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On the Paranormed Space Mu(t) of Double Sequences ∗

Feyzi Başar* and Hüsamettin Çapan

abstract: In this paper, we introduce the paranormed sequence space Mu(t)
corresponding to the normed space Mu of all bounded double sequences. We ex-
amine general topological properties of this space and determine its alpha-, beta-
and gamma-duals. Furthermore, we characterize some classes of four-dimensional
matrix transformations concerning this space and its dual spaces.
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1. Introduction and Notations

The present section is devoted to recall some basic facts concerning the spaces
of double sequences and establish some properties of those spaces.

Let us point out that the theory of (single) sequence spaces is exhaustively
discussed in the recent books [1,2].

Ω, the set of all complex valued double sequences, forms a vector space with
coordinatewise addition and scalar multiplication. Any vector subspace of Ω is
called as a double sequence space.

A double sequence x = (xkl) in Ω is said to be bounded if

‖x‖∞ = sup
k,l∈N

|xkl| < ∞

and the set of all bounded double sequences is denoted by Mu which is a Banach
space with the norm ‖ · ‖∞, where N = {0, 1, 2, . . .}.

The well-known convergence rule for double sequences was introduced by Pring-
sheim [3]. A double sequence x = (xkl) ∈ Ω is called convergent in the Pringsheim’s
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sense to the limit L ∈ C (shortly, p−convergent to L) if for every ε > 0, there exists
an N = N(ε) ∈ N such that |xkl − L| < ε for all k, l > N ; where C denotes the
complex field. The space of all p−convergent double sequences is denoted by Cp.
In addition to x ∈ Cp, if x ∈ Mu, then x is said to be boundedly convergent to L in
Pringsheim’s sense (shortly, bp−convergent to L) and the set of all such sequences
is denoted by Cbp.

The main drawback of the Pringsheim’s convergence is that a p−convergent
double sequence need not be bounded. In [4], Hardy lacked this disadvantage by
giving the definition of regular convergence. A double sequence x = (xkl) ∈ Cp is
said to be regularly convergent to the limit L ∈ C (shortly, r−convergent to L) if
the limits Ik := liml→∞ xkl (k ∈ N) and Jl := limk→∞ xkl (l ∈ N) exist. Note that,
in this case we have that the limits limk→∞ Ik = L and liml→∞ Jl = L, where L
is the p−limit of x. As seen from the definition, in addition to the Pringsheim’s
convergence, the regular convergence requires the convergence of rows and columns
of a double sequence, and so it is bounded. The space of all such sequences is
denoted by Cr and the inclusion Cr ⊂ Cbp strictly holds.

The spaces of all null sequences contained in the sequence spaces Cp, Cbp and Cr

are denoted by Cp0, Cbp0 and Cr0; respectively. Móricz [5] proved that Cbp, Cr, Cbp0

and Cr0 are Banach spaces with the norm ‖ · ‖∞. Also, he defined the pseudonorm

‖x‖Cp
= lim

N→∞
sup

k,l≥N
|xkl|

for Cp, and showed that Cp is complete under ‖ · ‖Cp
. Moreover, he remarked that

‖x‖Cp
= 0 holds identically for any x ∈ Cp0. Note that because of the topological

structure of the spaces Cp and Cp0, we can not define a norm for them.
For short, throughout the text the summations without limits run from 0 to

∞, for example
∑

k,l means that
∑∞

k,l=0, and we assume that ϑ denotes any of the
convergence rule symbols p, bp or r.

Let λ be a double sequence space converging with respect to some linear con-
vergence rule ϑ − lim : λ → C. The sum of a double series

∑

k,l xkl with respect

to this rule is defined by ϑ −
∑

k,l xkl = ϑ − limm,n→∞

∑m,n
k,l=0 xkl. If there is no

confusion, we use
∑

k,l xkl instead of ϑ−
∑

k,l xkl.
The space of all absolutely summable double sequences is denoted by Lu, that

is

Lu :=

{

x = (xkl) ∈ Ω : ‖x‖Lu
=
∑

k,l

|xkl| < ∞

}

,

which is a Banach space with the norm ‖ · ‖Lu
(see [6]).

