||_{Y}. \tag{6.1}$$

Indeed, if the above assertion holds false, there is  $\varepsilon_0 > 0$  and  $v_n \in W_0^1 L_{\varphi}(\Omega)$  such that

$$||v_n||_{L^1(\Omega)} \ge \varepsilon_0 ||\nabla v_n||_{L_{\omega}(\Omega)} + n||v_n||_Y.$$

This gives, by setting  $w_n = \frac{v_n}{\|\nabla v_n\|_{L_{\varphi}(\Omega)}}$ 

$$||w_n||_{L^1(\Omega)} \ge \varepsilon_0 + n||w_n||_Y, \quad ||\nabla w_n||_{L_{\infty}(\Omega)} = 1.$$

Since  $(w_n)_n$  is bounded in  $W_0^1 L_{\varphi}(\Omega)$  then for a subsequence

$$w_n \to w$$
 in  $W_0^1 L_{\varphi}(\Omega)$  for  $\sigma(\Pi L_{\varphi}, \Pi E_{\psi})$  and strongly in  $L^1(\Omega)$ .

Thus,  $||w_n||_{L^1(\Omega)}$  is bounded and  $||w_n||_Y \to 0$  as  $n \to +\infty$ .

We conclude  $w_n \to 0$  in Y and that w = 0 implying that  $\varepsilon_0 \le ||w_n||_{L^1(\Omega)} \to 0$ , a contradiction.

Using v = u(t) in (6.1) for all  $u \in W_0^{1,x}L_{\varphi}(Q)$  with  $\frac{|\nabla u|}{\lambda} \in K_{\varphi}(Q)$  and a.e.  $t \in [0,T]$ , we have

$$||u(t)||_{L^1(\Omega)} \le \varepsilon ||\nabla u(t)||_{L_{\omega}(\Omega)} + C_{\varepsilon} ||u(t)||_{Y}.$$

Since  $\int_Q \varphi\left(x, \frac{|\nabla u(x,t)|}{\lambda}\right) dx dt < \infty$ , we have thanks to Fubini's theorem  $\int_\Omega \varphi\left(x, \frac{|\nabla u(x,t)|}{\lambda}\right) dx < \infty$  for a.e.  $t \in [0,T]$  and then

$$\|\nabla u(t)\|_{L_{\varphi}(\Omega)} \le \lambda \left( \int_{\Omega} \varphi\left(x, \frac{|\nabla u(x,t)|}{\lambda}\right) dx + 1 \right),$$

which implies that

$$||u(t)||_{L_{\varphi}(\Omega)} \le \varepsilon \lambda \left( \int_{\Omega} \varphi\left(x, \frac{|\nabla u(x,t)|}{\lambda}\right) dx + 1 \right) + C_{\varepsilon} ||u(t)||_{Y}.$$

Integrating this over [0, T] yields

$$||u||_1 \le \varepsilon \lambda \left( \int_{\Omega} \varphi\left(x, \frac{|\nabla u|}{\lambda}\right) dx dt + T \right) + C_{\varepsilon} ||u||_{L^1(0, T, Y)}.$$

We also prove the following lemma which allows us to enlarge the space Y whenever necessary.

**Lemma 6.2.** If F is bounded in  $W_0^{1,x}L_{\varphi}(Q)$  and is relatively compact in  $L^1(0,T,Y)$  then F is relatively compact in  $L^1(Q)$  (and also in  $E_{\gamma}(Q)$  for all Musielak function  $\gamma \ll \varphi$ ).

**Proof** Let  $\varepsilon > 0$  be given. Let C > 0 be such that  $\int_Q \varphi\left(x, \frac{|\nabla f|}{C}\right) dx dt \leq 1$  for all  $f \in F$ 

By the previous lemma, there exists  $C_{\varepsilon} > 0$  such that for all  $u \in W_0^1 L_{\varphi}(Q)$  with  $\frac{|\nabla u|}{C} \in K_{\varphi}(Q)$ ,

$$||u||_{L^1(Q)} \le \frac{2\varepsilon C}{4C(1+T)} \left( \int_{\Omega} \varphi\left(x, \frac{|\nabla u|}{2C}\right) dx + T \right) + C_{\varepsilon} ||u||_{L^1(0,T,Y)}.$$

Moreover, there exists a finite sequence  $(f_i)_i$  in F satisfying

$$\forall f \in F, \ \exists f_i \text{ such that } \|f - f_i\|_{L^1(0,T,Y)} \le \frac{\varepsilon}{2C_{\varepsilon}}.$$

So that,

$$||f - f_i||_{L^1(Q)} \le \frac{\varepsilon}{2(1+T)} \left( \int_Q \varphi\left(x, \frac{|\nabla f - \nabla f_i|}{2C} dx dt + T\right) + C_\varepsilon ||f - f_i||_{L^1(0,T,Y)} \le \varepsilon. \right)$$

and hence F is relatively compact in  $L^1(Q)$ .

Since  $\gamma \ll \varphi$  then by using Vitali's theorem, it is easy to see that F is relatively compact in  $E_{\gamma}(Q)$ .

**Remark 6.1.** If  $F \subset L^1(0,T,B)$  is such that  $\left\{\frac{\partial f}{\partial t}: f \in F\right\}$  is bounded in  $F \subset L^1(0,T,B)$  then  $\|\tau_h f - f\|_{L^1(0,T,B)} \longrightarrow 0$  as  $h \longrightarrow 0$  uniformly with respect to  $f \in F$ .

**Lemma 6.3.** Let  $\varphi$  be a Musielak function. If F is bounded in  $W^{1,x}L_{\varphi}(Q)$  and  $\left\{\frac{\partial f}{\partial t}: f \in F\right\}$  is bounded in  $W^{-1,x}L_{\psi}(Q)$ , then F is relatively compact in  $L^1(Q)$ .

**Proof** Let  $\gamma$  and  $\theta$  be Musielak functions such that  $\gamma \ll \varphi$  and  $\theta \ll \varphi$  near infinity.

For all  $0 < t_1 < t_2 < T$  and all  $f \in F$ , we have

$$\left\| \int_{t_1}^{t_2} f(t)dt \right\|_{W_0^1 E_{\gamma}(\Omega)} \leq \int_0^T \|f(t)\|_{W_0^1 E_{\gamma}(\Omega)} dt$$

$$\leq C_1 \|f\|_{W_0^{1,x} E_{\gamma}(Q)}$$

$$\leq C_2 \|f\|_{W_0^{1,x} E_{\varphi}(Q)}$$

$$\leq C$$

where we have used the following continuous imbedding

$$W_0^{1,x}L_{\varphi}(Q) \subset W_0^{1,x}E_{\gamma}(Q) \subset L^1(0,T,W_0^1L_{\varphi}(\Omega)).$$

Since the imbedding  $W_0^1 L_{\gamma}(\Omega) \subset L^1(\Omega)$  is compact we deduce that  $(\int_{t_1}^{t_2} f(t)dt)_{f \in F}$ is relatively compact in  $L^1(\Omega)$  and  $W^{-1,1}(\Omega)$  as well.

