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1. Introduction

Let © a bounded open subset of RY and let @ be the cylinder 2 x (0,7) with
some given T > 0.
We consider the strongly nonlinear parabolic problem
% + A(u) + g(z,t,u, Vu) = f —div(F) in Q,
(P)Su=0 on 0Q = 90 x [0, T
u(+,0) = uo on (2,
where A : D(A) € Wy Ly(Q) — W1 Ly (Q) (see section 2) defined by A(u) =

—div(a(z,t,u, Vu)) is an operator of Leray-Lions type, where a is a Carathéodory
function such that

la(z,t,5,8)| < ﬁ(m(w,t) + 4,y (z, v]s]) + wmlw(wﬂ/I&l))
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(a(z,t,s, ) —a(z, s, ’)) (E-¢)>0

a(z,t,5,€).£ > ap(z, |¢])

with by € LY(Q), B,v,a > 0 and v a Musielak function such that v < ¢.
Let g be a Carathéodory function such that

l9(a.t.5,6)] < bls]) (ha(a.t) + (. [€).

g(z’t7 S? )S Z 0’

is satisfied, where b a positive function in L'(R*) and hy € L*(Q),

and f € L1(Q) and F € (Ex(Q))Y.

Under these assumptions, the above problem does not admit, in general, a weak
solution since the field a(x,t,u, Vu) does not belong to (L .(Q))" in general. To
overcome this difficulty we use in this paper the framework of entropy solutions.
This notion was introduced by Bénilan and al. [4] for the study of nonlinear elliptic
problems.

In the classical Sobolev spaces, the authors in [9, 17] proved the existence of solu-
tions for the problem (P) in the case where F' = 0, in [7] the authors had proved
the existence of solutions for the problem (P) in the elliptic case.

In the setting of Orlicz spaces, the solvability of (P) was proved by Donaldson
[10] and Robert [18], and by Elmahi [12] and Elmahi-Meskine [13]. In Musielak
framework, recently M. L. Ahmed Oubeid, A. Benkirane and M. Sidi El Vally in
[2] had studied the problem (P) in the Inhomogeneous case and the data belongs to
L'(Q), in the elliptic case the authors in [1] proved the existence of weak solutions
for the problem (P) where the data assume to be measure and g = 0.

It is our purpose in this paper to prove the existence of entropy solutions for prob-
lem (P) in the setting of Musielak Orlicz spaces for general Musielak function ¢
with a nonlinearity g(z, ¢, u, Vu) having natural growth with respect to the gradi-
ent.

Our result generalizes that of [13, 1, 2] to the case of inhomogeneous Musielak
Orlicz Sobolev spaces.

The plan of the paper is as follows. Section 2 presents the mathematical prelim-
inaries. Section 3 we make precise all the assumptions on a, g, f and ug. Section
4 is devoted to some technical lemmas with be used in this paper. Section 5 we
establish some compactness and approximation results. Final section is consecrate
to define the entropy solution of (P) and to prove existence of such a solution.

2. Preliminary

In this section we list briefly some definitions and facts about Musielak-Orlicz-
Sobolev spaces. Standard reference is [16]. We also include the definition of inho-
mogeneous Musielak-Orlicz-Sobolev spaces and some preliminaries Lemmas to be
used later.
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2.1. Musielak-Orlicz-Sobolev spaces :

Let Q be an open set in RY and let ¢ be a real-valued function defined in
Q x R, and satisfying the following conditions :

a) p(z,-)is an N-function (convex, increasing, continuous, ¢(z,0) = 0, p(z,t) > 0,

Vt>0,supzeQ@—>0ast—>0,inf169@—>ooast—>oo).

b) ¢(-,t) is a measurable function.

A function ¢, which satisfies the conditions a) and b) is called Musielak-Orlicz
function.

For a Musielak-orlicz function ¢ we put ¢, (t) = ¢(z,t) and we associate its non-
negative reciprocal function ¢, !, with respect to ¢ that is

o, ez, 1) = oz, 0, (1) = t.

The Musielak-orlicz function ¢ is said to satisfy the As-condition if for some k£ > 0
and a non negative function A integrable in €2, we have

o(x,2t) < ko(z,t) + h(z) for all z € Q and t > 0. (2.1)

When (2.1) holds only for ¢t > ¢y > 0; then ¢ said to satisfy Ao near infinity.

Let ¢ and v be two Musielak-orlicz functions, we say that ¢ dominate v, and we
write v < ¢, near infinity (resp. globally) if there exist two positive constants ¢
and tg such that for almost all x € Q

Y(z,t) < @(x,ct) for all t > tg, (resp. for allt > 0ie. tg =0).

We say that v grows essentially less rapidly than ¢ at 0 (resp. near infinity), and
we write v << ¢, If for every positive constant ¢ we have

lim <sup M) =0, (resp. tlim <sup M) =0).

t—0 \ zeQ QD(.’L',t) 0 \ zeQ QD(.’L',t)

Remark 2.1. [6] If ¥ << ¢ near infinity, then Ve > 0 there exist k(g) > 0 such
that for almost all z € ) we have

Y(xz,t) < k(e)p(x,et), forall t > 0. (2.2)

We define the functional
Poc(t) = /Q o, u() )z

where u : 2 — R a Lebesgue measurable function. In the following, the measur-
ability of a function u : 2 — R means the Lebesgue measurability.
The set

K, (Q) = {u : Q — R measurable : p, o(u) < +oo}.
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is called the generalized Orlicz class.

The Musielak-Orlicz space (or the generalized Orlicz spaces) L,(f2) is the vector
space generated by K, (), that is, L,({) is the smallest linear space containing
the set K, (£2).

Equivalently

L,(Q) = {u : €2 — R measurable : p,, Q( ) < 400, for some A > 0}

A

Let

P(z,s) = sup {st —p(z,t)}.

that is, ¥ is the Musielak-Orlicz function complementary to ¢ in the sens of Young
with respect to the variable s.
We define in the space L, (€2) the following two norms

. ju(z)
= < .
fullosn = int {3 >0/ [ (. )ar <1

which is called the Luxemburg norm and the so called Orlicz norm by :

llalloo = sup [ jute)ote)lda.

[lo]ly <

where 1 is the Musielak Orlicz function complementary to ¢. These two norms are
equivalent [16].

The closure in L, (£2) of the bounded measurable functions with compact support
in Q is denoted by E (). A Musielak function ¢ is called locally integrable on
Qif p,(txp) < oo for all t > 0 and all measurable £/ C  with meas(E) < oo.
Note that local integrability in the previous definition differs from the one used in

Lll0 .(Q), where we assume integrability over compact subsets.

Lemma 2.1. [15] Let ¢ a Musielak function which is locally integrable. Then
E,(Q) is separable.