Let X be a real or complex linear space, g be a function from X to the set R
of real numbers. Then, the pair (X, g) or shortly X is called a paranormed space
and g is a paranorm for X , if the following axioms are satisfied for all elements
x, y ∈ X :

(i) g(x) ≥ 0.
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(ii) g(x) = 0 if x = θ, where θ is the zero vector in X .

(iii) g(x) = g(−x).

(iv) g(x+ y) ≤ g(x) + g(y).

(v) Scalar multiplication is continuous, i.e., |αi−α| → 0 and g(xi−x) → 0 imply
g(αix

i − αx) → 0, as i → ∞, for all α’s in R and all x’s in X .

Throughout the paper, t = (tkl) will denote a double sequence of strictly positive
real numbers (not necessarily bounded, in general) and we shall write for simplicity
in notation that inf tkl = infk,l∈N tkl and sup tkl = supk,l∈N tkl.

In the present study; we define the paranormed double sequence space Mu(t)
of all bounded double sequences, as follows:

Mu(t) :=

{

x = (xkl) ∈ Ω : sup
k,l∈N

|xkl|
tkl < ∞

}

.

Let t = (tkl) ∈ Mu and M = max{1, sup tkl}. Now, one can easily observe
by similar approach used in single sequences that the set Mu(t) is complete para-
normed space with the paranorm

g(x) = sup
k,l∈N

|xkl|
tkl/M

if and only if inf tkl > 0. When all terms of t = (tkl) are constant and equal to
q > 0, then Mu(t) = Mu.

By ekl =
(

eklij
)

, we mean the double sequence defined by

eklij :=







1 , (i, j) = (k, l),

0 , (i, j) 6= (k, l)

for each k, l ∈ N. All considered spaces contain Φ, the set of all finitely non-zero
double sequences, i.e.,

Φ :=
{

x = (xkl) ∈ Ω : ∃ N ∈ N ∋ ∀ (k, l) ∈ N
2\[0, N ]2, xkl = 0

}

:= span
{

ekl : k, l ∈ N

}

.

Also, we use e, ek and el given by

e :=
∑

k,l e
kl; the double sequence that all terms are one,

ek :=
∑

l e
kl; the double sequence that all terms of k-th row are one and

other terms are zero,

el :=
∑

k e
kl; the double sequence that all terms of l-th column are one and

other terms are zero.

It is easy to see that the set
{

ekl, ek, e
l, e; k, l ∈ N

}

generates a subspace of the
space Mu(t).
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2. The Sequence Space Mu(t)

In this section, we give inclusion theorems related to the space Mu(t), and
examine some topological properties of this space.

Theorem 2.1. Let inf tkl > 0. Then, the set Mu(t) is overlap with Cp and Cp0 but
neither contains the other.

Proof: It is trivial that ekl ∈ Cp0 ∩ Mu(t) and {(−1)k+l} ∈ Mu(t) \ Cp. Define
x = (xkl) by

xkl :=







l , k = 0 and l ∈ N,

0 , k ≥ 1 and l ∈ N.

Then, x ∈ Cp0 \Mu(t). Hence, Mu(t) is overlap with both the spaces Cp and Cp0

but neither contains the other. ✷

Theorem 2.2. The following statements hold:

(i) Mu ⊂ Mu(t) if and only if sup tkl < ∞.

(ii) Mu(t) ⊂ Mu if and only if inf tkl > 0.

(iii) Mu(t) = Mu if and only if 0 < inf tkl ≤ sup tkl < ∞.

Proof: (i) Sufficiency part is trivial. So, we omit it. Suppose that Mu ⊂ Mu(t)
but sup tkl = ∞. Then, there exist the index sequences (ki) and (li) of natural
numbers, at least one of them is strictly increasing, such that tki,li > i + 1. We
define the sequence x = (xkl) ∈ Mu by

xkl :=







2 , k = ki and l = li,

0 , k 6= ki or l 6= li

for all k, l ∈ N. Then, one can easily see that

sup
k,l∈N

|xkl|
tkl = sup

i∈N

2tki,li > sup
i∈N

2i+1 = ∞

which gives the fact x ∈ Mu \Mu(t). This contradicts Mu ⊂ Mu(t). Hence, sup tkl
must be finite.