On the other hand,  $\left\{\frac{\partial f}{\partial t}: f \in F\right\}$  is bounded in  $W^{-1,x}L_{\psi}(Q)$  and  $L^{1}(0,T,W^{-1,1}(\Omega))$ as well, since

$$W^{-1,x}L_{\psi}(Q) \subset W^{-1,x}E_{\theta}(Q) \subset L^1(0,T,W^{-1}E_{\theta}(\Omega)) \subset L^1(0,T,W^{-1,1}(\Omega)),$$

By Remark 3 of [12], we deduce that with continuous imbedding.  $\|\tau_h f - f\|_{L^1(0,T,W^{-1,1}(\Omega))} \longrightarrow 0$  uniformly in  $f \in F$  when  $h \longrightarrow +\infty$  and by using Theorem 2 of [12], F is relatively compact in  $L^1(0,T,W^{-1,1}(\Omega))$ . Since  $L^1(\Omega) \subset W^{-1,1}(\Omega)$  with continuous imbedding we can apply Lemma 6.2 to conclude that F is relatively compact in  $L^1(Q)$ .

**Lemma 6.4.** Let  $\varphi$  be a Musielak function. Let  $(u_n)_n$  be a sequence of  $W^{1,x}L_{\varphi}(Q)$  such that

$$u_n \rightharpoonup u$$
 weakly in  $W^{1,x}L_{\varphi}(Q)$  for  $\sigma(\Pi L_{\varphi}, \Pi L_{\psi})$ 

and

$$\frac{\partial u_n}{\partial t} = h_n + k_n \text{ in } \mathcal{D}'(Q)$$

with  $(h_n)_n$  bounded in  $W^{-1,x}L_{\psi}(Q)$  and  $(k_n)_n$  bounded in the space  $\mathcal{M}(Q)$  set of measures on Q.

then  $u_n \longrightarrow u$  strongly in  $L^1_{loc}(Q)$ . If further  $u_n \in W_0^{1,x} L_{\varphi}(Q)$  then  $u_n \longrightarrow u$  strongly in  $L^1(Q)$ .

**Proof** It is easily adapted from that given in [8] by using Theorem 4.4 and Remark 4.3 instead of Lemma 8 of [20].

#### 7. Main results

For k > 0 we define the truncation at height  $k: T_k : \mathbb{R} \longrightarrow \mathbb{R}$  by:

$$T_k(s) = \begin{cases} s & \text{if } |s| \le k. \\ k \frac{s}{|s|} & \text{if } |s| > k. \end{cases}$$
 (7.1)

We note also

$$S_k(r) = \int_0^r T_k(\sigma) d\sigma = \begin{cases} \frac{r^2}{2} & \text{if } |r| \le k, \\ k|r| - \frac{r^2}{2} & \text{if } |r| > k. \end{cases}$$
 (7.2)

We define

$$T_0^{1,\varphi}(Q) = \left\{u:\Omega \longrightarrow \mathbb{R} \ \text{ measurable such that } T_k(u) \in W_0^{1,x}L_\varphi(Q) \ \forall k>0 \right\}$$

We consider the following boundary value problem

$$(\mathcal{P}) \begin{cases} \frac{\partial u}{\partial t} + A(u) + g(x, t, u, \nabla u) = f - \operatorname{div}(F) & \text{in } Q, \\ u \equiv 0 & \text{on } \partial Q = \partial \Omega \times [0, T], \\ u(\cdot, 0) = u_0 & \text{on } \Omega. \end{cases}$$

We will prove the following existence theorem

Let  $\Omega$  be a bounded Lipschitz domain in  $\mathbb{R}^N$ ,  $\varphi$  and  $\psi$  be two complementary Musielak-Orlicz functions satisfying the assumptions of Lemma 4.1 and  $\varphi(x,t)$  decreases with respect to one of coordinate of x, we assume also that (3.1)-(3.6) and (3.7) hold true. Then the problem  $(\mathcal{P})$  has at least one entropy solution of the following sense

$$\begin{cases} u \in T_0^{1,\varphi}(Q) \cap W_0^{1,x} L_{\varphi}(Q), \ S_k(u) \in L^1(Q), \ g(.,u,\nabla u) \in L^1(Q) \\ \int_{\Omega} S_k(u(T) - v(T)) dx + \left\langle \frac{\partial v}{\partial t}, T_k(u - v) \right\rangle + \int_{Q} a(x,t,u,\nabla u) \cdot \nabla T_k(u - v) dx dt \\ + \int_{Q} g(x,t,u,\nabla u) T_k(u - v) dx dt \\ \leq \int_{Q} f T_k(u - v) dx dt + \int_{Q} F \cdot \nabla T_k(u - v) dx dt + \int_{\Omega} S_k(u_0 - v(0)) dx \\ \forall v \in W_0^{1,x} L_{\varphi}(Q) \cap L^{\infty}(Q) \text{ such that } \frac{\partial v}{\partial t} \in W^{-1,x} L_{\psi}(Q) + L^1(Q). \end{cases}$$

Proof

#### Step 1: Approximate problems

Consider the following approximate problem

$$(\mathfrak{P}_n) \left\{ \begin{array}{ll} u_n \in W_0^{1,x} L_\varphi(Q), & u_n(.,0) = u_{0n} \text{ in } \partial Q = \partial \Omega \times [0,T], \\ \frac{\partial u_n}{\partial t} - \operatorname{div}(a(x,t,u_n,\nabla u_n)) + g_n(x,t,u_n,\nabla u_n) = f_n - \operatorname{div}(F) & \text{in } Q, \end{array} \right.$$

where we have set  $g_n(x,t,s,\xi) = T_n(g(x,t,s,\xi))$ . Moreover, the sequence  $(f_n) \subset \mathcal{D}(Q)$  is such that  $f_n \longrightarrow f$  strongly in  $L^1(Q)$  and  $||f_n||_{L^1(Q)} \leq ||f||_{L^1(Q)}$  and  $(u_{0n}) \subset \mathcal{D}(\Omega)$  is such that  $u_{0n} \longrightarrow u_0$  strongly in  $L^1(\Omega)$  and  $||u_{0n}||_{L^1(\Omega)} \leq ||u_0||_{L^1(\Omega)}$ . Thanks to theorem 5.1 of [2], there exists at least one solution  $u_n$  of problem  $(\mathcal{P}_n)$ .

