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1. Introduction

Throughout this paper N will be a left near-ring with multiplicative center
Z(N); and usually N will be 3-prime, if for all x, y ∈ N, xNy = 0 implies x = 0
or y = 0. A near-ring N is called zero-symmetric if x0 = 0, for all x ∈ N (recall
that right distributivity yields 0x = 0). An additive mapping d : N → N is a
derivation if d(xy) = xd(y) + d(x)y for all x, y ∈ N. For any x, y ∈ N; as usual
[x, y] = xy − yx and x ◦ y = xy + yx will denote the well-known Lie product and
Jordan product respectively. Recall that for n ≥ 2, N is called n-torsion free if
nx = 0 implies x = 0 for all x ∈ N. For terminologies concerning near-rings we
refer to G. Pilz [11]. An additive subgroup J of N is said to be a Jordan ideal of
N if j ◦ n ∈ J and n ◦ j ∈ J for all j ∈ J, n ∈ N (For more details see reference
[7]). The existing literature on 3-prime near-rings contains a number of theorems
concerning multiplicative commutativity of near-rings. H. E. Bell, G. Mason, N.
Argaç, A. A. M. Kamal, X. K. Wang and other have proved several results on
commutativity of 3-prime near-rings with derivations (for reference see [1], [4],
[10], [12]... etc.) Indeed, motivated by the notion of Jordan ideal introduced in
near-rings (for reference [7], [8]) and the results of H. E. Bell, it is natural to
continue this line of investigation for comparable results for 3-prime near-rings
having derivations with Jordan ideals. In the present paper, we shall attempt to
generalize the known result of H. E. Bell and study the commutativity of Jordan
ideal in 3-prime near-rings satisfying certain identities involving the Jordan ideal.
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2. Some preliminaries

We begin with the following results which will be used extensively to prove our
theorem. The first Lemma appears in [4] and [12].

Lemma 2.1. Let N be a 3-prime near-ring.

(i) If z ∈ Z(N)\{0} and xz ∈ Z(N), then x ∈ Z(N).

(ii) If N ⊆ Z(N), then N is a commutative ring.

(iii) If N is 2-torsion free and d is a derivation on N such that d2 = 0, then d = 0.

(iv) If d is a derivation, then x ∈ Z(N) implies d(x) ∈ Z(N).

Lemma 2.2. Let N be a near-ring and d a derivation of N. Then N satisfies the

following partial distributive law
(

xd(y) + d(x)y

)

z = xd(y)z + d(x)yz for all x, y, z ∈ N.

Lemma 2.3. Let d be an arbitrary additive endomorphism of N. Then d(xy) =
xd(y)+ d(x)y for all x, y ∈ N if and only if d(xy) = d(x)y+ xd(y) for all x, y ∈ N.

Therefore d is a derivation if and only if d(xy) = d(x)y + xd(y) for all x, y ∈ N.

Recall that a map d : N → N is called a multiplicative derivation on N if
d(xy) = xd(y) + d(x)y for all x, y ∈ N. Notice that any derivation on N is a
multiplicative derivation.

Lemma 2.4. [8, Corollary 3] Let N be a 2-torsion free 3-prime near-ring and J

be a nonzero Jordan ideal of N. If N admits a derivation d such that d(J) = {0},
then d = 0 or the element of J commute under the multiplication of N.

Lemma 2.5. [7, Lemma 2 & Lemma 3] Let N be a 2-torsion free 3-prime near-ring

and J a nonzero Jordan ideal of N.

(i) If j2 = 0 for all j ∈ J , then J = {0}.

(ii) If J ⊆ Z(N), then N is a commutative ring.

Lemma 2.6. [10, Lemma 2.1] A near-ring N admits a multiplicative derivation if

and only if it is zero-symmetric.

Using Lemma 2.6, we deduce that in all our results in the paper that N is a
zero-symmetric near-ring.

Lemma 2.7. Let N be a 3-prime near-ring and J a nonzero Jordan ideal of N. If

the element of J commute under the multiplication of N, then J is commutative.

