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Matrix Transformation of Fibonacci Band Matrix on Generalized

bv-space and its Dual Spaces

Anupam Das and Bipan Hazarika

abstract: In this paper we introduce a new sequence space bv(F̂ ) by using the

Fibonacci band matrix F̂ . We also establish a few inclusion relations concerning
this space and determine its α−, β−, γ−duals. Finally we characterize some matrix
classes on the space bv(F̂ ).
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1. Introduction

Let ω be the space of all real-valued sequences. Any vector subspace of ω is
called a sequence space. By l∞, c, c0 and lp (1 ≤ p < ∞), we denote the sets of all
bounded, convergent, null sequences and p−absolutely convergent series, respec-
tively. Also we use the convensions that e = (1, 1, ...) and e(n) is the sequence whose
only non-zero term is 1 in the nth place for each n ∈ N, where N = {0, 1, 2, ...} .

Let Xand Y be two sequence spaces and A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. We write A = (ank) instead of A = (ank)

∞
n,k=0. Then

we say that A defines a matrix mapping from X into Y and we denote it by writing
A : X → Y if for every sequence x = (xk)

∞
k=0 ∈ X, the sequence Ax = {An(x)}∞n=0 ,

the A-transform of x, is in Y, where

An(x) =
∞
∑

k=0

ankxk (n ∈ N) . (1.1)

For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to ∞. Also, if x ∈ ω, then we write x = (xk)

∞
k=0 .

By (X,Y ), we denote the class of all matrices A such that A : X → Y. Thus
A ∈ (X,Y ) iff the series on the right-hand side of (1.1) converges for each n ∈ N

and every x ∈ X and we have Ax ∈ Y for all x ∈ X.
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The approach constructing a new sequence space by means of matrix domain
has recently employed by several authors.

The matrix domain XA of an infinite matrix A in a sequence space X is defined
by

XA = {x = (xk) ∈ ω : Ax ∈ X} .

Let ∆ denote the matrix ∆ = (∆nk)defined by

∆nk =

{

(−1)n−k, n− 1 ≤ k ≤ n;
0, 0 ≤ k < n− 1 or k > n.

We refer the reader to [2,3,4,5,11,16] for the concept of matrix domain.

Define the sequence {fn}∞n=0 of Fibonacci numbers given by the linear recur-
rence relations f0 = f1 = 1 and fn = fn−1 + fn−2, n ≥ 2. Fibonacci numbers have
many interesting properties and applications. For example, the ratio sequences of
Fibonacci numbers converges to the golden ratio which is important in sciences
and arts. Also, some basic properties of Fibonacci numbers are given as follows:

lim
n→∞

fn+1

fn
=

1 +
√
5

2
= α (golden ratio),

n
∑

k=0

fk = fn+2 − 1 (n ∈ N),

∑

k

1

fk
converges,

fn−1fn+1 − f2
n = (−1)n+1 (n ≥ 1) (Cassini formula).

Substituting for fn+1 in Cassini’s formula yields f2
n−1 + fnfn−1 − f2

n = (−1)n+1.
We refer [1,6,8,10] for concepts of fibonacci numbers and related matrix domain.

A sequence space X is called a FK − space if it is complete linear metric space
with continuous coordinates pn : X → R(n ∈ N), where R denotes the real field
and pn(x) = xn for all x = (xk) ∈ X and every n ∈ N. A BKspace is a normed
FKspace, that is a BK − space is a Banach space with continuous coordinates.
The sapce lp(1 ≤ p < ∞) is a BK-sapce with

‖ x ‖p=
(

∞
∑

k=0

| xk |p
)1/p

and c0, c and l∞ are BK-spaces with

‖ x ‖∞= sup
k

| xk | .

The sequence space λ is said to be solid iff
λ̃ = {(uk) ∈ ω : ∃ (xk) ∈ λ such that | uk |≤ | xk |, ∀ k ∈ N} ⊂ λ.
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A sequence (bn) in a normed space X is called a Schauder basis for X if every
x ∈ X, there is a unique sequence (αn) of scalars such that x =

∑

n αnbn, i.e.,

lim
m→∞

‖ x−
m
∑

n=0
αnbn ‖= 0.

The α−, β−, γ−duals of the sequence space X are respectively defined by

Xα = {a = (ak) ∈ ω : ax = (akxk) ∈ l1 , ∀ x = (xk) ∈ X} ,
Xβ = {a = (ak) ∈ ω : ax = (akxk) ∈ cs , ∀ x = (xk) ∈ X} ,
and

Xγ = {a = (ak) ∈ ω : ax = (akxk) ∈ bs , ∀ x = (xk) ∈ X} ,

where cs and bs are the sequence spaces of all convergent and bounded series,
respectively (see [5,7,13,17]).