(ii) We only show the necessity part. Let Mu(t) ⊂ Mu but inf tkl = 0. Then,
again there exist the index sequences (ki) and (li) of natural numbers, at least one
of them is strictly increasing, such that tki,li < 1/(i+1). We define x = (xkl) /∈ Mu

by

xkl :=







i+ 1 , k = ki and l = li,

0 , k 6= ki or l 6= li
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for all k, l ∈ N which gives that

sup
k,l∈N

|xkl|
tkl = sup

i∈N

(i+ 1)tki,li ≤ sup
i∈N

(i+ 1)1/(i+1) ≤ 2,

i.e., x ∈ Mu(t) \Mu, a contradiction. Therefore, inf tkl must be positive.

(iii) This is trivial from Parts (i) and (ii) of the present theorem. ✷

Theorem 2.3. Cbp ⊂ Mu(t) if and only if t ∈ Mu.

Proof: We only consider the necessity part. Let Cbp ⊂ Mu(t) but t /∈ Mu. Then,
the sequence x = (xkl) with xkl := 2 for all k, l ∈ N, is in the set Cbp \Mu(t), a
contradiction. Hence, t must be in Mu. ✷

Now, one can easily derive the following corollary:

Corollary 2.4. Cbp0 ⊂ Mu(t) if and only if t ∈ Mu.

Theorem 2.5. The set Mu(t) is a linear space if and only if t ∈ Mu.

Proof: We only show the necessity part. Let Mu(t) be a linear space but t /∈ Mu.
Consider the sequences x and t used in the proof of Part (i) of Theorem 2.2. Then,
the sequence x/2 ∈ Mu(t) while x /∈ Mu(t). However, this contradicts the linearity
of the set. Therefore, t must be in the space Mu. ✷

Definition 2.6. [8, p. 225] A double sequence space λ containing Φ is said to be
monotone if xu = (xklukl) ∈ λ for every x = (xkl) ∈ λ and u = (ukl) ∈ {0, 1}N×N,
where {0, 1}N×N denotes the set of all double sequences consisting of 0’s and 1’s.

If λ is monotone, then λα = λβ(p) = λβ(bp) = λβ(r). But the converse is not
true, in general.

Theorem 2.7. The space Mu(t) is monotone for all t’s.

Proof: Let x = (xkl) ∈ Mu(t) and u = (ukl) ∈ {0, 1}N×N. Since |xklukl|
tkl ≤

|xkl|
tkl for all k, l ∈ N, it is clear that xu ∈ Mu(t). Hence, Mu(t) is monotone. ✷

3. Dual Spaces of Mu(t)

In this section, we determine the dual spaces of the set Mu(t) for all t’s. In the

rest of the study, ζ denotes any of the symbols α, β(ϑ) or γ, and λnζ =
{

λ(n−1)ζ
}ζ

for any space λ and an integer n ∈ N1, the set of positive integers.
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The α-dual λα, the β(ϑ)-dual λβ(ϑ) and γ-dual λγ of a double sequence space
λ are respectively defined by

λα :=

{

a = (akl) ∈ Ω :
∑

k,l

|aklxkl| < ∞ for all x = (xkl) ∈ λ

}

,

λβ(ϑ) :=

{

a = (akl) ∈ Ω :

(

m,n
∑

k,l=0

aklxkl

)

m,n∈N

∈ Cϑ for all x = (xkl) ∈ λ

}

,

λγ :=

{

a = (akl) ∈ Ω : sup
m,n∈N

∣

∣

∣

∣

∣

m,n
∑

k,l=0

aklxkl

∣

∣

∣

∣

∣

< ∞ for all x = (xkl) ∈ λ

}

.

It is easy to see for any two spaces λ and µ of double sequences that µζ ⊂ λζ

whenever λ ⊂ µ. Also, λα ⊂ λβ(ϑ) and λα ⊂ λγ . Further, λβ(η) ⊂ λγ for η ∈
{bp, r}, and if λ is monotone then λα = λβ(ϑ) ⊂ λγ .