Proof. Suppose that the element of J commute under the multiplication of N,

then (i+j)(k+k) = (k+k)(i+j) for all i, j, k ∈ J so that
(

(j+i)−(i+j)
)

k = 0 for all

i, j, k ∈ J. Replacing k by k◦n in the last expression, we get
(

(j+i)−(i+j)
)

nk = 0
for all i, j, k ∈ J , n ∈ N. Further, application of 3-primeness of N yields j+i = i+j

for all i, j ∈ J. Finally we conclude that J is commutative. ✷
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3. Main Results

In this section, we give some new results and examples concerning the existence of
Jordan ideal and derivations in near-rings. We begin this section by the following
interesting results for near-rings.
In [4] H. E. Bell and G. Mason proved that a 2-torsion 3-prime near-ring N must
be commutative if it admits a nonzero derivation d such that d(N) ⊆ Z(N). Our
objective in the following theorem is to generalize and improve this result by treat-
ing the case of a Jordan ideal J of 3-prime near-ring N instead of N. The following
Theorem gives an analogous result for near-rings.

Theorem 3.1. Let N be a 2-torsion free 3-prime near-ring and J be a nonzero

Jordan ideal of N. If N admits a derivation d such that d(J) ⊆ Z(N), then d = 0
or J is commutative.

Proof. Suppose that d(j) ∈ Z(N) for all j ∈ J , then d(j ◦ j) = d(2j2) ∈ Z(N)
for all j ∈ J which implies that d(j)(j + j) + jd(j + j) ∈ Z(N) for all j ∈ J ,
by hypothesis this expression reduced to 4jd(j) ∈ Z(N) for all j ∈ J and by
application of Lemma 2.1 (i), we obtain

d(j) = 0 or 4j ∈ Z(N) for all j ∈ J. (3.1)

Suppose there exists j0 ∈ J such that 4j0 ∈ Z(N), then 4j0(j
2 + j2) = j ◦ 4j0j ∈ J

for all j ∈ J. In view of the hypothesis, we find that

d
(

4j0(j
2 + j2)

)

= d(4j0)(2j
2) + 4j0d(2j

2) ∈ Z(N), for all j ∈ J.

Using Lemma 2.2, the last upshot becomes d(4j0)(2j
2) ∈ Z(N) for all j ∈ J. Apply

Lemma 2.1 (i), we obtain d(4j0) = 0 or 2j2 ∈ Z(N) for all j ∈ J and 2-torsion
freeness forces d(j0) = 0 or 2j2 ∈ Z(N) for all j ∈ J . It follows that the equation
(3.1) can be written in the form

d(j) = 0 or 2k2 ∈ Z(N) for all j, k ∈ J. (3.2)

Assume that k2+k2 = 2k2 ∈ Z(N) for all k ∈ J. Then d(k(2k2)) = d(k◦k2) ∈ Z(N)
for all k ∈ J. Therefore, d(k)(2k2)+kd(2k2) ∈ Z(N) for all k ∈ J. Using the Lemma
2.2 and Lemma 2.1 (i), we find that d(2k2) = 0 or k ∈ Z(N) for all k ∈ J . By
definition of d and 2-torsion freeness of N, we arrive at d(k)Nk = {0} or k ∈ Z(N)
for all k ∈ J. By 3-primeness of N , we conclude that d(k) = 0 or k ∈ Z(N) for all
k ∈ J , in this case (3.2) becomes

d(k) = 0 or k ∈ Z(N) for all k ∈ J. (3.3)

If there is k0 ∈ J such that d(k0) = 0, then k0d(j) + d(j)k0 = d(k0 ◦ j) ∈ Z(N) for
all j ∈ J which means that 2k0d(j) ∈ Z(N) for all j ∈ J. By 2-torsion freeness of
N and Lemma 2.1(i), we arrive at d(j) = 0 for all j ∈ J or k0 ∈ Z(N). In this case
(3.3) becomes

d(j) = 0 or k ∈ Z(N) for all j, k ∈ J. (3.4)
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Using Lemma 2.4 and Lemma 2.7, we conclude that J is commutative. ✷

As a consequence of Theorem 3.1, we have the following result:

Corollary 3.2. [4, Theorem 2.1] Let N be a 2-torsion free 3-prime near-ring. If

N admits a nonzero derivation d such that d(N) ⊆ Z(N), then N is a commutative

ring.

Theorem 3.3. Let N be a 2-torsion free 3-prime near-ring and J be a nonzero

Jordan ideal of N. If N admits a derivation d such that d(J2) = {0}, then d = 0
or J is commutative.

