

SPM: www.spm.uem.br/bspm

(3s.) **v. 36** 4 (2018): 159–170. ISSN-00378712 IN PRESS doi:10.5269/bspm.v36i4.32032

Commutativity of Near-rings With Certain Constrains on Jordan Ideals

Abdelkarim Boua

ABSTRACT: The purpose of this paper is to study derivations satisfying certain differential identities on Jordan ideals of 3-prime near-rings. Moreover, we provide examples to show that hypothesis of our results are necessary.

Key Words: 3-prime near-rings, Jordan ideal, Derivations.

Contents

1	Introduction	159
2	Some preliminaries	160
3	Main Results	161

1. Introduction

Throughout this paper N will be a left near-ring with multiplicative center $Z(\mathcal{N})$; and usually \mathcal{N} will be 3-prime, if for all $x,y\in\mathcal{N}, x\mathcal{N}y=0$ implies x=0or y=0. A near-ring $\mathbb N$ is called zero-symmetric if x0=0, for all $x\in \mathbb N$ (recall that right distributivity yields 0x = 0). An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is a derivation if d(xy) = xd(y) + d(x)y for all $x, y \in \mathbb{N}$. For any $x, y \in \mathbb{N}$; as usual [x,y] = xy - yx and $x \circ y = xy + yx$ will denote the well-known Lie product and Jordan product respectively. Recall that for $n \geq 2$, N is called n-torsion free if nx = 0 implies x = 0 for all $x \in \mathbb{N}$. For terminologies concerning near-rings we refer to G. Pilz [11]. An additive subgroup J of $\mathbb N$ is said to be a Jordan ideal of \mathbb{N} if $j \circ n \in J$ and $n \circ j \in J$ for all $j \in J, n \in \mathbb{N}$ (For more details see reference [7]). The existing literature on 3-prime near-rings contains a number of theorems concerning multiplicative commutativity of near-rings. H. E. Bell, G. Mason, N. Argaç, A. A. M. Kamal, X. K. Wang and other have proved several results on commutativity of 3-prime near-rings with derivations (for reference see [1], [4], [10], [12]... etc.) Indeed, motivated by the notion of Jordan ideal introduced in near-rings (for reference [7], [8]) and the results of H. E. Bell, it is natural to continue this line of investigation for comparable results for 3-prime near-rings having derivations with Jordan ideals. In the present paper, we shall attempt to generalize the known result of H. E. Bell and study the commutativity of Jordan ideal in 3-prime near-rings satisfying certain identities involving the Jordan ideal.

2010 Mathematics Subject Classification: 16N60, 16W25, 16Y30. Submitted May 23, 2016. Published December 28, 2016

2. Some preliminaries

We begin with the following results which will be used extensively to prove our theorem. The first Lemma appears in [4] and [12].

Lemma 2.1. Let \mathbb{N} be a 3-prime near-ring.

- (i) If $z \in Z(\mathbb{N}) \setminus \{0\}$ and $xz \in Z(\mathbb{N})$, then $x \in Z(\mathbb{N})$.
- (ii) If $\mathbb{N} \subseteq Z(\mathbb{N})$, then \mathbb{N} is a commutative ring.
- (iii) If N is 2-torsion free and d is a derivation on N such that $d^2 = 0$, then d = 0.
- (iv) If d is a derivation, then $x \in Z(\mathbb{N})$ implies $d(x) \in Z(\mathbb{N})$.

Lemma 2.2. Let $\mathbb N$ be a near-ring and d a derivation of $\mathbb N$. Then $\mathbb N$ satisfies the following partial distributive law

$$\left(xd(y)+d(x)y\right)z=xd(y)z+d(x)yz \text{ for all } x,y,z\in\mathbb{N}.$$

Lemma 2.3. Let d be an arbitrary additive endomorphism of \mathbb{N} . Then d(xy) = xd(y) + d(x)y for all $x, y \in \mathbb{N}$ if and only if d(xy) = d(x)y + xd(y) for all $x, y \in \mathbb{N}$. Therefore d is a derivation if and only if d(xy) = d(x)y + xd(y) for all $x, y \in \mathbb{N}$.

Recall that a map $d: \mathbb{N} \to \mathbb{N}$ is called a multiplicative derivation on N if d(xy) = xd(y) + d(x)y for all $x, y \in \mathbb{N}$. Notice that any derivation on \mathbb{N} is a multiplicative derivation.