Now, we define the sets M
(1)
∞ (t) and M

(1)
0 (t), as follows:

M
(1)
∞ (t) :=

∞
⋂

N=2

{

a = (akl) ∈ Ω :
∑

k,l

|akl|N
1/tkl < ∞

}

,

M
(1)
0 (t) :=

∞
⋃

N=2

{

a = (akl) ∈ Ω : sup
k,l∈N

|akl|N
−1/tkl < ∞

}

.

One can see that the sets M
(1)
∞ (t), M

(1)
0 (t) are monotone spaces for all t’s and

(i) M
(1)
∞ (t) = Lu if and only if inf tkl > 0,

(ii) M
(1)
0 (t) = Mu if and only if inf tkl > 0.

Theorem 3.1. {Mu(t)}
ζ
= M

(1)
∞ (t).

Proof: This is similar to the proof given for α− and γ−duals of the spaces of
single sequences. Additionally, since Mu(t) is monotone; we get {Mu(t)}

α =

{Mu(t)}
β(ϑ)

= M
(1)
∞ (t). ✷

Theorem 3.2.
{

M
(1)
∞ (t)

}ζ

= M
(1)
0 (t).

Proof: M
(1)
0 (t) ⊂

{

M
(1)
∞ (t)

}ζ

: Let a = (akl) ∈ M
(1)
0 (t) and x = (xkl) ∈ M

(1)
∞ (t).

Then, we get for some integer N > 1 that

∑

k,l

|aklxkl| =
∑

k,l

∣

∣

∣
aklN

−1/tklxklN
1/tkl

∣

∣

∣

≤ sup
k,l∈N

|akl|N
−1/tkl

∑

k,l

|xkl|N
1/tkl < ∞
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which gives the fact a ∈
{

M
(1)
∞ (t)

}α

. Furthermore, since M
(1)
∞ (t) is monotone, we

have the inclusions

M
(1)
0 (t) ⊂

{

M
(1)
∞ (t)

}α

=
{

M
(1)
∞ (t)

}β(ϑ)

⊂
{

M
(1)
∞ (t)

}γ

. (3.1)

{

M
(1)
∞ (t)

}ζ

⊂ M
(1)
0 (t): Let ζ = γ and suppose that a = (akl) ∈

{

M
(1)
∞ (t)

}γ

\

M
(1)
0 (t). Then, we have for any x = (xkl) ∈ M

(1)
∞ (t) and all integers N > 1 that

sup
m,n∈N

∣

∣

∣

∣

∣

m,n
∑

k,l=0

aklxkl

∣

∣

∣

∣

∣

< ∞ and sup
k,l∈N

|akl|N
−1/tkl = ∞.

Then, we may find the index sequences (ki) and (li) of natural numbers, at least
one of them is strictly increasing such that

|aki,li |(i + 2)−1/tki,li > (i+ 2)2.

We define x = (xkl) by

xkl :=







(i+ 2)−2(i+ 2)−1/tklsgn akl , k = ki and l = li,

0 , k 6= ki or l 6= li

for all k, l ∈ N. Then, we obtain for any integer N > 1 that

∑

k,l

|xkl|N
1/tkl =

∑

i

N1/tki,li

(i+ 2)2(i + 2)1/tki,li

≤
N−3
∑

i=0

N1/tki,li

(i+ 2)2(i + 2)1/tki,li
+

∞
∑

i=N−2

1

(i + 2)2
< ∞,

i.e., x ∈ M
(1)
∞ (t), and additionally

sup
m,n∈N

∣

∣

∣

∣

∣

m,n
∑

k,l=0

aklxkl

∣

∣

∣

∣

∣

>
∑

i

1 = ∞,

i.e., a /∈
{

M
(1)
∞ (t)

}γ

, a contradiction. Hence, a must be in M
(1)
0 (t). Thus, we get

the inclusions

{

M
(1)
∞ (t)

}α

=
{

M
(1)
∞ (t)

}β(ϑ)

⊂
{

M
(1)
∞ (t)

}γ

⊂ M
(1)
0 (t). (3.2)

Therefore, the desired result follows by combining (3.1) and (3.2). ✷

Theorem 3.3.
{

M
(1)
0 (t)

}ζ

= M
(1)
∞ (t).
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Proof: M
(1)
∞ (t) ⊂

{

M
(1)
0 (t)

}ζ

: Now, this part is trivial from the proof of first

inclusion of Theorem 3.2.
{

M
(1)
0 (t)

}ζ

⊂ M
(1)
∞ (t): Let ζ = γ and suppose that a = (akl) ∈

{

M
(1)
0 (t)

}γ

\

M
(1)
∞ (t). Then, we have for some integer N > 1 that

∑

k,l |akl|N
1/tkl = ∞. We

define x = (xkl) by xkl := N1/tklsgn akl for all k, l ∈ N and some integer N > 1.