Proof. Suppose that d(ij) = 0 for all i, j ∈ J. Replacing i by 2i2, we get

0 = d
(

(2i)2j
)

= d(i)(i + i)j + id((i + i)j) for all i, j ∈ J

this implies that d(i)(2i)j = 0 for all i, j ∈ J. Writing j ◦ n for j where n ∈ N in
the above relation gives

d(i)(2i)jn+ d(i)(2i)nj = 0 for all i, j ∈ J, n ∈ N

this equation reduced to

d(i)(2i)Nj = {0} for all i, j ∈ J.

Since J 6= {0}, then by 3-primeness and 2-torsion freeness of N, we arrive at
d(i)i = 0 for all i ∈ J. Using this in the calculation of the expression d(ji(i◦n)) = 0
for all i, j ∈ J , n ∈ N, we find that d(j)ini = 0 for all i, j ∈ J and using again the
3-primeness of N, we obtain d(j)i = 0 for all i, j ∈ J. Taking i ◦ n instead of i in
the last equation and invoking it again, we get d(j)ni = 0 for all i, j ∈ J and by
application the 3-primeness of N and J 6= {0}, we arrive at d(j) = 0 for all j ∈ J.

By Lemma 2.4 and Lemma 2.7, we conclude that J is commutative. ✷

The following example demonstrates that the condition ”3-primeness of N” in The-
orem 3.1 and Theorem 3.3 is crucial.

Example 3.4. Let S be a 2-torsion free noncommutative near-ring. We define

N, J and d by: N =

{(

a b

0 c

)

| a, b, c ∈ S

}

, J =

{(

m 0
0 0

)

|m ∈ S

}

and

d

(

a b

0 c

)

=

(

0 b

0 0

)

. It is obvious that N is 2-torsion free near-ring not 3-

prime, J a nonzero Jordan ideal of N and d is a nonzero derivation such that

{0} = d(J) ⊆ Z(N) and d(J2) = {0}. But J is not commutative.

Theorem 3.5. Let N be a 6-torsion free 3-prime near-ring and J be a nonzero

Jordan ideal of N. There is no derivation d of N such that d2(J) = J.
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Proof. Suppose that d2(j) = j for all j ∈ J . Replacing j by j ◦ jn where n ∈ N

and invoking the fact that j ◦ jn = j(j ◦ n), we obtain d2(j(j ◦ n)) = j(j ◦ n) for
all j ∈ J, n ∈ N. Developing this expression, we arrive at

d2(j)(j ◦ n) + 2d(j)d(j ◦ n) + jd2(j ◦ n) = j(j ◦ n)

for all j ∈ J, n ∈ N

which reduced to

2d(j)d(j ◦ n) = −j(j ◦ n) for all j ∈ J, n ∈ N. (3.5)

Applying d to (3.5) and invoking our hypothesis, we obtain

2jd(j ◦ n) + 2d(j)(j ◦ n) = −d(j(j ◦ n)) for all j ∈ J, n ∈ N (3.6)

Applying d again to (3.6) and using our hypothesis, we conclude that 3j(j ◦n) = 0
for all j ∈ J , n ∈ N. By 6-torsion free of N, we find that j(j ◦ n) = 0 for all j ∈ J ,
n ∈ N, which implies that jnj = −j2n for all j ∈ J, n ∈ N. Replacing n by nm and
using it again, we get

jnmj = −j2nm

= j2n(−m)

= (−jnj)(−m)

= jn(−j)(−m) for all j ∈ J,m, n ∈ N

which means that

jn(mj − (−j)(−m)) = 0 for all j ∈ J,m, n ∈ N

Putting -j instead of j in the last expression, we arrive at

(−j)N(−mj + jm) = {0} for all j ∈ J,m ∈ N (3.7)

By 3-primeness of N, we conclude that j ∈ Z(N) for all j ∈ J. Replacing j by 2j2

in our hypothesis and using the 2-torsion freeness of N, we get d2(j2) = j2 for all
j ∈ J developing this expression by definition of d, we obtain

2d(j)d(j) + j2 = 0 for all j ∈ J (3.8)

Applying d to (3.8), we get 6jd(j) = 0 for all j ∈ J and by 6-torsion freeness of N,
we obtain jd(j) = 0 for all j ∈ J and with the help of the facts that J 6= {0}. Hence,
the 3-primeness of N forces that d(J) = {0}, in this case, we obtain J = {0}; this
leads to a contradiction. ✷

Theorem 3.6. Let N be a 2-torsion free 3-prime near-ring and J be a nonzero

Jordan ideal of N. If N admits a derivation d satisfying one of the following

conditions
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(i) d([j, n]) = 0 for all j ∈ J , n ∈ N, or

(ii) d([j, n]) = [j, n] for all j ∈ J , n ∈ N, or

(iii) [d(j), n)] = [j, d(n)] for all j ∈ J , n ∈ N,

then d = 0 or J is commutative.