The space of all sequences of bounded variation defined by

bv =

{

x = (xk) ∈ ω :
∞
∑

k=1

|xk − xk−1| < ∞
}

,

which is a BK-space under the norm

‖ x ‖bv=| x0 | +
∞
∑

k=1

| xk − xk−1 | for x ∈ bv.

Now, let A = (ank) be an infinite matrix and list the following conditions:

sup
n,l

∣

∣

∣

∣

∣

l
∑

k=0

ank

∣

∣

∣

∣

∣

< ∞ (1.2)

lim
n

ank = 0 , ∀ k (1.3)

lim
n

∑

k

ank = 0 (1.4)

lim
n

ank exists , ∀ k (1.5)

lim
n

∑

k

ank exists , ∀ k (1.6)

sup
n

∣

∣

∣

∣

∣

∑

k

ank

∣

∣

∣

∣

∣

< ∞ (1.7)

∑

n

∣

∣

∣

∣

∣

∑

k

ank

∣

∣

∣

∣

∣

is convergent. (1.8)

sup
l

∑

n

∣

∣

∣

∣

∣

l
∑

k=0

ank

∣

∣

∣

∣

∣

< ∞ (1.9)
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∑

n

∣

∣

∣

∣

∣

∑

k

(ank − an−1,k)

∣

∣

∣

∣

∣

is convergent. (1.10)

sup
l

∑

n

∣

∣

∣

∣

∣

l
∑

k=0

(ank − an−1,k)

∣

∣

∣

∣

∣

< ∞ (1.11)

∑

n

∣

∣

∣

∣

∣

∑

k

ank

∣

∣

∣

∣

∣

r

is convergent (1.12)

sup
l

∑

n

∣

∣

∣

∣

∣

l
∑

k=0

ank

∣

∣

∣

∣

∣

r

< ∞. (1.13)

We refer [9,12,14,15,17] for the concept of matrix transformations. Now, we may
give the following lemma due to Stieglitz and Tietz [11] on the characterization of
the matrix transformations between some sequence spaces.

Lemma 1.1. The following statements hold:

(a) A ∈ (ank) ∈ (bv, c0) iff (1.2), (1.3), (1.4) holds.

(b) A ∈ (ank) ∈ (bv, c) iff (1.2), (1.5), (1.6) holds.

(c) A ∈ (ank) ∈ (bv, l∞) iff (1.2), (1.7) holds.

(d) A ∈ (ank) ∈ (bv, l1) iff (1.8), (1.9) holds.

(e) A ∈ (ank) ∈ (bv, bv) iff (1.10), (1.11) holds.

(f) A ∈ (ank) ∈ (bv, lp), p > 1 iff (1.12), (1.13) holds.

2. The Fibonacci difference sequence space bv(F̂ )

In this section, we have used the Fibonacci band matrix F̂= (fnk) and introduce
the sequence space bv(F̂). Also we present some inclusion theorems and construct
the Schauder basis of the space bv(F̂).

Let fn be the nth Fibonacci number for every n ∈ N. Then we define the
infinite matrix F̂= (fnk) by

fnk =











− fn+1

fn
, k = n− 1;

fn
fn+1

, k = n;

0, 0 ≤ k < n− 1 or k > n

where n, k ∈ N.
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Define the sequence y = (yn), which will be frequently used by the F̂−transform
of a sequence x = (xn), i.e., yn = F̂n(x), where

yn =







f0
f1
x0 = x0, n = 0;
fn

fn+1
xn − fn+1

fn
xn−1, n ≥ 1

(2.1)

where n ∈ N.

Moreover, it is obvious that F̂ is a triangle. Thus, it has a unique inverse F̂−1

and it is given by

f̂−1
nk =

{

f2
n+1

fkfk+1
, 0 ≤ k ≤ n;

0, k > n

for all n, k ∈ N. Therefore we have by (2.1) that

xn =

n
∑

k=0

f2
n+1

fkfk+1
yk; (n ∈ N). (2.2)

Now, we introduce a new Fibonacci sequence space bv(F̂ ) as follows

bv(F̂ ) =

{

x = (xk) ∈ ω :

∞
∑

k=1

∣

∣

∣F̂k(x)− F̂k−1(x)
∣

∣

∣ < ∞
}

.

In this section, we give some results related to the space bv(F̂ ).