#### Step 2 : A priori estimates

In this section we denote by  $c_i$ , i = 1, 2, ... a constants not depends on k and n. For k > 0, consider the test function  $T_k(u_n)$  in  $(\mathcal{P}_n)$ , we have

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{k}(u_{n}) dx dt + \int_{Q} a(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \cdot \nabla T_{k}(u_{n}) dx dt 
+ \int_{Q} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{k}(u_{n}) dx dt 
= \int_{Q} f_{n} T_{k}(u_{n}) dx dt + \int_{Q} F \cdot \nabla T_{k}(u_{n}) dx dt 
\leq ||f||_{L^{1}(Q)} k + \int_{Q} F \cdot \nabla T_{k}(u_{n}) dx dt.$$
(7.3)

On the one hand, let  $0 , (where <math>\alpha$  is the constant of (3.3)), then by using the Young's inequality, we have

$$\int_{Q} F \cdot \nabla T_{k}(u_{n}) dx dt = \int_{Q} \frac{1}{p} F \cdot p \nabla T_{k}(u_{n}) dx dt$$

$$\leq \int_{Q} \psi\left(x, \frac{1}{p} |F|\right) dx dt$$

$$+ p \int_{Q} \varphi\left(x, |\nabla T_{k}(u_{n})|\right) dx dt. \tag{7.4}$$

Combining (7.3) and (7.4), we obtain

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{k}(u_{n}) dx dt + \int_{Q} a(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \cdot \nabla T_{k}(u_{n}) dx dt + \int_{Q} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{k}(u_{n}) dx dt \leq c_{1}k + c_{2} + p \int_{Q} \varphi \Big( x, |\nabla T_{k}(u_{n})| \Big) dx dt. (7.5)$$

Using now (3.5) and (3.3) which implies that

$$\int_{Q} \frac{\partial u_n}{\partial t} T_k(u_n) dx dt + \frac{\alpha - p}{\alpha} \int_{Q} a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx dt \le c_1 k + c_2.$$
(7.6)

In other hand, the first term of the left hand side of the last inequality, reads as

$$\int_{Q} \frac{\partial u_n}{\partial t} T_k(u_n) dx dt = \int_{\Omega} S_k(u_n(T)) dx - \int_{\Omega} S_k(u_{0n}) dx,$$

Hence

$$\int_{\Omega} S_k(u_n(T)) dx + \frac{\alpha - p}{\alpha} \int_{Q} a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx dt$$

$$\leq c_1 k + c_2 + \int_{\Omega} S_k(u_{0n}) dx.$$

Using the fact that  $S_k(\sigma) > 0$ ,  $|S_k(u_{0n}| \le k|u_{0n}|$ , then (7.6) can be write as

$$\frac{\alpha - p}{\alpha} \int_{Q} a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdot \nabla T_k(u_n) dx dt \le c_3 k + c_2.$$
 (7.7)

Hence by using (3.3), we have

$$\int_{Q} \varphi(x, |\nabla T_k(u_n)|) dx dt \le c_4 k + c_5.$$

By using the Lemma 4.5, we have

$$\int_{Q} \varphi\left(x, \frac{|T_k(u_n)|}{c}\right) dx \le \int_{Q} \varphi\left(x, |\nabla T_k(u_n)|\right) dx \le c_4 k + c_5, \tag{7.8}$$

where c is the constant of Lemma 4.5.

Then  $(T_k(u_n))_n$  and  $(\nabla T_k(u_n))_n$  are bounded in  $L_{\varphi}(\Omega)$ , hence  $(T_k(u_n))_n$  is bounded in  $W_0^1 L_{\varphi}(\Omega)$ , there exist some  $v_k \in W_0^1 L_{\varphi}(\Omega)$  such that

$$\begin{cases}
T_k(u_n) \rightharpoonup v_k \text{ weakly in } W_0^1 L_{\varphi}(\Omega) \text{ for } \sigma(\Pi L_{\varphi}, \Pi E_{\psi}) \\
T_k(u_n) \longrightarrow v_k \text{ strongly in } E_{\varphi}(\Omega).
\end{cases}$$
(7.9)

Step 3: Convergence in measure of  $(u_n)_n$ 

Let k > 0 large enough, by using (7.8), we have

$$meas\{|u_n| > k\} \le \frac{1}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \int_{\{|u_n| > k\}} \varphi(x, \frac{k}{\lambda}) dx dt$$

$$\le \frac{1}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \int_{Q} \varphi(x, \frac{1}{\lambda} |T_k(u_n)|) dx dt$$

$$\le \frac{c_4 k + c_5}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \quad \forall n, \quad \forall k \ge 0.$$

Where  $c_4$  is a constant not dependent on k, hence

$$meas\{|u_n| > k\} \le \frac{c_4k + c_5}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \longrightarrow 0 \text{ as } k \longrightarrow \infty.$$

For every  $\lambda > 0$  we have

$$meas\{|u_{n} - u_{m}| > \lambda\} \le meas\{|u_{n}| > k\} + meas\{|u_{m}| > k\} + meas\{|T_{k}(u_{n}) - T_{k}(u_{m})| > \lambda\}.$$
 (7.10)

Consequently, by (7.8) we can assume that  $(T_k(u_n))_n$  is a Cauchy sequence in measure in Q.

Let  $\varepsilon > 0$ , then by (7.10) there exists some  $k = k(\varepsilon) > 0$  such that

$$meas\{|u_n - u_m| > \lambda\} < \varepsilon$$
, for all  $n, m \ge h_0(k(\varepsilon), \lambda)$ .