Proof. (i) Suppose that d([j, n]) = 0 for all j ∈ J , n ∈ N. Replacing n by jn

and using the definition of d, we get

0 = d([j, jn])

= d(j[j, n])

= d(j)[j, n] + jd([j, n])

= d(j)[j, n] for all j ∈ J, n ∈ N

which means that
d(j)nj = d(j)jn for all j ∈ J, n ∈ N. (3.9)

Taking nm instead of n in (3.9) and using it again, we get

d(j)nmj = d(j)njm for all j ∈ J,m, n ∈ N

this reduced to
d(j)N[j,m] = {0} for all j ∈ J,m ∈ N (3.10)

By 3-primeness of N, we obtain d(j) = 0 or j ∈ Z(N) for all j ∈ J. Using Lemma
2.2 (iv), the last two cases forces d(J) ⊆ Z(N). Thus in view of Theorem 3.1, we
conclude that d = 0 or J is commutative.
(ii) Assume that d([j, n]) = [j, n] for all j ∈ J , n ∈ N. Replacing n by jn in the
latter equation and using the definition of d, we get

j[j, n] = d(j[j, n])

= d(j)[j, n] + jd([j, n])

= d(j)[j, n] + j[j, n] for all j ∈ J, n ∈ N

the above expression becomes

d(j)nj = d(j)jn for all j ∈ J, n ∈ N. (3.11)

Putting nm instead of n in (3.11) and using it again, we get

d(j)nmj = d(j)njm for all j ∈ J,m, n ∈ N

this reduced to
d(j)N[j,m] = {0} for all j ∈ J,m ∈ N (3.12)

By 3-primeness of N, we get d(j) = 0 or j ∈ Z(N) for all j ∈ J. So from Lemma
2.1 (iv), the above two cases imply that d(J) ⊆ Z(N) and using Theorem 3.1, we
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deduce that d = 0 or J is commutative.
(iii) Suppose that

[d(j), n)] = [j, d(n)] for all j ∈ J, n ∈ N (3.13)

Putting d(j)n instead of n in (3.13), we get

[d(j), d(j)n] = [j, d(d(j)n)]

= jd(d(j)n) − d(d(j)n)j

= jd(j)d(n) + jd2(j)n− d2(j)nj

−d(j)d(n)j

for all j ∈ J, n ∈ N

On the other hand, we have

[d(j), d(j)n] = d(j)[d(j), n]

= d(j)[j, d(n)]

= d(j)jd(n)− d(j)d(n)j

for all j ∈ J, n ∈ N

Comparing the above expression, we find that

jd(j)d(n) + jd2(j)n− d2(j)nj = d(j)jd(n) (3.14)

for all j ∈ J, n ∈ N

Since jd(j) = d(j)j for all j ∈ J by (3.13), then (3.14) becomes

jd2(j)n = d2(j)nj for all j ∈ J, n ∈ N (3.15)

Putting nm instead of n in (3.15) and using it again, we get

d2(j)N[j,m] = {0} for all j ∈ J,m ∈ N. (3.16)

By 3-primeness of N, (3.16) becomes

d2(j) = 0 or j ∈ Z(N) for all j ∈ J. (3.17)

If there is an element j0 ∈ J such that d2(j0) = 0. Replacing j by j0 in (3.13) after
applying d to it, we obtain j0d

2(n) = d2(n)j0 for all n ∈ N, in this case, (3.17)
becomes

jd2(n) = d2(n)j for all j ∈ J, n ∈ N.

Taking d(n) instead of n in (3.13), we arrive at

d(j)d(n) = d(n)d(j) for all j ∈ J, n ∈ N. (3.18)

Replacing n by d(n)m in (3.18) and using the same again, we obtain

d2(n)md(j) = d(j)d2(n)m for all j ∈ J, n,m ∈ N. (3.19)
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Putting mt instead of m in (3.19) and using it again, we also have

d2(n)N[d(j), t] = {0} for all j ∈ J, n, t ∈ N. (3.20)

By 3-primeness of N, we arrive at d2(N) = {0} or d(J) ⊆ Z(N). Now Lemma 2.1
(iii) and Theorem 3.1, forces us to conclude that, d = 0 or J is commutative. ✷

As a direct consequence of Theorem 3.6, we obtain the following results.