Theorem 2.1. bv(F̂ ) is a BK-space with norm

‖ x ‖bv(F̂ )=| x0 | +
n
∑

k=1

| F̂k(x) − F̂k−1(x) | .

Proof. Since bv is a BK-space with respect to the norm

‖ x ‖bv=| x0 | +
∞
∑

k=1

| xk − xk−1 | for x ∈ bv

and the matrix F̂ is triangular matrix. By Theorem 4.3.3 of Wilansky [17] gives
the fact that the space bv(F̂ ) is a BK space with ‖ . ‖bv(F̂ ) norm. ✷

Remark 2.2. The sequence space bv(F̂ ) is of non-absolute type, because

‖ x ‖bv(F̂ ) 6=‖| x |‖bv(F̂ ),

where | x |= (| xk |).

Theorem 2.3. The inclusion bv ⊂ bv(F̂ ) holds.
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Proof. Let x = (xk) ∈ bv. Then we have

∞
∑

k=1

|xk − xk−1| < ∞.

Since the inequalities fk
fk+1

≤ 1 and
fk+1

fk
≤ 2 for every k ∈ N, therefore we have

∞
∑

k=1

| F̂k(x) − F̂k−1(x) |

=
∣

∣

∣

x1

2
− 3x0

∣

∣

∣+

∞
∑

k=2

| fk
fk+1

xk −
fk+1

fk
xk−1 −

fk−1

fk
xk−1 +

fk
fk−1

xk−2 |< ∞.

So, x ∈ bv(F̂ ). Hence bv ⊆ bv(F̂ ).
Further, since x = (xk) = (f2

k+1) is in bv(F̂ )− bv, therefore bv ⊂ bv(F̂ ). ✷

Theorem 2.4. The inclusion l1 ⊂ bv(F̂ ) holds.

Proof. We have

l1 =

{

x ∈ ω :

∞
∑

k=1

| xk |< ∞
}

.

Let x ∈ l1. Then
∞
∑

k=1

| xk |< ∞.

Now,
∞
∑

k=2

| fk
fk+1

xk −
fk+1

fk
xk−1 −

fk−1

fk
xk−1 +

fk
fk−1

xk−2 |< ∞.

Therefore, x ∈ bv(F̂ ). We have x = (xk) ∈ bv(F̂ ), where xk = 1 for all k ∈ N but
x /∈ l1. Hence l1 ⊂ bv(F̂ ). ✷

Lemma 2.5. [2] Let λ be a BK-space including the space φ. Then, λ is solid if
and only if l∞λ ⊂ λ.

Theorem 2.6. The space bv(F̂ ) is not solid.

Proof. Let the sequences u = (uk) and v = (vk) defined by uk = f2
k+1 and vk =

(−1)k+1 for all k ∈ N. Then it is clear that u ∈ bv(F ) and v ∈ l∞. Also, we have

uv = (−1)k+1fk+1
2
is not in bv(F̂ ), since F̂k(uv) = 2(−1)k+1fkfk+1 for all k ∈ N.

This shows that l∞bv(F̂ ) is not a subset of bv(F̂ ). By applying Lemma 2.5, we get
bv(F̂ ) is not solid. ✷

Theorem 2.7. The Fibonacci difference sequence space bv(F̂ ) is linearly isomor-
phic to the bv space i.e. bv(F̂ ) ∼= bv.
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Proof. To prove this, we have to show that there exists a linear bijective mapping
between bv(F̂ ) and bv. Let us consider a mapping T defined from bv(F̂ ) to bv by
Tx = F̂ (x) = y ∈ bv for every x ∈ bv(F̂ ) where x = (xk) and y = (yk).

It is obvious that T is linear and for x = 0, we have Tx = 0. Hence T is injective.

Let y = (yk) ∈ bv and define the sequence x = (xk) by xk =
k
∑

j=0

f2
k+1

fjfj+1
yj , for

k ∈ N. Then by using (2.1) and (2.2), we have

‖ x ‖bv(F̂ )

=| x0 | +
n
∑

k=1

| F̂k(x)− F̂k−1(x) |

=| y0 | +
∞
∑

k=1

| yk − yk−1 |

=‖ y ‖bv< ∞.

Thus we have x ∈ bv(F̂ ). Hence T is surjective and norm preserving. Consequently,
T is a linear bijection which proves that bv(F̂ ) and bv are linearly isomorphic. ✷

3. The α−, β− and γ−duals of the space bv(F̂ )

In this section, we determine the α−, β− and γ−duals of the sequence space
bv(F̂ ). The following known results are fundamental for our investigation.