Which means that  $(u_n)_n$  is a Cauchy sequence in measure in Q, thus converge almost every where to some measurable functions u. Then

$$\begin{cases}
T_k(u_n) \rightharpoonup T_k(u) & \text{weakly in } W_0^{1,x} L_{\varphi}(Q) \text{ for } \sigma(\Pi L_{\varphi}, \Pi E_{\psi}) \\
T_k(u_n) \longrightarrow T_k(u) & \text{strongly in } E_{\varphi}(Q).
\end{cases}$$
(7.11)

Step 4: Boundedness of  $(a(\cdot,\cdot,T_k(u_n),\nabla T_k(u_n)))_n$  in  $(L_{\psi}(Q))^N$ 

Let  $w \in (E_{\varphi}(Q)^N)$  be arbitrary such that  $||w||_{\varphi,Q} \leq 1$ , by (3.2) we have

$$\left(a(x,t,T_k(u_n),\nabla T_k(u_n)) - a(x,t,T_k(u_n),\frac{w}{\nu})\right)(\nabla T_k(u_n) - \frac{w}{\nu}) > 0.$$

hence

$$\int_{Q} a(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \frac{w}{\nu} dx dt \leq \int_{Q} a(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \nabla T_{k}(u_{n}) dx dt \\
- \int_{Q} a(x, t, T_{k}(u_{n}), \frac{w}{\nu}) (\nabla T_{k}(u_{n}) - \frac{w}{\nu}) dx dt.$$
(7.12)

Thanks to (7.7), we have

$$\int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) dx dt \le c_3 k + c_2.$$

On the other hand, for  $\lambda$  large enough  $(\lambda > \beta)$ , we have by using (3.1).  $\int_{\Omega} \psi_x \left( \left| \frac{a(x, t, T_k(u_n), \frac{w}{\nu})}{3\lambda} \right| \right) dx dt$ 

$$\int_{Q} \psi_{x} \left( \left| \frac{a(x, t, T_{k}(u_{n}), \frac{w}{\nu})}{3\lambda} \right| \right) dx dt$$

$$\leq \int_{Q} \psi_{x} \left( \frac{\beta \left( d(x) + \psi_{x}^{-1}(\gamma(x, \nu | T_{k}(u_{n})|)) + \psi_{x}^{-1}(\varphi(x, |w|)) \right)}{3\lambda} \right) dxdt$$

$$\leq \frac{\beta}{\lambda} \int_{Q} \psi_{x} \left( \frac{h_{1}(x, t) + \psi_{x}^{-1}(\gamma(x, \nu | T_{k}(u_{n})|)) + \psi_{x}^{-1}(\varphi(x, |w|))}{3} \right) dxdt$$

$$\leq \frac{\beta}{3\lambda} \left( \int_{Q} \psi_{x}(h_{1}(x, t)) dxdt + \int_{Q} \gamma(x, \nu | T_{k}(u_{n})|) dxdt + \int_{Q} \varphi(x, |w|) dxdt \right)$$

$$\leq \frac{\beta}{3\lambda} \left( \int_{Q} \psi_{x}(h_{1}(x, t)) dxdt + \int_{Q} \gamma(x, \nu k) dxdt + \int_{Q} \varphi(x, |w|) dxdt \right).$$

Now, since  $\gamma$  grows essentially less rapidly than  $\varphi$  near infinity ad by using the Remark 2.1, there exists r(k) > 0 such that  $\gamma(x, \nu k) \le r(k)\varphi(x, 1)$  and so we have

$$\int_{O} \psi_{x} \left( \frac{a(x, t, T_{k}(u_{n}), \frac{w}{\nu})}{3\lambda} \right) dxdt$$

$$\leq \frac{\beta}{3\lambda} \bigg( \int_{Q} \psi_{x}(h_{1}(x,t)) dx dt + r(k) \int_{Q} \varphi(x,1) dx dt + \int_{Q} \varphi(x,|w|) dx dt \bigg).$$

hence  $a(x, t, T_k(u_n), \frac{w}{\nu})$  is bounded in  $(L_{\psi}(Q))^N$ .

Which implies that second term of the right hand side of (7.12) is bounded, consequently we obtain

$$\int_{Q} a(x, t, T_k(u_n), \nabla T_k(u_n)) w dx dt \le c_6(k), \quad \text{ for all } w \in (L^{\varphi}(Q))^N \text{ with } ||w||_{\varphi, Q} \le 1.$$

Hence by the theorem of Banach Steinhous the sequence  $(a(x,t,T_k(u_n),\nabla T_k(u_n)))_n$  remains bounded in  $(L_{\psi}(Q))^N$ .

Which implies that, for all k > 0 there exists a function  $h_k \in (L_{\psi}(Q))^N$  such that

$$a(x, t, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup h_k$$
 weakly-star in  $(L_{\psi}(Q))^N$  for  $\sigma(\Pi L_{\psi}, \Pi E \varphi)$ . (7.13)

# Step 5: Modular convergence of truncations

For the sake of simplicity, we will write only  $\varepsilon(n, j, \mu, s)$  to mean all quantities (possibly different) such that

$$\lim_{n \to +\infty} \lim_{j \to +\infty} \lim_{\mu \to +\infty} \lim_{s \to +\infty} \varepsilon(n, j, \mu, s) = 0.$$

Since  $T_k(u) \in W_0^{1,x}L_{\varphi}(Q)$  then there exists a sequence  $(\alpha_k^j) \subset D(Q)$  such that  $(\alpha_k^j) \longrightarrow T_k(u)$  for the modular convergence in  $W_0^{1,x}L_{\varphi}(Q)$ . For the remaining of this article,  $\chi_s$  and  $\chi_{j,s}$  will denoted respectively the characteristic functions of the sets  $Q_s = \{(x,t) \in Q : |\nabla T_k(u(x,t))| \leq s\}$  and  $Q_{j,s} = \{(x,t) \in Q : |\nabla T_k(\alpha_k^j(x,t))| \leq s\}$ .

Taking now  $T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})$  as test function in  $(\mathcal{P}_n)$ , we get

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
+ \int_{Q} a(x, t, u_{n}, \nabla u_{n}) \cdot \nabla T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
+ \int_{Q} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
\leq ||f||_{1} \eta + \int_{\{|T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu})| < \eta\}} F \cdot \nabla T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt.$$

Let 0 , by Young's inequality, we have

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt + \int_{Q} a(x, t, u_{n}, \nabla u_{n}) \cdot \nabla T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
+ \int_{Q} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
\leq ||f||_{1} \eta + \int_{\{|T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt 
+ p \int_{Q} \varphi(x, |\nabla T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu})|) dx dt.$$

Using now (3.3) on the last term of the last inequality, we get

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt + \int_{Q} a(x, t, u_{n}, \nabla u_{n}) \cdot \nabla T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
+ \int_{Q} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt 
\leq ||f||_{1} \eta + \int_{\{|T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt 
+ \frac{p}{\alpha} \int_{Q} a(x, t, T_{k+\eta}(u_{n}), \nabla T_{k+\eta}(u_{n})) \nabla u_{n} dx dt.$$

Which implies that,

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt \qquad (7.14)$$

$$+ \frac{\alpha - p}{\alpha} \int_{Q} a(x, t, T_{k+\eta}(u_{n}), \nabla T_{k+\eta}(u_{n})) \nabla u_{n} dx dt$$

$$+ \int_{Q} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt$$

$$\leq c_{1} \eta + \int_{\{|T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt. \qquad (7.15)$$