Corollary 3.7. [3, Theorem 4.1] Let N be a 2-torsion free 3-prime near-ring. If

N admits a nonzero derivation d such that d([x, y]) = 0 for all x, y ∈ N, then N is

a commutative ring.

Corollary 3.8. [5, Theorem 2.2] Let N be a 2-torsion free 3-prime near-ring. If

N admits a nonzero derivation d such that d([x, y]) = [x, y] for all x, y ∈ N, then

N is a commutative ring.

Corollary 3.9. [6, Theorem 2.1] Let N be a 2-torsion free 3-prime near-ring. If N

admits a nonzero derivation d such that [d(x), y] = [x, d(y)] for all x, y ∈ N, then

N is a commutative ring.

The following examples show that the ”3-primeness of N” in the Theorem 3.6
(i) and Theorem 3.6 (ii) can not be omitted.

Example 3.10. Let S be a 2-torsion free left near-ring. Define N, J, d by:

N =

{





0 x y

0 0 0
0 z 0



 | x, y, z ∈ S

}

, J =

{





0 0 m

0 0 0
0 n 0



 | m,n ∈ S

}

and

d





0 x y

0 0 0
0 z 0



 =





0 x y

0 0 0
0 0 0



 . Then it can be seen easily that N is a left near-

ring which is not 3-prime, J is a nonzero Jordan ideal of N and d is a derivation

on N such that d([j, n]) = 0 for all j ∈ J, n ∈ N. However, J is not commutative.

Example 3.11. Let S be a 2-torsion free left near-ring. Define N, J, d by:

N =

{

(

x y

0 0

)

| x, y ∈ S

}

, J =

{

(

0 m

0 0

)

| m ∈ S

}

and

d

(

x y

0 0

)

=

(

0 y

0 0

)

Then it can be seen easily that N is a left near-ring which

is not 3-prime, J is a nonzero Jordan ideal of N and d is a derivation on N such

that d([j, n]) = [j, n] for all j ∈ J, n ∈ N. However, J is not commutative.

Theorem 3.12. Let N be a 2-torsion free 3-prime near-ring and J be a nonzero

Jordan ideal of N. If N admits a derivation d satisfying one of the following

conditions
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(i) d([j, n]) = j ◦ n for all j ∈ J , n ∈ N, or

(ii) d(j ◦ n) = [j, n] for all j ∈ J , n ∈ N,

then d = 0 or J is commutative.

Proof. (i) Suppose that d([j, n]) = j ◦ n for all j ∈ J , n ∈ N. Replacing n by
jn, we get

j ◦ jn = d([j, jn])

= d(j[j, n])

= jd([j, n]) + d(j)[j, n]

= j(j ◦ n) + d(j)[j, n]

= j ◦ jn+ d(j)[j, n] for all j ∈ J, n ∈ N

which implies that

d(j)nj = d(j)jn for all j ∈ J, n ∈ N (3.21)

Since (3.21) is the same as (3.9), then using the same techniques as used after
(3.9), we conclude that d = 0 or J is commutative. In this case, for n = i, we
obtain i ◦ j = 0 for all i, j ∈ J which implies that 2ij = 0 for all i, j ∈ J , using the
2-torsion freeness, we get ij = 0 for all i, j ∈ J. Using j ◦ n in the place of j, where
n ∈ N in the previous relation and with the help of the fact that N is 3-prime, we
conclude that J = {0}; leading to a contradiction.
(ii) Assume that d(j ◦ n) = [j, n] for all j ∈ J , n ∈ N. Replacing n by jn in the
last equation and using it again, we get

j[j, n] = d(j(j ◦ n))

= jd(j ◦ n) + d(j)(j ◦ n)

= j[j, n] + d(j)(j ◦ n) for all j ∈ J, n ∈ N

the above expression becomes

d(j)nj = −d(j)jn for all j ∈ J, n ∈ N (3.22)

Taking nm instead of n in (3.22) and using it again, we have for all j ∈ J,m, n ∈ N

d(j)nmj = −d(j)jnm

= d(j)jn(−m)

= d(j)n(−j)(−m)

Putting −j instead of j in the last expression, we obtain

d(−j)N[j,m] = {0} for all j ∈ J,m ∈ N (3.23)