Lemma 3.1. [11] Let A = (ank) be an infinite matrix. Then the following state-
ment holds:

(i) A ∈ (bv : l∞) iff supn |∑
k

ank |< ∞, supn,l |
l
∑

k=0

ank |< ∞.

(ii) A ∈ (bv : c) iff supn,l |
l
∑

k=0

ank |< ∞, lim
n

ank exists for all k and lim
n

∑

k

ank

exists.

(iii) A ∈ (bv : l1) iff
∑

n
|∑

k

ank convergent, supl
∑

n
|

l
∑

k=0

ank |< ∞.

Theorem 3.2. The α-dual of the sequence space bv(F̂ ) is the set d1 ∩ d2, where

d1 =

{

a = (ak) ∈ ω :
∑

n

|
∑

k

bnk | is convergent

}

,

d2 =

{

a = (ak) ∈ ω : sup
l

∑

n

|
l
∑

k=0

bnk |< ∞
}
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and the matrix B = (bnk) is defined as follows

bnk =

{

f2
n+1

fkfk+1
an, 0 ≤ k ≤ n;

0, k > n

where a = (an) ∈ ω.

Proof. Let a = (an) ∈ ω. Also for every x = (xn) ∈ ω, we put y = F̂ (x). Then

from (2.1), it follows that xk =
k
∑

j=0

f2
k+1

fjfj+1
yj and

Bn(y) =

n
∑

k=0

bnkyk =

n
∑

k=0

f2
n+1

fkfk+1
anyk = anxn, (3.1)

where n ∈ N.

Thus, we observe by (3.1) that ax = (anxn) ∈ l1 whenever x ∈ bv(F̂ ) if and
only if By ∈ l1 whenever y ∈ bv. Therefore, we derive by using the Lemma 3.1 that

∑

n

|
∑

k

bnk | is convergent and sup
l

∑

n

|
l
∑

k=0

bnk |< ∞.

✷

Theorem 3.3. Define the sets d3, d4, d5 and d6 by

d3 =

{

a = (ak) ∈ ω : sup
n,l

|
l
∑

k=0

dnk |< ∞
}

d4 =
{

a = (ak) ∈ ω : lim
n

dnk exists , ∀ k
}

d5 =

{

a = (ak) ∈ ω : lim
n

∑

k

dnk exists

}

and

d6 =

{

a = (ak) ∈ ω : sup
n

|
∑

k

dnk |< ∞
}

.

Then
(

bv(F̂ )
)β

= d3 ∩ d4 ∩ d5 and
(

bv(F̂ )
)γ

= d3 ∩ d6.

Proof. Let a = (ak) ∈ ω and consider the equality

n
∑

k=0

akxk =

n
∑

k=0

ak





k
∑

j=0

f2
k+1

fjfj+1
yj



 =

n
∑

k=0





n
∑

j=k

f2
j+1

fkfk+1
aj



 yk = Dn(y), (3.2)
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where D = (dnk) is defined by

dnk =







n
∑

j=k

f2
j+1

fkfk+1
aj, 0 ≤ k ≤ n

0, k > n

where n, k ∈ N. Then we deduce from Lemma 3.1 that ax = (akxk) ∈ cs whenever

x = (xk) ∈ bv(F̂ ) iff Dy ∈ c whenever y ∈ bv. Thus a ∈
(

bv(F̂ )
)β

iff a ∈ d3,

a ∈ d4 and a ∈ d5. Thus
(

bv(F̂ )
)β

= d3 ∩ d4 ∩ d5. Similarly, we can show that
(

bv(F̂ )
)γ

= d3 ∩ d6. ✷

4. Some matrix transformations related to the space bv(F̂ )

For simplicity in notation, we write ãnk =
∞
∑

j=k

f2
j+1

fkfk+1
anj for all k, n ∈ N.

We used the following lemma to established our results.

Lemma 4.1. [2] Let C = (cnk) be defined via a sequence a = (ak) ∈ ω and the
inverse matrix V = (vnk) of the triangle matrix U = (unk) by

cnk =







n
∑

j=k

ajvjk, 0 ≤ k ≤ n;

0, k > n

for all k, n ∈ N. Then for any sequence space λ,

λγ
U = {a = (ak) ∈ ω : C ∈ (λ, l∞)}

and

λβ
U = {a = (ak) ∈ ω : C ∈ (λ, c)} .