The first term of the left hand side of the last equality reads as

$$\int_{Q} \frac{\partial u_{n}}{\partial t} T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt = \int_{Q} \left( \frac{\partial u_{n}}{\partial t} - \frac{\partial T_{k}(\alpha_{k}^{j})_{\mu}}{\partial t} \right) T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt + \int_{Q} \frac{\partial T_{k}(\alpha_{k}^{j})_{\mu}}{\partial t} T_{\eta}(u_{n} - T_{k}(\alpha_{k}^{j})_{\mu}) dx dt.$$

The second term of the last equality can be easily to see that is positive and the third term can be written as

$$\int_{Q} \frac{\partial T_k(\alpha_k^j)_{\mu}}{\partial t} T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt = \mu \int_{Q} (T_k(\alpha_k^j) - T_k(\alpha_k^j)_{\mu}) T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt,$$

thus by letting  $n, j \longrightarrow +\infty$ , and since  $(\alpha_k^j) \longrightarrow T_k(u)$  a.e. in Q and by using Lebesgue Theorem,

$$\int_{Q} (T_k(\alpha_k^j) - T_k(\alpha_k^j)_{\mu}) T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt = \int_{Q} (T_k(u) - T_k(u)_{\mu}) \cdots$$
$$\cdots T_{\eta}(u - T_k(u)_{\mu}) dx dt + \varepsilon(n, j).$$

Consequently

$$\int_{\Omega} \frac{\partial T_k(\alpha_k^j)_{\mu}}{\partial t} T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt \ge \varepsilon(n, j).$$

Then, (7.14) can be write as

$$\frac{\alpha - p}{\alpha} \int_{Q} a(x, t, u_n, \nabla u_n) T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt 
+ \int_{Q} g_n(x, t, u_n, \nabla u_n) T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt \le c_1 \eta 
+ \int_{\{|T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt + \varepsilon(n, j).$$
(7.16)

On the other hand,

$$\begin{split} &\int_{Q}a(x,t,u_{n},\nabla u_{n})T_{\eta}(u_{n}-T_{k}(\alpha_{k}^{j})_{\mu})dxdt\\ &=\int_{\{|u_{n}-T_{k}(\alpha_{k}^{j})_{\mu}|<\eta\}}a(x,t,T_{k}(u_{n}),\nabla T_{k}(u_{n}))(\nabla T_{k}(u_{n})-\nabla T_{k}(\alpha_{k}^{j})_{\mu}\chi_{j,s})dxdt\\ &+\int_{\{|u_{n}|>k\}\cap\{|u_{n}-T_{k}(\alpha_{k}^{j})_{\mu}|<\eta\}}a(x,t,u_{n},\nabla u_{n})\cdot\nabla u_{n}dxdt\\ &-\int_{\{|u_{n}|>k\}\cap\{|u_{n}-T_{k}(\alpha_{k}^{j})_{\mu}|<\eta\}}a(x,t,u_{n},\nabla u_{n})\cdot\nabla T_{k}(\alpha_{j}^{k})_{\mu}\chi_{\{|\nabla T_{k}(\alpha_{j}^{k})|>s\}}dxdt \end{split}$$

Thus, by using the fact that

$$\int_{\{|u_n|>k\}\cap\{|u_n-T_k(\alpha_j^i)_\mu|<\eta\}} a(x,t,u_n,\nabla u_n)\cdot \nabla u_n dx dt \geq 0$$

We have

$$\frac{\alpha - p}{\alpha} \int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt 
+ \int_Q g_n(x, t, u_n, \nabla u_n) T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt 
\leq c_1 \eta + \int_{\{|T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt 
+ \frac{\alpha - p}{\alpha} \int_{\{|u_n| > k\} \cap \{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{|\nabla T_k(\alpha_j^k)| > s\}} dx dt 
+ \varepsilon(n, j)$$
(7.17)

Now, using (3.5) and the fact that  $T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})$  has the same sign of  $u_n$  on

the set  $\{|u_n| > k\}$ , we get

$$\frac{\alpha - p}{\alpha} \int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt 
+ \int_{\{|u_n| \le k\}} g_n(x, t, u_n, \nabla u_n) T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu}) dx dt 
\leq c_1 \eta + \int_{\{|T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt 
+ \frac{\alpha - p}{\alpha} \int_{\{|u_n| > k\} \cap \{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{|\nabla T_k(\alpha_j^k)| > s\}} dx dt 
+ \varepsilon(n, j)$$
(7.18)

Hence, by using (3.4), we get

$$\frac{\alpha - p}{\alpha} \int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt$$

$$\leq c_1 \eta + \int_{\{|T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt$$

$$+ \frac{\alpha - p}{\alpha} \int_{\{|u_n| > k\} \cap \{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{|\nabla T_k(\alpha_j^k)| > s\}} dx dt$$

$$+ \varepsilon(n, j)$$

$$+ \int_{\{|u_n| \leq k\}} b_k \Big( h_2(x, t) + \varphi(x, |\nabla T_k(u_n)|) \Big) |T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| dx dt, \tag{7.19}$$

where  $b_k = \sup\{b(s) : |s| \le k\}.$ 

Using now (7.8), there exists a constant  $c_3 > 0$  depends on k such that

$$\int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt$$

$$\leq c_3 \eta + \int_{\{|T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt$$

$$+ \int_{\{|u_n| > k\} \cap \{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, u_n, \nabla u_n) \cdot \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{|\nabla T_k(\alpha_j^k)| > s\}} dx dt$$

$$+ \varepsilon(n, j). \tag{7.20}$$

Since  $a(x, t, T_{k+\eta}(u_n), \nabla T_{k+\eta}(u_n)) \rightharpoonup h_{k+\eta}$  weakly-star in  $(L_{\psi}(Q))^N$  for  $\sigma(\Pi L_{\psi}, \Pi E_{\varphi})$ ,

then

$$\begin{split} &\int_{\{|u_n|>k\}\cap\{|u_n-T_k(\alpha_k^j)_\mu|<\eta\}} a(x,t,u_n,\nabla u_n)\cdot\nabla T_k(\alpha_j^k)_\mu\chi_{\{|\nabla T_k(\alpha_j^k)|>s\}} dxdt \\ &=\int_{\{|u|>k\}\cap\{|u-T_k(\alpha_k^j)_\mu|<\eta\}} h_{k+\eta}\cdot\nabla T_k(\alpha_j^k)_\mu\chi_{\{|\nabla T_k(\alpha_j^k)|>s\}} dxdt + \varepsilon(n). \end{split}$$