We say that sequence of functions w,, € L,(2) is modular convergent to u €
L, () if there exists a constant A > 0 such that

Up — U
Jm peo(P5) =
For any fixed nonnegative integer m we define
W™L,(Q) = {u € L,(Q) :V|a| <m, D% € Lw(Q)}.

and
W™E,(Q) = {u € E,(Q) :V]a| <m, Du € EW(Q)}.
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where a = (ayq, ..., a,) with nonnegative integers a, |a| = |a1|+ ...+ |an| and D%
denote the distributional derivatives. The space W™ L, (Q) is called the Musielak
Orlicz Sobolev space.

Let

Pyalu) = Z P02 (Dau) and [lul|gq = inf {)\ >0: ﬁkpyﬂ(g) < 1}

la|<m

for u € WL, (), these functionals are a convex modular and a norm on W™ L, (12),
respectively, and the pair (Wme(Q), HH’;Q) is a Banach space if ¢ satisfies the

following condition [16] :

there exist a constant ¢ > 0 such that in?z o(x,1) >c. (2.3)
kS

The space W™ L,(Q2) will always be identified to a subspace of the product
Tjaj<m Le(§2) = I1L,, this subspace is o(I1Ly, ILEy) closed.

We denote by D(€) the space of infinitely smooth functions with compact support
in Q and by D(Q)) the restriction of D(RY) on €.

Let Wi L, (2) be the o(IIL,,IIEy) closure of D(2) in W™ L, ().

Let W™E,(Q) the space of functions u such that u and its distribution deriva-
tives up to order m lie to E,(€2), and W' E, () is the (norm) closure of D(€) in
W™ L, ().

The following spaces of distributions will also be used :

WLy (9) = {f eD'(Q); f= Y (~)llDof, with f, € me)}.

lal<m

and

W E,(Q) = {f eD'(Q); f= Y (-1)ID*f, with fo € E¢(Q)}.
la|<m

We say that a sequence of functions u,, € W™L,(f2) is modular convergent to
u € W™L,(Q) if there exists a constant k£ > 0 such that

n—oo

lim 7, 0(=—) =0.

For ¢ and her complementary function v, the following inequality is called the
Young inequality [16]:

ts < p(z,t) +¥(x,s), Vt,s>0,z¢€. (2.4)
This inequality implies that

lulllg.0 < pyalu) +1. (2.5)
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In L,(£2) we have the relation between the norm and the modular
lulle.0 < ppalu) if Jullyo > 1. (2.6)

lullo. = pya(u) if ullpo < 1. (2.7)

For two complementary Musielak Orlicz functions ¢ and 9, let u € L,(€) and
v € Ly(Q2), then we have the Holder inequality [16]

< lulle.lllolly,o- (2.8)

‘ /Q u(z)v(z)dz

2.2. Inhomogeneous Musielak-Orlicz-Sobolev spaces :

Let © a bounded open subset of RY and let Q@ = Qx]0,T[ with some given
T > 0. Let ¢ be a Musielak function. For each a € NV, denote by D2 the
distributional derivative on @ of order o with respect to the variable z € RY. The
inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows.

W Lo(Q) = {u € Ly(Q) : Vo] <1 Dfu € Ly(Q)}
et
WY E,(Q) = {u € E,(Q): V]al <1 Dfu € E,(Q)}

The last space is a subspace of the first one, and both are Banach spaces under the

norm
lul = > IDgullpq-

laf<m

We can easily show that they form a complementary system when € is a Lipschitz
domain [5]. These spaces are considered as subspaces of the product space I1L,(Q)
which has (IV +1) copies. We shall also consider the weak topologies o (IIL, I1Ey)
and o(IIL,,IILy). If u € WH*L,(Q) then the function : ¢ — u(t) = u(t,-) is
defined on [0,7] with values in W'L, (). If, further, u € WH*E,(Q) then this
function is W1 E, () valued and is strongly measurable. Furthermore the following
imbedding holds:: Wh*E,(Q) C L'(0,T; W'E,(Q)). The space W% L, (Q) is not
in general separable, if u € W* L, (Q), we can not conclude that the function u(t)
is measurable on [0, 7.

However, the scalar function ¢ + [|u(t)||,.q is in L*(0, T). The space W, * E,(Q)
is defined as the (norm) closure in W'*E,(Q) of D(Q).

We can easily show as in [5] that when € a Lipschitz domain then each element
u of the closure of D(Q) with respect of the weak * topology o(IIL,, IIEy) is limit,
in WH*L,(Q), of some subsequence (u;) C D(Q) for the modular convergence; i.e.,
there exists I\ > 0 such that for all |a| <1,

Dy, — D™
/ o(x, (M))dwdt — 0 as i — oo,
Q
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this implies that (u;) converges to u in W' L, (Q) for the weak topology o (ILL,, I1Ly).

Consequently

o(TIL,,TTEy) (1L, TLy,)

D(Q) D) :

this space will be denoted by W, * Ly (Q). Furthermore, Wol’ZEW Q)= Wol’ng,(Q)ﬂ
1E,.
We have the following complementary system

(W&%(Q) F)
Wy Ep(Q) Fy)’

F being the dual space of WO1 PE,(Q). It is also, except for an isomorphism,
the quotient of IIL, by the polar set W(}’IEW(Q)J-, and will be denoted by F' =
W%, (Q) and it is shown that

W L@ = {f = 30 Do fa € L@}
la|<1

This space will be equipped with the usual quotient norm

£ =inf D> llfallv

laf<1

where the inf is taken on all possible decompositions

f= Difar fa€LyQ).

o<1
The space Fj is then given by
Fo={f="Y Difa:fa€EsQ)]
o<1
and is denoted by Fy = W12 E,(Q).
3. Essential assumptions

Let © be a bounded open subset of RN satisfying the segment property and
T > 0 we denote @ = Q x [0,T], and let ¢ and v be two Musielak-Orlicz functions
such that v << .
Let A: D(A) C Wol’zLW(Q) — W=1%L,(Q) be a mapping given by

A(u) = —div(a(z, t,u, Vu)),

where a : a(z,t,5,&) : Q x [0,4] x R x RY — RY is a Carathéodory function
satisfying, for a.e (x,t) € Q and for all s € R and all £,&" € RN, ¢ £ ¢

ala.t,5,6)] < 5(h1<w,t> 9 e vls) +w;so<w,u|s|>) (3.1)
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(a(z,t,s, ) —a(z,t,s, ')) (E-¢)>0 (3.2)

a(z,t,s,§)-& = ap(x, [¢]) (3.3)

where ¢(z,t) a positive function, c(x,t) € Ey(Q) and positive constants v, a.
Furthermore, let g(z,t,s,£) : Qx]0, T[xR x RY — R be a Caratheodory function
such that for a.e. (z,t) € 2x]0,7] and for all s € R, ¢ € RY, the following
conditions

9o, t,5,€)] < bls]) (hale,6) + ol €]) ) (3.4)

g(z’t7 S? )S Z 0) (3-5)

are satisfied, where b : Rt — R™ is a continuous positive function which belongs
to L}(R) and ha(x,t) € LY(Q).

feLl(Q) and Fe (By(Q)". (3.6)
ug € L*(Q). (3.7)

4. Some technical Lemmas

Lemma 4.1. [5]. Let Q be a bounded Lipschitz domain in RY and let ¢ and 1
be two complementary Musielak-Orlicz functions which satisfy the following condi-
tions:

i) There exist a constant ¢ > 0 such that infyeq o(x,1) > c.
i1) There exist a constant A > 0 such that for all x,y € Q with |z —y| < % we have

A
@(x,t) < t(iog(ﬁ)7 Yt > 1. (41)
ey, t)

)

If D C Q is a bounded measurable set, then / o(z,1)de < co.  (4.2)
D

iv) There exist a constant C' > 0 such that (x,1) < C a.e in Q.