By 3-primeness of N, we get d(−j) = 0 or j ∈ Z(N) for all j ∈ J this gives
d(J) ⊆ Z(N) by Lemma 2.1(iv). Now using the Theorem 3.1, we conclude that then
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d = 0 or J is commutative. In this case, for n = j ◦jm, we obtain 2d(j(j ◦jm)) = 0
for all j ∈ J , m ∈ N, which implies that by 2-torsion freeness d(j(j ◦ jm)) = 0
for all j ∈ J,m ∈ N, by the simple calculation, we find that j2[j,m] = 0 for all
j ∈ J,m ∈ N. Putting nm instead of m in the previous relation and using the
same again with the 3-primeness of N, we conclude that j2 = 0 or j ∈ Z(N) for all
j ∈ J and by Lemma 2.5 (i), we get J ⊆ Z(N). The application of Lemma 2.5 (ii)
assures that N is a commutative ring. In this case, returning to our hypothesis,
we get 2d(jn) = 0 for all j ∈ J, n ∈ N and by the 2-torsion freeness and definition
of d, we find that d(j)n + jd(n) = 0 for all j ∈ J, n ∈ N. Replacing n by nj in
the last equation, we get d(j)Nj = {0} for all j ∈ J , by 3-primeness of N, we
obtain d(J) = {0}. By Lemma 2.4 and Lemma 2.7, we conclude that d = 0 or J is
commutative. ✷

As a consequences, we get the following results:

Corollary 3.13. Let N be a 2-torsion free 3-prime near-ring. Then N admits no

nonzero derivation such that d([x, y]) = x ◦ y for all x, y ∈ N.

Corollary 3.14. Let N be a 2-torsion free 3-prime near-ring. Then N admits no

nonzero derivation such that d(x ◦ y) = [x, y] for all x, y ∈ N.

Theorem 3.15. Let N be a 2-torsion free 3-prime near-ring with Z(N) 6= {0} or

and J be a nonzero Jordan ideal of N. If N admits a nonzero derivation d such

that d(j) ◦ n = j ◦ d(n) for all j ∈ J , n ∈ N, then J is commutative.

Proof. Suppose that d(j) ◦ n = j ◦ d(n) for all j ∈ J , n ∈ N. In particular,
for n ∈ Z(N) and by 2-torsion freeness, we obtain d(j)n = jd(n) for all j ∈ J .
Replacing n by nm where m ∈ Z(N) in the last expression and using it again, we
get

d(j)nm = jd(nm)

= jd(n)m+ jnd(m)

= d(j)nm+ jnd(m)

for all j ∈ J,m, n ∈ Z(N) which implies that nNjNd(m) = {0} for all j ∈ J,m, n ∈
Z(N). Since J 6= {0} and N is 3-prime, we obtain d(Z(N)) = {0}. Returning
to our hypothesis, we obtain d(j) ◦ n = 0 for all j ∈ J, n ∈ N this means that
2d(j)n = 0 for all j ∈ J, n ∈ Z(N) and by 2-torsion freeness, we can conclude that
d(J)NZ(N) = {0}. Using the fact that Z(N) 6= {0} and the 3-primeness of N, we
deduce that J is commutative. ✷

As a consequence, we get the following result:

Corollary 3.16. [6, Theorem 2.7] Let N be a 2-torsion free 3-prime near-ring with

Z(N) 6= {0}. Then N admits no nonzero derivation such that d(x) ◦ y = x ◦ d(y)
for all x, y ∈ N.
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The following example proves that the ”3-primeness of N” in Theorem 3.5,
Theorem 3.6(iii), Theorem 3.12 and Theorem 3.15 can not be omitted.

Example 3.17. Let S be a 2-torsion free left near-ring and let

N =

{





0 x y

0 0 0
0 0 z



 | x, y, z ∈ S

}

and J =

{





0 m 0
0 0 0
0 0 0



 | m ∈ S

}

.

Define d : N → N by d





0 x y

0 0 0
0 0 z



 =





0 x 0
0 0 0
0 0 0



 . Then it can be seen easily

that N is a left near-ring which is not 3-prime with Z(N) 6= {0}, J is a nonzero

Jordan ideal of N and the maps d is a derivation on N such that:

(i) d2(J) = J (ii) [d(j), n] = [j, d(n)]

(iii) d([j, n]) = j ◦ n (iv) d(j ◦ n) = [j, n]

(v) d(j) ◦ n = j ◦ d(n) for all j ∈ J, n ∈ N.
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