Then, we get supk,l∈N |xkl|N
−1/tkl = 1, that is, x ∈ M

(1)
0 (t) but

sup
m,n∈N

∣

∣

∣

∣

∣

m,n
∑

k,l=0

aklxkl

∣

∣

∣

∣

∣

=
∑

k,l

|akl|N
1/tkl = ∞,

i.e., a /∈
{

M
(1)
0 (t)

}γ

, a contradiction. Hence, a must be in M
(1)
∞ (t). Thus, we

obtain the inclusions
{

M
(1)
0 (t)

}α

=
{

M
(1)
0 (t)

}β(ϑ)

⊂
{

M
(1)
0 (t)

}γ

⊂ M
(1)
∞ (t).

This step completes the proof. ✷

Now, one can easily derive the following corollary proved by mathematical in-
duction for all k ∈ N1.

Corollary 3.4. {Mu(t)}
nζ

:=











M
(1)
∞ (t) , n = 2k − 1,

M
(1)
0 (t) , n = 2k.

If we choose 0 < inf tkl ≤ sup tkl < ∞, then we have the following conclusion
for all k ∈ N1:

Corollary 3.5. M
nζ
u :=







Lu , n = 2k − 1,

Mu , n = 2k.

Definition 3.6. [9, p. 342] Let λ be a sequence space. Then, λ is called a ζ−space
if λ = λ2ζ . Further, an α−space is also called Köthe space or perfect sequence space.

Theorem 3.7. Mu(t) is perfect if and only if 0 < inf tkl ≤ sup tkl < ∞.

Proof: Let 0 < inf tkl ≤ sup tkl < ∞. Then, we have Mu(t) = Mu = M
(1)
0 (t).

Hence, Mu(t) is perfect.

Conversely, suppose that Mu(t) is perfect, i.e., Mu(t) = M
(1)
0 (t), but inf tkl = 0

or sup tkl = ∞.
(i) Let inf tkl = 0. Then, we put tki,li < 1/(i + 1) and define the sequence

x = (xkl) by

xkl :=







(i+ 1)N1/tkl , k = ki and l = li,

0 , k 6= ki or l 6= li



On the Paranormed Space Mu(t) of Double Sequences 107

for all k, l ∈ N and for some integer N > 1. Therefore, we obtain

sup
k,l∈N

|xkl|
tkl = N sup

i∈N

(i+ 1)tki,li ≤ N sup
i∈N

(i+ 1)1/(i+1) ≤ 2N,

i.e., x ∈ Mu(t) but

sup
k,l∈N

|xkl|N
−1/tkl = sup

i∈N

(i+ 1) = ∞,

i.e., x /∈ M
(1)
0 (t), a contradiction. Hence, inf tkl must be positive.

(ii) Let sup tkl = ∞. Then, we put tki,li > i + 1 and define the sequence
x = (xkl) by

xkl :=







2N1/tkl , k = ki and l = li,

0 , k 6= ki or l 6= li

for all k, l ∈ N and for some integer N > 1. Therefore, it is trivial that x ∈

M
(1)
0 (t) \Mu(t), a contradiction. Hence, sup tkl must be finite. ✷

Since there are various convergence rules for double sequences, we give a new
definition for β−space.

Definition 3.8. Let λ be a double sequence space and the symbols ϑ, ν denote any

convergence rule. Then, we call that λ is a β(ϑ, ν)−space if λ =
{

λβ(ϑ)
}β(ν)

for

fixed ϑ, ν’s and is a β−space if λ =
{

λβ(ϑ)
}β(ν)

for all ϑ, ν’s. In this section, we

only use this definition for ϑ, ν ∈ {p, bp, r}.