Under this assumptions, D(Y) is dense in L, (S2) with respect to the modular topol-
ogy, D(Q) is dense in Wy L, () for the modular convergence and D(SY) is dense
in WL, () the modular convergence.

Consequently, the action of a distribution S in W~1L,(2) on an element u of
Wy L,(9) is well defined. It will be denoted by < S,u >.
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Lemma 4.2. [6]. Let F : R — R be uniformly Lipschitzian, with F(0) = 0.
Let ¢ be a Musielak- Orlicz function and let uw € Wy Ly, (2). Then F(u) € Wy Ly, ().
Moreover, if the set D of discontinuity points of F' is finite, we have

0 B F’(u)%“i a.e in {x € Q:u(z) € D}.
&TZ-F(U)_ { 0 6a.e in {z € Q:u(zx) € D}.

Lemma 4.3. Let (f,,), f € LY(Q) such that
i) fn >0 aeinQ.

ii) fr, — f a.ein Q.

iii) [, fo(z)de — [, f(x)dx.

then f, — f strongly in L*(£2).

Lemma 4.4 (Jensen inequality). [19]. Let ¢ : R — R a convex function and g
: Q2 — R is function measurable, then

90(/ gdu)é/ pogdu.
Q Q

Lemma 4.5 (Poincaré inequality). [11].Let ¢ a Musielak Orlicz function which
satisfies the assumptions of lemma 4.1, suppose that ¢(x,t) decreases with respect
of one of coordinate of x.

Then, that exists a constant ¢ > 0 depends only of £ such that

/cp(:c, lu(z)|)dx < / oz, c|Vu(z)|)dr, Yu e WyLy(Q). (4.3)
Q Q

Proof Since ¢(x,t) decreases with respect to one of coordinates of x , there exists
iop € {1,..., N} such that the function o — @(@1, ..., Tig—1,0, Tig41s s TN, T) 18
decreasing for every x1,...,%i,—1,Tig+1, .-, &n € R and Vi > 0.

To prove our result, it suffices to show that

/Q(,D(.T, |u(z)|)dz < /Qtp(:c,Qd‘aiu (m)de, Vu € Wy Ly(Q). (4.4)

i
with d = max (diam(Q), 1) and diam(2) is the diameter of Q.
First, suppose that u € D(Q), then so by the Jensen integral inequality we obtain

o(x, |u(z1, ..., zN)|)

Tio 1 Qu
< w(w,/

8%

(X1 ooy Tig—15 Ty Tig+1, ...,xN)da),

L[t ou
< E/ (p(xad‘aT (-Tla coy Lig—150, Tig+1, a:EN))dU
— 00 20
1 [
<q]  foyo,
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where f(o) = <p(x1, ey Ly 1y Oy Tig 41y ooey TN | 72

ax ’(-Tla"'axio—laaawio-‘rla"'a:EN))-
By integrating with respect to z, we get

/ oz, |u(zy, ..., xn)|)dx
Q

sA%/jﬂ@wm

. ou .
since <p(:c1, ey Tig =1y Oy L1y eeey TN d‘ o ‘(xl, vy Ly —1y Oy Ligf1 s ens :L'N)) indepen-

dent of x;,, we can get it out of the mtegral to respect of z;, and by the fact that
o is arbitrary, then by Fubini’s Theorem we get

[ et u@ie < [ o(n.d 7@

For u € W3 L,(2) according to Lemma 4.1, we have the existence of u,, € D(Q)
and A > 0 such that

))d:c, Vu € D(Q). (4.5)

_ Uy — U
Q%Q(T) =0, asn— oo,

hence
fﬂtp(ac M)clac—>0, as n — +o0,

Jo <p( [Vun = V"')dx — 0, asn— +oo,

u, — u a.ein ), ( for a subsequence still denote u,,).

Then, we have
/Q‘P(‘”’ @(;A)')dx = %iﬂifofo/ (z |u;d)\ )
iﬂifofo/ (x 2 gg: de
= Jiminf /Q@(‘"”’ 2 ggn (#) - aiqjo @)+ aiqjo (o)) )da
it [ (o3[t @)~ @)oo
+ %/Qtp(x,i %(m)’)dm

JRICH Pl

A

IN

IN

IN

Hence

/Q <p(:c, |u(z)|)dz < /Q ga(z, 2d’8(11; (x)‘)dm, Vu € Wy Ly().
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Lemma 4.6 (The Nemytskii Operator). Let Q be an open subset of R™N with finite
measure and let ¢ and ¥ be two Musielak Orlicz functions. Let [ : x RP — RY
be a Carathodory function such that for a.e. x € Q0 and all s € RP :

f(,8)] < e(@) + kagpy ' p(a, ko s)). (4.6)

where k1 and ko are real positives constants and c(.) € Ey ().
Then the Nemytskii Operator Ny defined by Ny(u)(x) = f(z,u(x)) is continuous

from
? (B (), /?Z)p -TI {u € Lo(Q) : d(u, E,(Q)) < kiQ}

into (Ly(Q))? for the modular convergence.
Furthermore if c(-) € Ey(Q) and v << 1 then Ny is strongly continuous from

P(B@. %) 10 (B ()1

5. Approximation and trace results

In this section, 2 be a bounded Lipschitz domain in RY with the segment
property and I is a subinterval of R (both possibly unbounded) and @ = Q x I.
It is easy to see that @ also satisfies Lipschitz domain. We say that u,, — u in
WL, (Q) + L*(Q) for the modular convergence if we can write

Uy = Z Du® +u? and u = Z D&u® + P,

o<1 laf<1

with u® — u® in L (Q) for the modular convergence for all || < 1, and u2 — u°
strongly in L?(Q). We shall prove the following approximation theorem, which
plays a fundamental role when the existence of solutions for parabolic problems is
proved. [2] Let ¢ be an Musielak-Orlicz function satisfies the assumption (4.1).
Ifu e Wh*Ly(Q) (respectively u € Wy Ly(Q) ) and §% € WLy (Q)+ LY(Q),
then there exists a sequence (v;) € D(Q) ( respectively D(I,D(Q2))) such that
v; — u in WH*L,(Q) and % — 24 in WL, (Q) + LH(Q) for the modular
convergence.

Lemma 5.1. [2] Let a < b € R and let Q be a bounded Lipschitz domain in RN .
Then
1,z . Ou —1, 1
u € Wy Ly(Q2x]a,b]) : € W% Ly (Q2x]a, b]) + L (2x]a, b))

is a subset of C(]a, b[, L1 (£2)).