Lemma 2.4. [8, Corollary 3] Let \mathbb{N} be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathbb{N} . If \mathbb{N} admits a derivation d such that $d(J) = \{0\}$, then d = 0 or the element of J commute under the multiplication of \mathbb{N} .

Lemma 2.5. [7, Lemma 2 & Lemma 3] Let \mathbb{N} be a 2-torsion free 3-prime near-ring and J a nonzero Jordan ideal of \mathbb{N} .

- (i) If $j^2 = 0$ for all $j \in J$, then $J = \{0\}$.
- (ii) If $J \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Lemma 2.6. [10, Lemma 2.1] A near-ring \mathbb{N} admits a multiplicative derivation if and only if it is zero-symmetric.

Using Lemma 2.6, we deduce that in all our results in the paper that \mathcal{N} is a zero-symmetric near-ring.

Lemma 2.7. Let \mathbb{N} be a 3-prime near-ring and J a nonzero Jordan ideal of \mathbb{N} . If the element of J commute under the multiplication of \mathbb{N} , then J is commutative.

Proof. Suppose that the element of J commute under the multiplication of \mathbb{N} , then (i+j)(k+k) = (k+k)(i+j) for all $i,j,k \in J$ so that ((j+i)-(i+j))k = 0 for all $i,j,k \in J$. Replacing k by $k \circ n$ in the last expression, we get ((j+i)-(i+j))nk = 0 for all $i,j,k \in J$, $n \in \mathbb{N}$. Further, application of 3-primeness of \mathbb{N} yields j+i=i+j for all $i,j \in J$. Finally we conclude that J is commutative.

3. Main Results

In this section, we give some new results and examples concerning the existence of Jordan ideal and derivations in near-rings. We begin this section by the following interesting results for near-rings.

In [4] H. E. Bell and G. Mason proved that a 2-torsion 3-prime near-ring \mathcal{N} must be commutative if it admits a nonzero derivation d such that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$. Our objective in the following theorem is to generalize and improve this result by treating the case of a Jordan ideal J of 3-prime near-ring \mathcal{N} instead of \mathcal{N} . The following Theorem gives an analogous result for near-rings.

Theorem 3.1. Let \mathbb{N} be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathbb{N} . If \mathbb{N} admits a derivation d such that $d(J) \subseteq Z(\mathbb{N})$, then d = 0 or J is commutative.

Proof. Suppose that $d(j) \in Z(\mathbb{N})$ for all $j \in J$, then $d(j \circ j) = d(2j^2) \in Z(\mathbb{N})$ for all $j \in J$ which implies that $d(j)(j+j) + jd(j+j) \in Z(\mathbb{N})$ for all $j \in J$, by hypothesis this expression reduced to $4jd(j) \in Z(\mathbb{N})$ for all $j \in J$ and by application of Lemma 2.1 (i), we obtain

$$d(j) = 0 \text{ or } 4j \in Z(\mathcal{N}) \text{ for all } j \in J.$$
 (3.1)

Suppose there exists $j_0 \in J$ such that $4j_0 \in Z(\mathcal{N})$, then $4j_0(j^2+j^2) = j \circ 4j_0j \in J$ for all $j \in J$. In view of the hypothesis, we find that

$$d(4j_0(j^2+j^2)) = d(4j_0)(2j^2) + 4j_0d(2j^2) \in Z(\mathbb{N}), \text{ for all } j \in J.$$

Using Lemma 2.2, the last upshot becomes $d(4j_0)(2j^2) \in Z(\mathbb{N})$ for all $j \in J$. Apply Lemma 2.1 (i), we obtain $d(4j_0) = 0$ or $2j^2 \in Z(\mathbb{N})$ for all $j \in J$ and 2-torsion freeness forces $d(j_0) = 0$ or $2j^2 \in Z(\mathbb{N})$ for all $j \in J$. It follows that the equation (3.1) can be written in the form

$$d(j) = 0 \text{ or } 2k^2 \in Z(\mathbb{N}) \text{ for all } j, k \in J.$$
 (3.2)

Assume that $k^2+k^2=2k^2\in Z(\mathbb{N})$ for all $k\in J$. Then $d(k(2k^2))=d(k\circ k^2)\in Z(\mathbb{N})$ for all $k\in J$. Therefore, $d(k)(2k^2)+kd(2k^2)\in Z(\mathbb{N})$ for all $k\in J$. Using the Lemma 2.2 and Lemma 2.1 (i), we find that $d(2k^2)=0$ or $k\in Z(\mathbb{N})$ for all $k\in J$. By definition of d and 2-torsion freeness of \mathbb{N} , we arrive at $d(k)\mathbb{N}k=\{0\}$ or $k\in Z(\mathbb{N})$ for all $k\in J$. By 3-primeness of N, we conclude that d(k)=0 or $k\in Z(N)$ for all $k\in J$, in this case (3.2) becomes

$$d(k) = 0 \text{ or } k \in Z(\mathcal{N}) \text{ for all } k \in J.$$
 (3.3)