Now, letting j to infinity, we obtain

$$\int_{\{|u_n|>k\}\cap\{|u_n-T_k(\alpha_k^j)_{\mu}|<\eta\}} a(x,t,u_n,\nabla u_n) \cdot \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{|\nabla T_k(\alpha_j^k)|>s\}} dx dt 
= \int_{\{|u|>k\}\cap\{|u-T_k(u)_{\mu}|<\eta\}} h_{k+\eta} \cdot \nabla T_k(u)_{\mu} \chi_{\{|\nabla T_k(u)|>s\}} dx dt + \varepsilon(n,j).$$

Hence, we get

$$\int_{\{|u_n|>k\}\cap\{|u_n-T_k(\alpha_k^j)_{\mu}|<\eta\}} a(x,t,u_n,\nabla u_n) \cdot \nabla T_k(\alpha_j^k)_{\mu} \chi_{\{|\nabla T_k(\alpha_j^k)|>s\}} dxdt$$

$$= \int_{\{|u|>k\}\cap\{|u-T_k(u)|<\eta\}} h_{k+\eta} \cdot \nabla T_k(u) \chi_{\{|\nabla T_k(u)|>s\}} dxdt + \varepsilon(n,j,\mu)$$

$$= \varepsilon(n,j,\mu,s).$$

Then (7.20) becomes

$$\int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt$$

$$\leq c_3 \eta + \int_{\{|T_{\eta}(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt + \varepsilon(n, j, \mu, s). \tag{7.21}$$

On the other hand, remark that

$$\int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt$$

$$= \int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j) \chi_{j,s}) dx dt$$

$$+ \int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) \cdots$$

$$\cdots (\nabla T_k(\alpha_k^j) \chi_{j,s} - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt \qquad (7.22)$$

for the second term of the last inequality, we have obviously that

$$\int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(\alpha_j^k) - \nabla T_k(\alpha_k^j)_{\mu} \chi_{j,s}) dx dt$$

$$= \varepsilon(n, j, \mu, s).$$

Then (7.21) becomes

$$\int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j) \chi_{j,s}) dx dt$$

$$\leq c_3 \eta + \int_{\{|T_\eta(u_n - T_k(\alpha_k^j)_{\mu})| < \eta\}} \psi(x, \frac{|F|}{p}) dx dt + \varepsilon(n, j, \mu, s). \tag{7.23}$$

Hence by letting  $\eta$  to zero, we get

$$\int_{\{|u_n - T_k(\alpha_k^j)_{\mu}| < \eta\}} a(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla T_k(\alpha_k^j) \chi_{j,s}) dx dt 
\leq \varepsilon(n, j, \mu, s, \eta).$$
(7.24)

Now, let  $0 < \theta < 1$ , by applying the Young's inequality with  $p = \frac{1}{\theta}$  and  $\frac{1}{1-\theta}$ ,  $y_n = (x, t, T_k(u_n), \nabla T_k(u_n)), y = (x, t, T_k(u_n), \nabla T_k(u))$ , we get

$$\int_{Q_{\tau} \cap \{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} \left( \left[ a(y_{n}) - a(y) \right] \times \left[ \nabla T_{k}(u_{n}) - \nabla T_{k}(u) \right] \right)^{\theta} dx dt$$

$$= \int_{Q_{\tau}} \left( \left[ a(y_{n}) - a(y) \right] \times \left[ \nabla T_{k}(u_{n}) - \nabla T_{k}(u) \right] \right)^{\theta} \chi_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} dx dt$$

$$\leq c \operatorname{meas} \left\{ |T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta \right\}^{\frac{1}{1-\theta}}$$

$$+ c \left( \int_{Q_{\tau} \cap \{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} \left[ a(y_{n}) - a(y) \right] \times \left[ \nabla T_{k}(u_{n}) - \nabla T_{k}(u) \right] dx dt \right)^{\theta}.$$

$$(7.25)$$

But we have for  $s>\tau,\ y_\chi=(x,t,T_k(u_n),\nabla T_k(u)\chi_s)$  and  $y_\alpha=(x,t,T_k(u_n),\nabla T_k(\alpha_j^k)\chi_{j,s}),$  we have

$$\begin{split} &\int_{Q_{\tau} \cap \{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} \left[ a(y_{n}) - a(y) \right] \times \left[ \nabla T_{k}(u_{n}) - \nabla T_{k}(u) \right] dxdt \\ &\leq \int_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} \left[ a(y_{n}) - a(y_{\chi}) \right] \times \left[ \nabla T_{k}(u_{n}) - \nabla T_{k}(u) \chi_{s} \right] dxdt \\ &\leq \int_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} \left[ a(y_{n}) - a(y_{\alpha}) \right] \times \left[ \nabla T_{k}(u_{n}) - \nabla T_{k}(\alpha_{j}^{k}) \chi_{j,s} \right] dxdt \\ &+ \int_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} a(y_{n}) \left[ \nabla T_{k}(\alpha_{j}^{k}) \chi_{j,s} - \nabla T_{k}(u) \chi_{s} \right] dxdt \end{split}$$

$$+ \int_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} \left[ a(y_{\alpha}) - a(y_{\chi}) \right] \nabla T_{k}(u_{n}) dx dt$$

$$- \int_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} a(y_{\alpha}) \nabla T_{k}(\alpha_{j}^{k}) \chi_{j,s} dx dt$$

$$+ \int_{\{|T_{k}(u_{n}) - T_{k}(\alpha_{j}^{k})_{\mu}| < \eta\}} a(x, t, T_{k}(u_{n}), \nabla T_{k}(u) \chi_{s}) \nabla T_{k}(u) \chi_{s} dx dt$$

$$= J_{1} + J_{2} + J_{3} + J_{4} + J_{5}.$$
(7.26)

We shall go to limit as  $n, j, \mu$  and s to infinity in the last fifth integrals of the last side.

Starting by  $J_1$ , one has

$$J_1 \le \varepsilon(n, j, \mu, \eta) - \int_{\{|T_k(u_n) - T_k(\alpha_j^k)_{\mu}| < \eta\}} a(y_\alpha) \Big[ \nabla T_k(u_n) - \nabla T_k(\alpha_j^k) \chi_{j,s} \Big] dx dt.$$