In order to deal with the time derivative, we introduce a time mollification of
a function u € Wy'" L, (Q).
Thus we define, for all g > 0 and all (z,t) € Q

uu(z,t) = / (x,0) exp(p(oc —t))do (5.1)

— 00
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where @(z,t) = u(x,t)X[0,7(t).
Throughout the paper the index 1 always indicates this mollification.

Lemma 5.2. .[2] If u € L,(Q) then u, is measurable in Q and %Ltu = p(u —uy,)
and if u € K,(Q) then

/ oz, u,)dzdt §/ o(z, w)dxdt.

Q Q

Lemma 5.3. 1. Ifu € L,(Q) then u, — u for the modular convergence in
L,(Q) as pp — oo.

2. Ifu € Wy " Ly(Q) then u, — u for the modular convergence in Wy L,(Q)
as p — 00.
Proof

1. Let (vg)r C D(Q) such that v, — u in L, (Q) for the modular convergence.
Let A > 0 large enough such that
u

€ K«ﬂ(Q), / go(ac, w)dmdt —> 0 as kK — +o0.
A 0 A

On the one hand, for a.e (z,t) € Q, we have

1 6vk a’ljk
0 =l = 7| g 0] < [
|nutar0) = wntar0)| = 2| @0 < |G e
On the other hand, one has
up — ul 1 |t — (V)
< = LY B AT ol
/an(z, ™ )dzdt < 3 Qcp(:c, 3 )dzdt
1 —
+ g/Qcp(x,iKvk)“)\ vk|)d:cdt
1 o — ul
+ g/ng(x, 3 )dwdt
1 (= )
< = Rz “r/pl
< 3/Q<p(x, X )dwdt
1 —
+ g/Qcp(x,iKvk)“)\ vk|)d:cdt
1 |vg — ul
+ = <p(x, )d:cdt.
3Jo
This implies that
up — ul 2 [vk —ul
/Qtp(x,T)dxdtS nggo(x,T)dacdt
1 || Qv
—l—ngo(x, Au‘ o Lm(@))dmdt.
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Let € > 0 there exists kg > 0 such that Vk > kg, we have

/ ga(z, M)dmdt <e
o A

and there exists p, > 0 such that Vi > py and for all £ > kg

el 5

A ’Lw(@) -

Then, we get

0
ol <

x, 1)dxdt
‘L“’(Q) /990( )

Finely, by using (i7i) of Lemma 4.1 and by letting u — 400, there exits
w1 > 0 such that

/ w(x, w)dmdt <eg, forallpu>p,.
0 3\

2. Since for all indice « such that |a| < 1, we have D (u,) = (DSu),, conse-
quently, the first part above applied on each D¢ u, gives the result.

O

Remark 5.1. If v € E,(Q), we can choose A arbitrary small since D(Q) is
(norm) dense in E,(Q).
Thus, for all A > 0, we have

/ gp(z, M)dzdt as pu — +0o0.
Q A

and u,, — u strongly in E,(Q).Idem for W E,(Q).

Lemma 5.4. If u,, — u in W&’ILW(Q) strongly (resp., for the modular conver-
gence), then (up), — w, strongly (resp., for the modular convergence).

Proof For all A > 0 (resp., for some A > 0),

/w(x, [0z (n))u = Dz (v) dzdt—)/ |D “” Ds “')dzdtHO,
o )

as n — 400. Then (uy,), — u, in WH*L,(Q) strongly (resp., for the modular
convergence). O
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6. Compactness Results

For each h > 0, define the usual translated 7, f of the function f by 7, f(t) =
flt+h).
If f is defined on [0, T] then 7, f is defined on [—h,T — h].
First of all, recall the following compactness results proved by the authors in [2].

Lemma 6.1. Let ¢ be a Musielak function. Let'Y be a Banach space such that
the following continuous imbedding holds L'(Q) C Y. Then for all ¢ > 0 and all

A > 0, there is C. > 0 such that for all u € WOI’JCLW(Q) with @ € K,(Q), we

have

Vu
luly < e /(p(x,u)dxdt—i—T + Cellull 10,7,y
Q A

Proof Since Wy L, () C L'(Q) with compact imbedding, then for all € > 0,
there is C. > 0 such that for all v € W3 L,(Q)

[vllL1 () < ellVullz, @ + Cellvlly- (6.1)

Indeed, if the above assertion holds false, there is ¢g > 0 and v,, € W(}Lw(ﬂ) such
that
lvnllz1 (@) = ollVoull L, @) + nllvally-

o : _ v
This gives, by setting w,, = TVonl o’

lwnll @) > €0 +nllwnlly, [[VwnllL, @) = 1.
Since (wy,),, is bounded in W L, (€2) then for a subsequence

wy, — w in Wy L, (Q) for o(I1L,, 11Ey) and strongly in L'(Q).

Thus, [|w|| L1 (o) is bounded and [[w, |y — 0 as n — +o0.
We conclude w,, — 0 in Y and that w = 0 implying that g9 < |lwn||L10) — 0, a
contradiction.
Using v = u(t) in (6.1) for all u € Wy"Ly,(Q) with %4 € K (Q) and ae. t €
[0,T7], we have

Ju(t) 220 < eIVt 1o + Cellu®ly-

Since fQ oz, M/\I’t)‘)dzdt < o0, we have thanks to Fubini’s theorem
Jo gp(z, M)d:c < oo for a.e. t € [0,7] and then

A
IVl <A [ oo )4 1),

which implies that

[u@®)lL, @) < E)\(/Q w(x, M)dw + 1) + Cellu(t) ||y
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Integrating this over [0, 7T yields

Vu
Jul]1 < eX /(p(x’u)dxdt—f—T +CE||u||L1(01T1y).
0 A

O

We also prove the following lemma which allows us to enlarge the space Y
whenever necessary.

Lemma 6.2. If F is bounded in Wol’ZLW (Q) and is relatively compact in L*(0,T,Y)
then F is relatively compact in L' (Q) (and also in E,(Q) for all Musielak function
V7<)

Proof Let e > 0 be given. Let C' > 0 be such that fQ go(ac, W—Cfl)dxdt <1 for all

fekF.
By the previous lemma, there exists C. > 0 such that for all u € W L,(Q) with

% € K@(Q)a

2eC [Vul
1 < ———— —_— 1 .
Il < gz (. o(o Sgt)de +7) + Colullary,

Moreover, there exists a finite sequence (f;); in F satisfying

g
Vf € F, Efi such that Hf — fiHLl(O,T,Y) < —.
2C.
So that,

13 |Vf — Vfl|
I1f=fillLr@) < m(/@sp(% —g Qwdi+T |+~ fil oy <&

and hence F is relatively compact in L'(Q).
Since 7 < ¢ then by using Vitali’s theorem, it is easy to see that F' is relatively
compact in E.(Q). O

Remark 6.1. If F C L'(0,7, B) is such that {% cf e F} is bounded in
F c L*0,T,B) then ||7nf — fllzi01,8) — 0 as h — 0 uniformly with
respect to f € F.