We can give the following theorem without proof since it can be proved in the
similar way used in the proof of Theorem 3.7:

Theorem 3.9. The following statements hold:

(a) Mu(t) is a β−space if and only if 0 < inf tkl ≤ sup tkl < ∞.

(b) Mu(t) is a γ−space if and only if 0 < inf tkl ≤ sup tkl < ∞.

Now, we have the following corollary:

Corollary 3.10. Mu(t) is a ζ−space if and only if 0 < inf tkl ≤ sup tkl < ∞.

Also, one can easily show the following theorem:

Theorem 3.11. M
(1)
∞ (t) and M

(1)
0 (t) are ζ−spaces for all t’s.
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4. Matrix Transformations

Let λ and µ be two double sequence spaces, and A = (amnkl) be any four-
dimensional complex infinite matrix. Then, we say that A defines a matrix trans-
formation from λ into µ and we write A : λ → µ, if for every sequence x = (xkl) ∈ λ
the A-transform Ax = {(Ax)mn}m,n∈N of x exists and belongs to µ; where

(Ax)mn = ϑ−
∑

k,l

amnklxkl for each m,n ∈ N. (4.1)

We denote the set of all four-dimensional matrices, transforming the space λ into
the space µ, by (λ : µ). Thus, A ∈ (λ : µ) if and only if the double series on the

right side of (4.1) converges in the sense of ϑ, i.e., Amn ∈ λβ(ϑ) for each m,n ∈ N,
and also we have Ax ∈ µ for every x ∈ λ; where Amn = (amnkl)k,l∈N for each
m,n ∈ N. Here, we note that on four-dimensional matrix transformations ϑ must
be fixed, in general, otherwise the results may be incorrect. In this paper, we do
not fix ϑ since the β(ϑ)−duals of corresponding spaces are identical.

For allm,n, k, l ∈ N, we say that A = (amnkl) is a triangular matrix if amnkl = 0
for k > m or l > n or both, [10]. Following Adams [10], we also say that a triangular
matrix A = (amnkl) is called a triangle if amnmn 6= 0 for all m,n ∈ N. Referring
to Cooke [11, Remark (a), p. 22], one can conclude that every triangle matrix has
an unique inverse which is also a triangle.

Theorem 4.1. Let t = (tkl), q = (qkl) be any sequences of strictly positive real
numbers and q ∈ Mu. Then, the necessary and sufficient conditions for A =
(amnkl) ∈ (X : Y ) can be read from the following table:

Y X Mu(t) M
(1)
∞ (t) M

(1)
0 (t)

Mu 1. 2. 1.
Mu(q) 1. 2. 1.

where

1.

sup
m,n∈N

∑

k,l

|amnkl|N
1/tkl < ∞ for all integers N > 1. (4.2)

2.

sup
m,n,k,l∈N

|amnkl|N
−1/tkl < ∞ for some integer N > 1. (4.3)

Proof: Necessity. We only show the necessity part for the class (Mu(t) : Mu),
since it is similar for the other classes of four-dimensional matrices.

Let A = (amnkl) ∈ (Mu(t) : Mu). Then, Ax must exist and belongs to the
space Mu for every x ∈ Mu(t). In order to Ax be exist, the double sequence Amn =
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(amnkl)k,l∈N must be in {Mu(t)}
β(ϑ)

= M
(1)
∞ (t) for each m,n ∈ N. Therefore, the

necessity of (4.2) is immediate.
Sufficiency. Here, we only show the sufficiency part for the class (X : Mu(q)),

where X denotes any of the spaces Mu(t) or M
(1)
∞ (t) and q ∈ Mu. For this, we

suppose that the characterizing conditions of the class (X : Mu(q)) are satisfied
and x ∈ X .

Let X = Mu(t). Since x ∈ Mu(t), we can choose N > 1 such that |xkl|
tkl ≤ N .

Then, we get

sup
m,n∈N

∣

∣

∣

∣

∣

∑

k,l

amnklxkl

∣

∣

∣

∣

∣

qmn

≤ sup
m,n∈N

(

∑

k,l

|amnkl||xkl|

)qmn

≤ sup
m,n∈N

(

∑

k,l

|amnkl|N
1/tkl

)qmn

< ∞

which gives Ax ∈ Mu(q) under the condition q ∈ Mu. Therefore, A ∈ (Mu(t) :
Mu(q)).