Since  $a(y_{\alpha})$  converge strongly to  $a(x,t,T_k(u),\nabla T_k(\alpha_j^k)\chi_{j,s})$  in  $(E_{\psi}(Q))^N$  and  $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$  weakly in  $(L_{\varphi}(Q))^N$ , then

$$\int_{\{|T_k(u_n)-T_k(\alpha_j^k)_{\mu}|<\eta\}} a(y_{\alpha}) \Big[\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)\chi_{j,s}\Big] dxdt$$

$$= \int_{\{|T_k(u)-T_k(\alpha_j^k)_{\mu}|<\eta\}} a(x,t,T_k(u),\nabla T_k(\alpha_j^k)\chi_{j,s}) \Big[\nabla T_k(u) - \nabla T_k(\alpha_j^k)\chi_{j,s}\Big] dxdt$$

$$+\varepsilon(n).$$

which gives by letting  $j \longrightarrow \infty$ ,  $\mu \longrightarrow \infty$  and  $s \longrightarrow \infty$  respectively

$$\begin{split} &\int_{\{|T_k(u_n)-T_k(\alpha_j^k)_{\mu}|<\eta\}} a(y_{\alpha}) \Big[\nabla T_k(u_n) - \nabla T_k(\alpha_j^k)\chi_{j,s}\Big] dxdt \\ &= \int_{\{|T_k(u)-T_k(u)_{\mu}|<\eta\}} a(x,t,T_k(u),\nabla T_k(u)\chi_s) \Big[\nabla T_k(u) - \nabla T_k(u)\chi_s\Big] dxdt \\ &+ \varepsilon(n,j) \\ &= \int_Q a(x,t,T_k(u),\nabla T_k(u)\chi_s) \Big[\nabla T_k(u) - \nabla T_k(u)\chi_s\Big] dxdt + \varepsilon(n,j,\mu) \\ &= \varepsilon(n,j,\mu,s). \end{split}$$

Finally, we get

$$J_1 = \varepsilon(n, j, \mu, s, \eta). \tag{7.27}$$

Similarly, we get

$$J_2 = J_3 = J_4 = J_5 = \varepsilon(n, j, \mu, s, \eta).$$
 (7.28)

Combining (7.25)-(7.28), we get

$$\lim_{n \to +\infty} \int_{Q_{\tau}} \left( \left[ a(y_n) - a(y) \right] \times \left[ \nabla T_k(u_n) - \nabla T_k(u) \right] \right)^{\theta} dx dt = 0.$$

and, like a same argument in [3], we have

$$\nabla T_k(u_n) \longrightarrow \nabla T_k(u)$$
 as  $n \longrightarrow +\infty$  for the modular convergence, (7.29)

# $Step\ 6:\ Compactness\ of\ the\ nonlinearities$

In this step, we need to prove that

$$g_n(x, t, u_n, \nabla u_n) \longrightarrow g(x, t, u, \nabla u)$$
 strongly in  $L^1(Q)$ . (7.30)

By virtue of (7.29), one has

$$g_n(x, t, u_n, \nabla u_n) \longrightarrow g(x, t, u, \nabla u) \text{ a.e. in } Q.$$
 (7.31)

Let E be measurable subset of Q and let m > 0. Using (3.3) and (3.4), we can write

$$\begin{split} &\int_{E}|g_{n}(x,t,u_{n},\nabla u_{n})|dxdt\\ &=\int_{E\cap\{|u_{n}|\leq m\}}|g_{n}(x,t,u_{n},\nabla u_{n})|dxdt+\int_{E\cap\{|u_{n}|> m\}}|g_{n}(x,t,u_{n},\nabla u_{n})|dxdt\\ &\leq b(m)\int_{E}h_{2}(x,t)dxdt+b(m)\int_{E}a(x,t,T_{m}(u_{n}),\nabla T_{m}(u_{n}))\cdot\nabla T_{m}(u_{n})dxdt\\ &+\frac{1}{m}\int_{E}g_{n}(x,t,u_{n},\nabla u_{n})u_{n}dxdt. \end{split}$$

Taking  $u_n$  as a test function in  $(\mathcal{P}_n)$  and using the same argument as in step 2, there exists a constant c > 0 such that

$$\int_{E} g_n(x, t, u_n, \nabla u_n) u_n dx dt \le c.$$

Then, we have

$$\lim_{m \to +\infty} \frac{1}{m} \int_{E} g_n(x, t, u_n, \nabla u_n) u_n dx dt = 0.$$

Thanks to (7.29) the sequence  $(a(x, t, T_m(u_n), \nabla T_m(u_n)) \cdot T_m(u_n))_n$  is equi-integrable, the fact which allows us to get

$$\lim_{|E|\to 0} \sup_{n} \int_{E} a(x, t, T_m(u_n), \nabla T_m(u_n)) \cdot \nabla T_m(u_n) dx dt = 0.$$

This shows that  $g_n(x, t, u_n, \nabla u_n)$  is equi-integrable. Thus, Vitali's theorem implies that  $g(x, t, u, \nabla u) \in L^1(Q)$  and

$$g_n(x, t, u_n, \nabla u_n) \longrightarrow g(x, t, u, \nabla u)$$
 strongly in  $L^1(Q)$ .

 $Step \ 7: \ Passage \ to \ the \ limit$ 

Let  $v \in W_0^{1,x}L_{\varphi}(Q)$  such that  $\frac{\partial v}{\partial t} \in W^{-1,x}L_{\psi}(Q) + L^1(Q)$ . There exists a prolongation  $\overline{v}$  of v such that (see the proof of lemma)

$$\begin{cases} \overline{v} = v & \text{on } Q, \\ \overline{v} \in W_0^{1,x} L_{\varphi}(\Omega \times \mathbb{R}) \cap L^1(\Omega \times \mathbb{R}) \cap L^{\infty}(\Omega \times \mathbb{R}), \\ \text{and} & \frac{\partial \overline{v}}{\partial t} \in W^{-1,x} L_{\psi}(\Omega \times \mathbb{R}) + L^1(\Omega \times \mathbb{R}). \end{cases}$$

By theorem , there exists a sequence  $(w_j)_j$  in  $D(\Omega \times \mathbb{R})$  such that  $w_j \longrightarrow \overline{v}$  in  $W_0^{1,x}L_{\varphi}(\Omega \times \mathbb{R})$  and  $\frac{\partial w_j}{\partial t} \longrightarrow \frac{\partial \overline{v}}{\partial t}$  in  $W^{-1,x}L_{\psi}(\Omega \times \mathbb{R}) + L^1(\Omega \times \mathbb{R})$  for the modular convergence and  $\|w_j\|_{\infty,Q} \leq (N+2)\|v\|_{\infty,Q}$ .