Lemma 6.3. Let ¢ be a Musielak function. If F is bounded in W'*L,(Q) and

{% e F} is bounded in W1 L,,(Q), then F is relatively compact in L*(Q).

Proof Let v and 6 be Musielak functions such that v < ¢ and 0 < ¢ near
infinity.
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For all 0 < t; < to < T and all f € F, we have

to
| son]
t1 W3 E,(Q)

T
/0 1w

Cullfllwe e, @)

Collfllwr =, @)
C.

INCIA A

where we have used the following continuous imbedding
Wy "Ly (Q) € Wy E+(Q) C LY0,T, Wy L, ().

Since the imbedding W L, (2) C L*(Q) is compact we deduce that (f:l2 F(t)dt)fer
is relatively compact in L'(Q2) and W=11(Q) as well.
On the other hand, {% fe F} is bounded in W17 Ly, (Q) and L'(0, T, W—11(Q))

as well, since
W E L, (Q) C WM Eg(Q) € L*(0,T, W tEe(Q)) C L*(0, T, W~ 11()),

with continuous imbedding. By Remark 3 of [12], we deduce that
l7nf — fllLro,r,w-11(0)) — 0 uniformly in f € F when h — +o00 and by
using Theorem 2 of [12], F is relatively compact in L' (0,7, W~=11(Q)).

Since L'(2) ¢ W=11(Q) with continuous imbedding we can apply Lemma 6.2 to
conclude that F is relatively compact in L1(Q). O

Lemma 6.4. Let ¢ be a Musielak function.
Let (uy), be a sequence of WH*L,(Q) such that

wy — u weakly in WH*Ly,(Q) for o(I1Ly, I1Ly)

and 5
% = hy + ky in D'(Q)

with (hn)n bounded in W% L, (Q) and (ky)n bounded in the space M(Q) set of
measures on (.
then u, — u strongly in L (Q).

loc

If further u, € Wol’ng,(Q) then u, — u strongly in L1(Q).

Proof It is easily adapted from that given in [8] by using Theorem 4.4 and
Remark 4.3 instead of Lemma 8 of [20]. O

7. Main results
For k > 0 we define the truncation at height k: Tj : R — R by:
s if [s| < k.

Tk(s){ ket ifls > k.

(7.1)
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We note also

5u0) = | TTk<o—>do—={ 7 sk (7.2

We define

Ty P (Q) = {u : Q — R measurable such that Ty(u) € Wy “L,(Q) Vk > 0}
We consider the following boundary value problem

% + A(u) + g(z,t,u, Vu) = f — div(F) in Q,
(P)su=0 on 0Q = 082 x [0,T7,
u(-0) = ug on €.

We will prove the following existence theorem

Let Q be a bounded Lipschitz domain in RY, ¢ and 1 be two complementary
Musielak-Orlicz functions satisfying the assumptions of Lemma 4.1 and ¢(z,t)
decreases with respect to one of coordinate of z, we assume also that (3.1)-(3.6)
and (3.7) hold true. Then the problem (P) has at least one entropy solution of the
following sense

u € Ty #(Q) N Wy " Ly(Q), Sk(u) € LN(Q), g(-,u, Vu) € L'(Q)

/QS;C(u(T) —o(T))dx + <%, Ti(u — v)> + /Q a(z,t,u, Vu) - VT (u — v)dzdt
+

/ g(x,t,u, Vu) Ty (u — v)dadt

< j fTk(u —v)dxdt + / F -VTi(u—v)dxdt + / Sk(ug — v(0))dx
Q Q Q

Yo € Wy L,(Q) N L®(Q) such that % €W Ly(Q) + LYQ).

Proof
Step 1 : Approximate problems

Consider the following approximate problem

@) Un € Wy "Lp(Q),  un(.,0) = ugy, in 9Q = 02 x [0, 77,
" 65‘;' —div(a(x,t,un, V) + gn(x, t,tn, Vu,) = fr —div(F) in Q,

where we have set g,(z,t,s,&) = Tn(g(x,t,s,€)). Moreover, the sequence(f,) C
D(Q) is such that f, — f strongly in LY(Q) and ||fnllz1g) < ||fllz1(g) and
(uon) C D(Q) is such that ug, — wug strongly in L*(Q) and |luon||ri0) <
luoll1(). Thanks to theorem 5.1 of [2], there exists at least one solution wu,
of problem (P,,).
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Step 2 : A priori estimates

In this section we denote by ¢;, i = 1,2, ... a constants not depends on k and n.
For k > 0, consider the test function T} (u,) in (P,), we have

/aunTk Uy )dxdt  + /a(x’t’Tk(un)aVTk(Un))'VTk(un)d.rdt
Q
+ /gn(zatvunavun>Tk(Un)d$dt
Q

= /fnTk(un)d:cdt+/ F - VTi(uy,)dxdt
Q Q

IN

171l ok + / F - VT (u)dadt. (7.3)
Q

On the one hand, let 0 < p < min(a, 1), (where « is the constant of (3.3)), then
by using the Young’s inequality, we have

1
/ F - VT (uy)dxdt = / —F - pVTy (up,)dzdt
Q QP

/Qu;(z, %|F|)dzdt

+p /Q go(ac, |VTk(un)|)dxdt. (7.4)

IN

Combining (7.3) and (7.4), we obtain

%Tk(un)dxdt + /a(ac,t,Tk(un),VTk(un))-VTk(un)dxdt
Q Q

+/ In (@, t, up, Vun ) Tr (uy)dadt < 1k + ¢ +p/ <p(x,|VTk(un)|)dacdt.(7.5)
Q Q

Using now (3.5) and (3.3) which implies that

Ouy,
/ LTk (uy)dadt —|— _p / a(z,t, T (un), V() - VTk(uy)dzdt < 1k + co.
Q

@
(7.6)
In other hand, the first term of the left hand side of the last inequality, reads as

/%T;c (tup )dzdt = /Sk(un(T))dx—/Sk(UOn)dz,
Q

Q
/ Sk (un(T))dz
Q

S Clk + co + / Sk(uon)dz
Q

Hence

a(z,t, T (un), VT (un)) - VTk (uy, ) dadt
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Using the fact that Si(0) > 0, |Sk(uon| < k|uon|, then (7.6) can be write as

a—p
«

/ a(x, t, Ti(un), VIk(up)) - VI (up)dzdt < csk + co. (7.7)
Q
Hence by using (3.3), we have
/ go(:z:, |VTk(un)|)dxdt < 4k + cs.
Q
By using the Lemma 4.5, we have

/Qcp(:c, M)dm < /an(:c, |VTk(un)|)dz < csk + 5, (7.8)

where c is the constant of Lemma 4.5.
Then (Tk(un))n and (VIx(uy))n are bounded in L, (), hence (T (uy,))x is bounded
in Wi L, (€2), there exist some vy, € W L, (£2) such that