Let X = M
(1)
∞ (t). Then, for some integer N > 1 we have

sup
m,n∈N

∣

∣

∣

∣

∣

∑

k,l

amnklxkl

∣

∣

∣

∣

∣

qmn

≤ sup
m,n∈N

(

∑

k,l

|amnkl|N
−1/tkl |xkl|N

1/tkl

)qmn

≤ sup
m,n∈N

(

sup
k,l∈N

|amnkl|N
−1/tkl

∑

k,l

|xkl|N
1/tkl

)qmn

< ∞,

which gives Ax ∈ Mu(q) under the condition q ∈ Mu. Therefore, A ∈ (M
(1)
∞ (t) :

Mu(q)). ✷

Let 0 < inf tkl ≤ sup tkl < ∞ and q ∈ Mu. Then, we have the following
corollary:

Corollary 4.2. The necessary and sufficient conditions for A = (amnkl) ∈ (X : Y )
can be read from the following table:

Y X Mu Lu Mu

Mu 3. 4. 3.
Mu(q) 3. 4. 3.

where

3.

sup
m,n∈N

∑

k,l

|amnkl| < ∞.

4.

sup
m,n,k,l∈N

|amnkl| < ∞.
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5. Conclusion

In [7], Gökhan and Çolak introduced the space Mu(t). They stated by Part (ii)
of Theorem 2 that Mu(t) is a paranormed space if and only if infk,l∈N1

tkl > 0, and
examined its dual spaces. However, the proofs are very complicated and contain
some missing points. For instance, in the proof of Part (i) of Theorem 1 in [7],
they wrote for a double sequence (pmn) of strictly positive real numbers that if
infm,n∈N1

pmn = 0 then there are two cases:

(a) There exist a strictly increasing sequence {m(i)} of positive integers and a
fixed positive integer j0 such that pm(i),n(j0) < 1/(i+ 1).

(b) There exist strictly increasing sequences {m(i)} and {n(j)} of positive inte-
gers such that pm(i),n(j) < 1/(i+ j) < 1/i.

Nevertheless, these cases do not include all possibilities whenever infm,n∈N1
pmn =

0. One can easily observe this by means of the sequence p = (pmn) defined by

pmn :=

{

1/m , m = n,
1 , m 6= n

for all m,n ∈ N1. Clearly, infm,n∈N1
pmn = 0 and Part (a) is invalid. To obtain

pm(i),n(j) < 1/i, we must take m(i) = n(j) for all i, j ∈ N1. This implies that
m(i) = n(j) = k for all i, j ∈ N1 and a fixed integer k ∈ N1. Therefore, they
are not increasing sequences. Also, even if they are strictly increasing sequences,
we get for infinitely many m(i) and n(j)’s that pm(i),n(j) = 1. Thus, Part (b) is
invalid too. In this paper, we repair such mistakes and also calculate n−th α−,
β(ϑ)− and γ−duals of the space Mu(t). Moreover, we characterize some classes
of four-dimensional matrix transformations including the space Mu(t) and its dual
spaces. So, the present study may consider as a complement of Gökhan and Çolak
[7].

As a natural continuation of this paper, our next works will be devoted for in-
vestigation of the paranormed spaces Cp(t), Cp0(t), Cbp(t), Cbp0(t), Cr(t) and Cr0(t)
corresponding to the spaces Cp, Cp0, Cbp, Cbp0, Cr and Cr0 of all p−convergent,
p−null, bp−convergent, bp−null, r−convergent and r−null double sequences, re-
spectively.

Başar et al. [12] and Altay and Başar [13] have introduced the paranormed
spaces bv(u, p) and rq(p) of all sequences x = (xk) such that {uk(xk − xk−1)}
and

(
∑n

k=0 qkxk/Qn

)

belong to the space ℓ(p), respectively. We note that to
obtain more general spaces of double sequences with some algebraic and topological
properties, following [12] and [13], one can investigate the domain of certain four
dimensional triangles, for example four dimensional backward difference matrix ∆
or Riezs mean Rqs with respect to the sequences q = (qk) and s = (sl) of non-
negative numbers which are not all zero, in the space Mu(t).
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