Using  $T_k(u_n - w_j)\chi_{[0,\tau]}$  as a test function in  $(\mathcal{P}_n)$ , then for every  $\tau \in [0,T]$ , one has

$$\int_{Q_{\tau}} \frac{\partial u_{n}}{\partial t} T_{k}(u_{n} - w_{j}) dx dt 
+ \int_{Q_{\tau}} a(x, t, u_{n}, \nabla u_{n}) \cdot \nabla T_{k}(u_{n} - w_{j}) dx dt 
+ \int_{Q_{\tau}} g_{n}(x, t, u_{n}, \nabla u_{n}) T_{k}(u_{n} - w_{j}) dx dt 
\leq \int_{Q_{\tau}} f_{n} T_{k}(u_{n} - w_{j}) dx dt 
+ \int_{Q_{\tau}} F \cdot \nabla T_{k}(u_{n} - w_{j}) dx dt.$$
(7.32)

For the first term of (7.32), we get

$$\begin{split} \int_{Q_{\tau}} \frac{\partial u_n}{\partial t} T_k(u_n - w_j) dx dt &= \left[ \int_{\Omega} T_k(u_n - w_j) dx \right]_0^{\tau} \\ &+ \int_{Q_{\tau}} \frac{\partial w_j}{\partial t} T_k(u_n - w_j) dx dt \\ &= \left[ \int_{\Omega} T_k(u - w_j) dx \right]_0^{\tau} \\ &+ \int_{Q_{\tau}} \frac{\partial w_j}{\partial t} T_k(u - w_j) dx dt + \varepsilon(n) \\ &= \int_{Q_{\tau}} \frac{\partial u}{\partial t} T_k(u - w_j) dx dt. \end{split}$$

for the second term of (7.32), we have if  $|u_n| > \lambda$  then  $|u_n - w_j| \ge |u_n| - ||w_j||_{\infty} > k$ ,

therefore  $\{|u_n - w_j| \le k\} \subseteq \{|u_n| \le k + (N+2)||v||_{\infty}\}$ , which implies that, we get

$$\liminf_{n \to +\infty} \int_{Q} a(x, t, u_{n}, \nabla u_{n}) \nabla T_{k}(u_{n} - w_{j}) dxdt$$

$$\geq \int_{Q} a(y_{\parallel}v \parallel) (\nabla T_{k+(N+2)\parallel v \parallel_{\infty}}(u) - \nabla w_{j}) \chi_{\{|u-v| \leq k\}} dxdt,$$

$$= \int_{Q} a(x, t, u, \nabla u) (\nabla u - \nabla w_{j}) \chi_{\{|u-w_{j}| \leq k\}} dxdt$$

$$= \int_{Q} a(x, t, u, \nabla u) \nabla T_{k}(u - w_{j}) dxdt,$$
(7.33)

where  $y_{\parallel}v\parallel=(x,t,T_{k+(N+2)\parallel v\parallel_{\infty}}(u),\nabla T_{k+(N+2)\parallel v\parallel_{\infty}}(u))$ . Consequently, y using the strong convergence of  $(g_n(x,t,u_n,\nabla u_n))_n$  and  $((f_n))_n$ , one has

$$\int_{Q_{\tau}} \frac{\partial u}{\partial t} T_k(u - w_j) dx dt 
+ \int_{Q_{\tau}} a(x, t, u, \nabla u) \cdot \nabla T_k(u - w_j) dx dt 
+ \int_{Q_{\tau}} g(x, t, u, \nabla u) T_k(u - w_j) dx dt 
\leq \int_{Q_{\tau}} f T_k(u - w_j) dx dt 
+ \int_{Q} F \cdot \nabla T_k(u - w_j) dx dt.$$
(7.34)

Thus, by using the modular convergence of j, we achieve this step. As a conclusion of Step 1 to Step 7, the proof of Theorem 7 is complete.

#### References

- M. L. Ahmed Oubeid, A. Benkirane and M. Ould Mohamedhen val, Nonlinear elliptic equations involving measur data in Musielak-Orlicz-Sobolev spaces, Jour. Abstr. Differ. Equ. Appl. Vol. 4 (2013), no. 1, pp.43-57.
- 2. M. L. Ahmed Oubeid, A. Benkirane, and M. Sidi El Vally, Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces, Bol. Soc. Paran. Mat.v. 33 1 (2015), 191-223.
- 3. M. Ait khellou, A. Benkirane, S.M. Douiri, An inequality of type Poincaré in Musielak spaces and application to some non-linear elliptic problems with  $L^1$  data, Complex Variables and Elliptic Equations. Vol. 60, N 9, pp. 1217-1242 (2015).
- P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vazquez, An L<sup>1</sup>-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22 (1995), pp. 241273.
- A. Benkirane, M. Sidi El Vally (Ould Mohamedhen Val), Some approximation properties in Musiclak Orlicz Sobolev spaces, Thai.J. Math. 10 (2012), 371-381.
- A. Benkirane, M. Sidi El Vally (Ould Mohamedhen val), Variational inequalities in Musielak Orlicz Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 787-811.

- L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure as data, J. Funct. Anal. 87 (1989) 149-169.
- L. Boccardo and F. Murat, Almost everywhere convergence of the gradients, Nonlinear Anal. 19 (6)(1992) 581-597.
- A. Dall Aglio, L. Orsina, Nonlinear parabolic equations with natural growth conditions and L<sup>1</sup> data, Nonlinear Analysis, Theory, Methods and Applications 27 (1996), pp. 5973.
- T. Donaldson, Inhomogeneous Orlicz Sobolev spaces and nonlinear parabolic initial boundary value problems, J. Differential Equations 16 (1974) 201-256.
- 11. M.S.B. Elemine Vall, A.Ahmed, A.Touzani, A.Benkirane, Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with  $L^1$  data, Article accepted for Publication and to Appear in the Bulletin of Parana's Mathematical Society.
- 12. A. Elmahi, Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces, Electron. J. Differential Equations. 09 (2002) 203-220.
- A. Elmahi, D. Meskine, Parabolic equations in orlicz spaces, J. London Math. Soc. 72 (2) (2005) 410-428.
- 14. J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163-205.
- 15. Lars Diening, Petteri Harjulehto, Peter Hästö, Michael Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011).
- 16. J. Musielak, Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034 (1983).
- 17. A. Porretta, Nonlinear equations with natural growth terms and measure data, Electronic Journal of Differential Equations: Conference 09, 2002, Proceedings of the 2002-Fez Conference on Partial Differential Equations, Fez, Morocco, June 68, 2002, (2002), pp. 183202.
- 18. J. Robert, Inequations variationnelles paraboliques fortement non lineaires, J. Math. Pures Appl. 53 (1974) 299-321.
- 19. W. RUDIN, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1974.
- 20. J. Simon, Compact sets in the space Lp(0, T, B), Ann. Mat. Pura. Appl. 146 (1987) 65-96.

A.Talha, A. Benkirane, M.S.B. Elemine Vall, Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P.O. Box 1796 Atlas, Fes 30000, Morocco. E-mail address: talha.abdous@gmail.com E-mail address: abd.benkirane@gmail.com E-mail address: saad2012bouh@gmail.com