Ty (un) = v, weakly in Wi L, (2) for o(I1L,, I1E,) (7.9)
Ti(un) — v strongly in E,(Q). '
Step 8 : Convergence in measure of (uy)n
Let k& > 0 large enough, by using (7.8), we have
1 k
meas{|un| >k} < ———— o(x, ~)dzdt
mfo(z, 3) Jua> A
zEQ
1 1
< o . et 3T e
zeﬂcp R Q
k
< 7.0‘; 5 v, vE>o0.
Info(z, 3)
Where ¢4 is a constant not dependent on k ,hence
k
meas{|u,| >k} < % — 0 as k — oo.
inf p(x, 3)
€N
For every A > 0 we have
meas{|un, — um| > A} < meas{|u,| > k}
+ meas{|un,| >k}
+ meas{|Tk(un) — Tk (um)| > A} (7.10)

Consequently, by (7.8) we can assume that (T%(uy)), is a Cauchy sequence in
measure in Q.
Let & > 0, then by (7.10) there exists some k = k(¢) > 0 such that

meas{|un, — um| > A} <e, forall n,m > ho(k(e), N).
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Which means that (u,), is a Cauchy sequence in measure in @, thus converge
almost every where to some measurable functions . Then

{ Th(un) — Th(u) weakly in Wy* L,(Q) for o(I1L,, TIE) (7.11)

Ti(un) — Ti(u)  strongly in E,(Q).
Step 4 : Boundedness of (a(-,-, Ty (un), VTi(un)))n in (Ly(Q))N
Let w € (E,(Q)" be arbitrary such that ||wl||, ¢ < 1, by (3.2) we have

w

(a(m,t, Ty (un), Vi (un)) — alz, t, T (), )) (VTh(un) — %) > 0.

v
hence

/ a(x,t,Tk(un),VTk(un))gdzdt §/ a(x,t, T (un), VI (un)) VT (uy)dadt
Q v Q

- /Q ozt T (),

%)(VTk(un) - %)d:cdt.
(7.12)

Thanks to (7.7), we have
/ a(x, Tk (un), VI (1)) VT (uy)dadt < csk + co.
Q
On the other hand, for A large enough (A > ), we have by using (3.1).

[ (A

IN

5(d(e) + ¥7 (v Ta(un))) + 05 o ) )
f,v 5

B ha(a,t) + 45 (7 (@, V| Ti(un))) + 97 (2, [w])
X/szz( Y )dadt

) dadt

IN

< 3%(/wa(hl(x,t))dxdt—|—/Qv(x,u|Tk(un)|)dxdt—i—/ng(x, |w|)dmdt)
< 3%(/wa(hl(z,t))d:cdt+/Q'y(:c,yk)d:cdt+/Q<p(z, |w|)dzdt>.

Now, since 7y grows essentially less rapidly than ¢ near infinity ad by using the
Remark 2.1, there exists r(k) > 0 such that v(z, vk) < r(k)e(x,1) and so we have

(A

< ;%(/sz(hl(:c,t))dxdt—f—r(k)/Q@(x,l)dacdt—i—/

o(x, |w|)dacdt).
Q
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hence a(x,t, Ty (un), %) is bounded in (Ly(Q))".
Which implies that second term of the right hand side of (7.12) is bounded, conse-
quently we obtain

/ 0, t, Tho(ttn), VT () Jwdadt < c(k),  for all w € (LP(Q))N with [|wllp.o <
Q

Hence by the theorem of Banach Steinhous the sequence (a(x,t, Tk (tn), VI (tn)))n
remains bounded in (Ly(Q))V.
Which implies that, for all k > 0 there exists a function hy € (Ly(Q))" such that

a(z, t, Ty (un), VT (un)) — hy weakly-star in (Ly(Q))Y for o(IILy, TIEp).
(7.13)

Step 5 : Modular convergence of truncations

For the sake of simplicity, we will write only e(n,j, u, s) to mean all quantities
(possibly different) such that

lim lim lim lim e(n,j,pu,s) =0.
n—+00 j—+00 p—+00 s—+00

Since Ty(u) € Wy"L,(Q) then there exists a sequence (a,) C D(Q) such that
(al) — Ti(u) for the modular convergence in W, *L,(Q). For the remaining
of this article, x, and x; ; will denoted respectively the characteristic functions
of the sets Qs = {(x,t) € @ : |VIi(u(x,t))| < s} and Qjs = {(z,t) € Q
IVTi(ag(z,1) < s}
Taking now T}, (u,, — Ti(a,),) as test function in (P,,), we get
Oun, ;
T (un — Th(ad),,)dvdlt
o Ot

Jr/ a(x, t, U, Vi) - VI (u, — Tk(ai)#)dzdt

Q

+/ G (2, b, U, V) Ty (i, — Tholel) ) ddt
Q

<+ | F VT Ti(a]))dedr
{177 (un =Tk (e) )1 <n}
Let 0 < p < min(1, @), by Young’s inequality, we have
Ou,, 4 ,
; %Tn(un — Ty (oe,) ) dadt + /Qa(x, by U, Vuy) - VT, (uy, — Tr(ad,),)dzdt
+/ Gn(z, t, U, V) Ty (un — Tk(ai)#)dzdt
Q

F
< ||f||177+/ , w(:ﬂ,u)dwdt
{1 (un—Tr(a) )| <n} p

w/wwWEWwﬂMQMM#
Q
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Using now (3.3) on the last term of the last inequality, we get

Oy, 4 ,
; %Tn(un — Ty (oe,) ) dadt + /Qa(x, ty U, Vuy) - VT, (uy, — Tr(ad,),)dzdt
+/ Gn (T, t, U, Vur) Ty (un — Tk(ai)#)dzdt

Q

F
< ||f||177+/ , w(:ﬂ,u)dwdt
{1 (un—T(a]) )| <} p

+§/ a(z,t, Tyt (Un), Vgn(un)) Vupdedt.
Q
Which implies that,
ou,, .
/ WTU(U’” — Tr(a,) ) dzdt (7.14)
Q
o —

+

p/ al(x, t, Tyyn(Un), VIkyn(un)) Vupdedt
Q

(0%

+/ G (2, b, Uy, Vi )Ty (w, — Tho(ed) ) ddt
Q
171
<can+ , Y(x, —)dxdt. (7.15)
{‘Tn(“n_Tk(ai)u)|<7l} p
The first term of the left hand side of the last equality reads as

iy : ou,  9T(al)
/Q T, — Tie) ) /Q (S5 — SN T, o, — Ti(o]) )

Ty (o) :
+/ %Tn(un — Ti(od) ) dadt.
Q

The second term of the last equality can be easily to see that is positive and the
third term can be written as

/ aTkg:i)uTn(un—Tk(ai)M)dmt =1 / (Ti(ad)=Tr () ) Ty (un =T (), ) dezdt,
@ Q

thus by letting n,7 — +o0o, and since (ai) — Ti(u) a.e. in @ and by using
Lebesgue Theorem,

/ (Ti(od) — Ti(0)) Tt — Tl derdt = / (T () — Ti(u)y) -
Q Q

T (u — Ti(uw) ) dedt 4+ e(n, 7).
Consequently

Ty j
/ %Tn(un = Ti(o)w)dadt > e(n, ).
Q
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Then, (7.14) can be write as

a —p/ a(x, ty n, V) Ty (wn — Ti(a),)dadt

(e, EI

{IT (wn—Tw (o) )| <n} p

/ t,Un, Vi) Ty, — Ti(o ) Ydxdt < ¢1n
/ Ydzdt + e(n, j).