Theorem 4.2. Let µ be an arbitrary subset of ω. Then A = (ank) ∈ (bv(F̂ ), µ) iff

D(m) =
(

d
(m)
nk

)

∈ (bv, c) for all n ∈ N, (4.1)

D = (dnk) ∈ (bv, µ), (4.2)

where

d
(m)
nk =







m
∑

j=1

f2
j+1

fkfk+1
anj , 0 ≤ k ≤ m;

0, k > m

and dnk =
∞
∑

j=k

f2
j+1

fkfk+1
anj for all k,m, n ∈ N.
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Proof. To prove this theorem, we follow the similar way due to Kirişçi and Başar
[9]. Let A = (ank) ∈ (bv(F̂ ), µ) and x = (xk) ∈ bv(F̂ ). From (2.2), we have

xk =
k
∑

j=0

fj+1

fjfj+1
yj for all k ∈ N. From (3.2) we get

m
∑

k=0

ankxk =

m
∑

k=0

ank





k
∑

j=0

f2
k+1

fjfj+1
yj





=

m
∑

k=0





m
∑

j=k

f2
j+1

fkfk+1
anj



 yk

=

m
∑

k=0

d
(m)
nk yk

=D(m)
n (y), (4.3)

for all m,n ∈ N. Since Ax exists, D(m) ∈ (bv, c). As m → ∞ in the equality (4.3),
we obtain Ax = Dy which implies D ∈ (bv, µ).

Conversely, suppose (4.1) and (4.2) holds and take any x ∈ bv(F̂ ). Then, we
have (dnk) ∈ bvβ which gives together with (4.1) that An = (ank)k∈N ∈ (bv(F̂ ))β

for all n ∈ N. Thus, Ax exists. Therefore, we derive by equality (4.3) as m → ∞
that Ax = Dy and this shows that A ∈ (bv(F̂ ), µ). ✷

Now, we list the following conditions,

sup
n,l

∣

∣

∣

∣

∣

l
∑

k=0

dnk

∣

∣

∣

∣

∣

< ∞ (4.4)

lim
n

dnk = 0 , ∀ k (4.5)

lim
n

∑

k

dnk = 0 (4.6)

lim
n

dnk exists , ∀ k (4.7)

lim
n

∑

k

dnk exists , ∀ k (4.8)

sup
n

∣

∣

∣

∣

∣

∑

k

dnk

∣

∣

∣

∣

∣

< ∞ (4.9)

∑

n

∣

∣

∣

∣

∣

∑

k

dnk

∣

∣

∣

∣

∣

is convergent (4.10)

sup
l

∑

n

∣

∣

∣

∣

∣

l
∑

k=0

dnk

∣

∣

∣

∣

∣

< ∞ (4.11)
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∑

n

∣

∣

∣

∣

∣

∑

k

(dnk − dn−1,k)

∣

∣

∣

∣

∣

is convergent (4.12)

sup
l

∑

n

∣

∣

∣

∣

∣

l
∑

k=0

(dnk − dn−1,k)

∣

∣

∣

∣

∣

< ∞ (4.13)

∑

n

∣

∣

∣

∣

∣

∑

k

dnk

∣

∣

∣

∣

∣

r

is convergent (4.14)

sup
l

∑

n

∣

∣

∣

∣

∣

l
∑

k=0

dnk

∣

∣

∣

∣

∣

r

< ∞ (4.15)

sup
n,l

∣

∣

∣

∣

∣

l
∑

k=0

d
(m)
nk

∣

∣

∣

∣

∣

< ∞ (4.16)

lim
n

d
(m)
nk exists , ∀ k (4.17)

lim
n

∑

k

d
(m)
nk exists , ∀ k. (4.18)

Combining Theorem 4.2 and Lemma 1.1, we derive the following results.

Corollary 4.3. Let A = (ank) be an infinite matrix. Then the following statements
hold:

(a) A ∈ (bv(F̂ ), c0) if and only if (4.4), (4.5), (4.6), (4.16), (4.17), (4.18).

(b) A ∈ (bv(F̂ ), c) if and only if (4.4), (4.7), (4.8), (4.16), (4.17), (4.18).

(c) A ∈ (bv(F̂ ), l∞) if and only if (4.4), (4.9), (4.16), (4.17), (4.18).

(d) A ∈ (bv(F̂ ), l1) if and only if (4.10), (4.11), (4.16), (4.17), (4.18).

(e) A ∈ (bv(F̂ ), bv) if and only if (4.12), (4.13), (4.14), (4.17), (4.18).

(f) A ∈ (bv(F̂ ), lp), p > 1 if and only if (4.14), (4.15), (4.16), (4.17), (4.18).
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