If there is $k_0 \in J$ such that $d(k_0) = 0$, then $k_0 d(j) + d(j) k_0 = d(k_0 \circ j) \in Z(\mathbb{N})$ for all $j \in J$ which means that $2k_0 d(j) \in Z(N)$ for all $j \in J$. By 2-torsion freeness of \mathbb{N} and Lemma 2.1(i), we arrive at d(j) = 0 for all $j \in J$ or $k_0 \in Z(N)$. In this case (3.3) becomes

$$d(j) = 0 \text{ or } k \in Z(\mathcal{N}) \text{ for all } j, k \in J.$$
 (3.4)

Using Lemma 2.4 and Lemma 2.7, we conclude that J is commutative.

As a consequence of Theorem 3.1, we have the following result:

Corollary 3.2. [4, Theorem 2.1] Let \mathbb{N} be a 2-torsion free 3-prime near-ring. If \mathbb{N} admits a nonzero derivation d such that $d(\mathbb{N}) \subseteq Z(\mathbb{N})$, then \mathbb{N} is a commutative ring.

Theorem 3.3. Let \mathbb{N} be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathbb{N} . If \mathbb{N} admits a derivation d such that $d(J^2) = \{0\}$, then d = 0 or J is commutative.

Proof. Suppose that d(ij) = 0 for all $i, j \in J$. Replacing i by $2i^2$, we get

$$\begin{array}{rcl} 0 & = & d \left((2i)^2 j \right) \\ & = & d(i)(i+i)j + id((i+i)j) \quad \text{for all} \ i,j \in J \end{array}$$

this implies that d(i)(2i)j = 0 for all $i, j \in J$. Writing $j \circ n$ for j where $n \in \mathbb{N}$ in the above relation gives

$$d(i)(2i)jn + d(i)(2i)nj = 0$$
 for all $i, j \in J, n \in \mathbb{N}$

this equation reduced to

$$d(i)(2i)\Im j = \{0\}$$
 for all $i, j \in J$.

Since $J \neq \{0\}$, then by 3-primeness and 2-torsion freeness of \mathbb{N} , we arrive at d(i)i = 0 for all $i \in J$. Using this in the calculation of the expression $d(ji(i \circ n)) = 0$ for all $i, j \in J$, $n \in \mathbb{N}$, we find that d(j)ini = 0 for all $i, j \in J$ and using again the 3-primeness of \mathbb{N} , we obtain d(j)i = 0 for all $i, j \in J$. Taking $i \circ n$ instead of i in the last equation and invoking it again, we get d(j)ni = 0 for all $i, j \in J$ and by application the 3-primeness of \mathbb{N} and $J \neq \{0\}$, we arrive at d(j) = 0 for all $j \in J$. By Lemma 2.4 and Lemma 2.7, we conclude that J is commutative.

The following example demonstrates that the condition "3-primeness of \mathbb{N} " in Theorem 3.1 and Theorem 3.3 is crucial.

Example 3.4. Let S be a 2-torsion free noncommutative near-ring. We define \mathbb{N} , J and d by: $\mathbb{N} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a,b,c \in \mathbb{S} \right\}$, $J = \left\{ \begin{pmatrix} m & 0 \\ 0 & 0 \end{pmatrix} \mid m \in \mathbb{S} \right\}$ and $d \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$. It is obvious that \mathbb{N} is 2-torsion free near-ring not 3-prime, J a nonzero Jordan ideal of \mathbb{N} and d is a nonzero derivation such that $\{0\} = d(J) \subseteq Z(\mathbb{N})$ and $d(J^2) = \{0\}$. But J is not commutative.

Theorem 3.5. Let \mathbb{N} be a 6-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathbb{N} . There is no derivation d of \mathbb{N} such that $d^2(J) = J$.