(7.16)

On the other hand,

/a(:c,t,un,Vun) Ty (wn — T ))dzdt

Q

:/ | a5, t, T (1), VT (1)) (VT (1) — VTk(0d) .0t
{lun Tk(o‘k)ul<77}

+ / ) a(:z:, L, Un, V'U/n) -Vuydxdt
{|un,|>k:}ﬂ{\un—Tk(a{€)M\<77}

—/ ) a(m,t,un,Vun) VTk( )HX{|VTK( k)|>s}d.’1]dt
{lun[>EI0{|un =Tk (o) ul <n}

Thus, by using the fact that

/ _ a(x, t,un, Vi) - Vupdedt > 0
{lun [>E}0{|un =Tk () | <n}

We have

a— ,
P / _ a(,t, T (un), V() (VTk(un) — VTk(0q,)ux;,s)dedt
O Jun—Tr ()| <n}

Jr/ Gn (@, t, U, VUur )Ty (U — Tk(ai)#)d:cdt
Q

F
< +/ v P(x, 1] |)dmdt
(T (un =Tk (e3) )| <n} p

o / n —T (o
{Jwn [ >EFO{[wn =Tk ( i)u|<77}
€.( 7j)

+ a(m,t,un,Vun) VTk( )MX{\VTk(ak)\>s}d$dt

(7.17)

Now, using (3.5) and the fact that T),(u, — Tk(ai)#) has the same sign of w, on
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the set {|un| > k}, we get

a—p /
& J{Jun—Te(a])ul<n}

Jr/ Gn (T, t, Un, Vun) Ty (U — Tk(ai)#)d:cdt
{lun| <k}

a(z,t, Ti(un), VIi(un)) (VT (un) — VT (cd) X, o )dudt

F
<can +/ v U(x, u)d:cdt
{1y (un =Tk (e3) )| <n} p
a—0p /
O S| >k —Tr () | <n}
+e(n, j)

+ a(:c,t,un,Vun) . VTk(af)#X{\VTk(af)\>s}dzdt

(7.18)

Hence, by using (3.4), we get

a— 4
P / _ a(,t, T (un), V() (VTk(un) — VTi(0q,)ux;, s ) dedt
@ J{lun—Ti (o)l <n}
F
< cm+/ | 0. D ydzar
T (un =T (e,) )| <n} p
a—p k
+ / , a(z,t, un, V) - VIR(Q5) uX g1 vT, (k)| > s1 dTdl
& J{lunl>EIN{|un =Tk (a})ul<n} ’ HvTe)>2)
+e(n, j)

+ /{un|<k} br (hz(:c, t) + o(x, IVTk(un)D) T, (un — Ti(d),),.)|ddt,
(7.19)

where b, = sup{b(s) : |s| < k}.
Using now (7.8), there exists a constant ¢ > 0 depends on k such that

/ ‘ a(x,t, Tk (un), VT () (VTE (un) — VTk(ai)uxj,s)dxdt
{lun =Tk (o)l <n}

F
<csn+ / ‘ U(x, u)d:pdt
{7 (un —=Tx () )| <n} p

+/ _ a(z, t,un, Vuy,) - VTk(a?)#x{wn(a?)bs}du’cdt
{lun|>E}0{|un=Tx () | <n}
+e(n, j)-

(7.20)

Since a(z, t, Tty (tun )y VIity (tn)) = hitry weakly-star in (Ly (Q))N for o(I1Ly, 11E,),
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then

/ , a(z,t, up, Vuy,) - ka(O‘?)MX{\VTk(a’?)\>s}d$dt
{lun > K} {Jn —Ti (0 | <} ;

/ , hivn * VTk(05) X (97, (o)) 5y et + £(n).
{ul>k}n{lu—Tk(a3,)pul<n}

Now, letting j to infinity, we obtain

/ ‘ a(z,t, up, Vuy,) - VTk(a?)MX{WTk(a?)DS}d:Edt
{lun|>EIN{|un =Tk () l<n}

= / hk+77 . ka(u)MX{\VTk(u)|>s}d$dt + E(?’L,j).
Hul>kIN{lu=Tk(w)u|<n}

Hence, we get

/ , a(x, t, un, Vuy) - VTk(ozf)#x{WTk(a;?)bs}dzdt
{lun|>EIN{|un =Tk () |<n}

/ Pt - VT (W) X {91, (0) 53 dodt + €(n, J, 1)
{lul>k}n{lu—Tk(u)|<n}

= E(naja:u’a S)'

Then (7.20) becomes

/ ; a(@,t, Ti(un), VIi(un)) (VT (un) — VTk(ai)uxjﬁs)dxdt
{lun—Tk(ad) | <n}

F
<csn+ / ‘ P(x, u)cl:z:clt +e(n, 4, i, 8). (7.21)
{7y (un—Tx () ) I<n} p
On the other hand, remark that
/ _ a(z,t, Ti(un), Vi (un)) (VT (un) — VTi(ad) X, ) dudt
{lun =Tr () ul<n}

_ / | 0, t, T (t0n), VT (1)) (VTk (1) — VT (), o) et
{lun—Ti (ol )| <}

/ _ a(x, t, Te(un), VT (uy)) -
{lun =Tk () u|<n}

e (VTk(af)xj75 - VTk(ai)ijﬁs)dxdt (7.22)

+

for the second term of the last inequality, we have obviously that

/ (e T(un), V() (VTk(0¥) — VTi(ad) ;o) dedt
{lun =Tk ()| <n}

= ¢e(n, j, i, 8).
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Then (7.21) becomes

a(x,t, Tk (un), VI (1)) (VTE (un) — VTk(ai)xj,s)d:Edt

F
<em+ [ e Eyawdt 4 e, ). (7.23)
{\Tn(unka (ai)u)|<77}

/“Un—Tk (Oti)u|<n}

p

Hence by letting 7 to zero, we get

/ : a(@,t, Tr(un), VT (un)) (VT (un) — VTk(0d)x; ) dadt
{lun—Tr(a)ul<n}

< e(n, g, u, 5,1m).- (7.24)

Now, let 0 < 6 < 1, by applying the Young’s inequality with p = % and ——
Yn = (@, t, T (un), VT (un)), y = (x, t, T (un), VI (u)), we get

Bl

6
/Q e o ({a(yn) - a(y)} x [VTk(un) - VTk(u)D dwdt

_ /Q T ([a@n) ~ ay)] x [VTu(un) - vmu)})ex{mun)meq}dmt

1
< cmeas{|Tk(un) — (o)l < 77} o

+C(/Qm{|T e {a(yn) - a(y)} X {VTk(un) - VTk(u)}dxdt)e_

(7.25)

But we have for s > 7, v, = (2,6, Tk(un), VI (u)x,) and yo = (z,t, T (uy),
VTk(oz?)xjys), we have

/ [a(yn) - a(y)} x [VTk(Un) - VTk(u)} dxdt
QTO{‘Tk(un)ka(a;?)#|<77}

<

/ (o) — alw)] x [VTi(u) - VT(u)y, | ded
{ Tk (un) =T () | <n}

</ (o) — alya)] x [VTi(un) — VTi(ad)x;, .|
(T (un) =T () o |[<n}

+ a(yn) {VTk (Oé?)Xj,s - VT, (U)XS} dxdt

/{|Tk<un>—Tk<a§>u<n}
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+ / a(Yo) — a(yx)} VT (uy,)dxdt
Tk ()~ Ti () | <n}

- / a(ya) VT (0})x; odadt
Tk ()~ Ti () | <n}

+ / a(x, t, T (un), VT (1) X ) VTE(u)x drdt
Tk (un) =T (o) <0}
=Ji1+J+J3+ Jy+ J5. (7.26)

We shall go to limit as n, j, u and s to infinity in the last fifth integrals of the last
side.
Starting by Jp, one has

Jl < 5(n7jauvn) 7/

a(Ya) [VTk (Un) — VTk(oz?)xj,s dzdt.
(T (un) =Tk () | <n}

Since a(ya) converge strongly to a(x,t, Ty(u), VIk(af)x; ) in (Ex(Q))N and
VT (un) = VT (u) weakly in (L,(Q))Y, then

/ (o) [VT 0r) — VT (0b)x; ] dadt
Tk ()~ Ti () | <n}

= / a(x,t, Ty (u), VTk(af)XLs) [VTk(u) - VTk(af)XLs} dxdt
(T (w) =T () | <n}
+e(n).

which gives by letting j — 00, u — 00 and s — oo respectively

/ a(Yo) [VTk (un) — VT, (a?)xjys} dxdt
{ITk (un) =T (a¥) | <n}

/ az, t, T(u), VTi(u)x,) [VTk(u) - VTk(u)xs} dadt
{17 ()= T ()| <}

+e(n, j)

= [ oot Tu(00, VT [VTibo) ~ Tttt et

= E(naja s S)'
Finally, we get
Jl :E(Hajauasan)' (727)
Similarly, we get
J2 :J3 :J4:J5 :E(naja,uasan)' (728)

Combining (7.25)-(7.28), we get

0
lim ([a(yn) - a(y)} X {VTk(un) - VTk(u)}) dxdt = 0.

n—-+oo Qa—
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and, like a same argument in [3], we have
VT (un) — VT (u) as n — +oo for the modular convergence, (7.29)

Step 6 : Compactness of the nonlinearities

In this step, we need to prove that
Gn (T, 1, U, V) — g(2,t,u, Vu) strongly in L' (Q). (7.30)
By virtue of (7.29), one has
In (2, t, upn, Vi) — gz, t,u, Vu) a.e. in Q. (7.31)

Let E be measurable subset of @ and let m > 0. Using (3.3) and (3.4), we can
write

/ |gn(:c, t; Up, vun)|d1'dt
E

- / (G0, 0, V)| derdt + / (g (2 4, V)| derdt
Eﬂ{lunlgm}

En{|un|>m}

< b(m)/ ho(x, t)dxdt + b(m)/ a(x, t, Ty (un), Vi (tn)) - Vi (u,)dzdt
E E
mJg

Taking w,, as a test function in (P, ) and using the same argument as in step 2,
there exists a constant ¢ > 0 such that

/ In (2, t, Up, Vg ) uydedt < c.
E

Then, we have

1
lim — | gn(x,t,un, Vuy)u,dedt = 0.
E

m——+oo M

Thanks to (7.29) the sequence (a(z, t, T (tn), Vm (tn)) T (tn))ns is equi-integrable,
the fact which allows us to get

lim sup/ a(x,t, T (un), VT (un)) - VI (uy)dzdt = 0.
E

[E|=0 n

This shows that g, (z, t, uy,, Vuy,) is equi-integrable. Thus, Vitali’s theorem implies
that g(z,t,u, Vu) € L(Q) and

Gn (T, Up, V) — gz, t,u, Vu) strongly in L'(Q).

Step 7 : Passage to the limit
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Let v € Wy " Ly(Q) such that ¥ € W=17Ly,(Q) + L1(Q).
There exists a prolongation T of v such that (see the proof of lemma )

v=wv on(Q,
T € Wy Lo(Q x R) N LYQ x R) N L2(Q x R),
and 9L € W hTL,(Q x R) 4+ LY(Q x R).

By theorem , there exists a sequence (w;); in D(£2 x R) such that w; — 7 in
Wy Ly(Q x R) and 244 — 90 i =171, (Q x R) + L (2 x R) for the modular
convergence and ||wjloo,0 < (N + 2)||v|ls0,0-

Using Tk(un — w;)X[o,- as a test function in (Py), then for every 7 € [0, 7], one
has

oun,
/ W Tk ( — Wy )d:Cdt

-

+/ a(z,t, up, V) - VI (u, — w;)dedt

-

+/ gn(zatvunvvun>Tk(Un — wj)dl'dt
Q

-

< Jn Tk (un — w;)dedt
QT

+/ F - VTj(u, —wj)ddzdt. (7.32)

-

For the first term of (7.32), we get

/ %Tk( —wj;)dxdt = {/ Tk(unwj)dz]
ot Q o

ow;
+/, 815] T (wn, — wj)dxdt

[ros-w]

—|—/ Ow; — LTy (u — w;)dzdt + £(n)

_ /QT ST — w;)dedt

for the second term of (7.32), we have if |u,| > A then |u, —w;| > |un|—||wjl|eo > ,
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therefore {|u, —wj| <k} C {Jun| < k+ (N + 2)||v||co}, which implies that, we get

lim inf/ al(x, t, U, V) VT (u, — w;) dedt
n—-+oo Q
= /Qa(?/|“||)(VTk+<N+2>||u|w (1) = VW)X {juv|<k) dadt,
= / a(@, t,u, Vu) (Vu — Vwj) X qju—w, <k} drdt

o <

= / a(z, t,u, Vu)VTi(u — w;) dedt,
Q

(7.33)

where yv|| = (2,t, Trp (N+2) o) (W), VTt (N+2)|10]lo (u)). Consequently, y using
the strong convergence of (g, (x,t, tn, Vy))n and ((fn))n, one has

ou
/QT aTk(u — w;)dxdt

+/ a(z,t,u, Vu) - VT (u — w;)dxdt

-

+/ gz, t,u, Vu)Ti(u — wj)dedt

-

< fT(u — wj)dzdt
QT

+ F -VTi(u— wj)ddzdt. (7.34)
Q-

Thus , by using the modular convergence of j, we achieve this step.
As a conclusion of Step 1 to Step 7, the proof of Theorem 7 is complete.
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