Proof. Suppose that $d^2(j) = j$ for all $j \in J$. Replacing j by $j \circ jn$ where $n \in \mathbb{N}$ and invoking the fact that $j \circ jn = j(j \circ n)$, we obtain $d^2(j(j \circ n)) = j(j \circ n)$ for all $j \in J$, $n \in \mathbb{N}$. Developing this expression, we arrive at

$$d^{2}(j)(j \circ n) + 2d(j)d(j \circ n) + jd^{2}(j \circ n) = j(j \circ n)$$

for all $j \in J, n \in \mathbb{N}$ which reduced to

$$2d(j)d(j \circ n) = -j(j \circ n) \text{ for all } j \in J, n \in \mathbb{N}.$$
 (3.5)

Applying d to (3.5) and invoking our hypothesis, we obtain

$$2jd(j \circ n) + 2d(j)(j \circ n) = -d(j(j \circ n)) \text{ for all } j \in J, n \in \mathbb{N}$$
 (3.6)

Applying d again to (3.6) and using our hypothesis, we conclude that $3j(j \circ n) = 0$ for all $j \in J$, $n \in \mathbb{N}$. By 6-torsion free of \mathbb{N} , we find that $j(j \circ n) = 0$ for all $j \in J$, $n \in \mathbb{N}$, which implies that $jnj = -j^2n$ for all $j \in J$, $n \in \mathbb{N}$. Replacing n by nm and using it again, we get

$$\begin{array}{lll} jnmj & = & -j^2nm \\ & = & j^2n(-m) \\ & = & (-jnj)(-m) \\ & = & jn(-j)(-m) \text{ for all } j \in J, m, n \in \mathbb{N} \end{array}$$

which means that

$$jn(mj-(-j)(-m))=0$$
 for all $j \in J, m, n \in \mathbb{N}$

Putting -j instead of j in the last expression, we arrive at

$$(-j)\mathcal{N}(-mj+jm) = \{0\} \text{ for all } j \in J, m \in \mathcal{N}$$
(3.7)

By 3-primeness of \mathbb{N} , we conclude that $j \in Z(\mathbb{N})$ for all $j \in J$. Replacing j by $2j^2$ in our hypothesis and using the 2-torsion freeness of \mathbb{N} , we get $d^2(j^2) = j^2$ for all $j \in J$ developing this expression by definition of d, we obtain

$$2d(j)d(j) + j^2 = 0$$
 for all $j \in J$ (3.8)

Applying d to (3.8), we get 6jd(j)=0 for all $j\in J$ and by 6-torsion freeness of \mathbb{N} , we obtain jd(j)=0 for all $j\in J$ and with the help of the facts that $J\neq\{0\}$. Hence, the 3-primeness of \mathbb{N} forces that $d(J)=\{0\}$, in this case, we obtain $J=\{0\}$; this leads to a contradiction.

Theorem 3.6. Let $\mathbb N$ be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of $\mathbb N$. If $\mathbb N$ admits a derivation d satisfying one of the following conditions

- (i) d([j, n]) = 0 for all $j \in J$, $n \in \mathbb{N}$, or
- (ii) d([j,n]) = [j,n] for all $j \in J$, $n \in \mathbb{N}$, or
- (iii) [d(j), n) = [j, d(n)] for all $j \in J$, $n \in \mathbb{N}$,

then d = 0 or J is commutative.

Proof. (i) Suppose that d([j,n]) = 0 for all $j \in J$, $n \in \mathbb{N}$. Replacing n by jn and using the definition of d, we get

$$\begin{array}{lll} 0 & = & d([j,jn]) \\ & = & d(j[j,n]) \\ & = & d(j)[j,n] + jd([j,n]) \\ & = & d(j)[j,n] \ \ \text{for all} \ \ j \in J, n \in \mathbb{N} \end{array}$$

which means that

$$d(j)nj = d(j)jn \text{ for all } j \in J, n \in \mathcal{N}.$$
 (3.9)

Taking nm instead of n in (3.9) and using it again, we get

$$d(j)nmj = d(j)njm$$
 for all $j \in J, m, n \in \mathbb{N}$

this reduced to

$$d(j)\mathcal{N}[j,m] = \{0\} \text{ for all } j \in J, m \in \mathcal{N}$$
(3.10)

By 3-primeness of \mathbb{N} , we obtain d(j) = 0 or $j \in Z(\mathbb{N})$ for all $j \in J$. Using Lemma 2.2 (iv), the last two cases forces $d(J) \subseteq Z(\mathbb{N})$. Thus in view of Theorem 3.1, we conclude that d = 0 or J is commutative.

(ii) Assume that d([j,n]) = [j,n] for all $j \in J$, $n \in \mathbb{N}$. Replacing n by jn in the latter equation and using the definition of d, we get

$$\begin{split} j[j,n] &= d(j[j,n]) \\ &= d(j)[j,n] + jd([j,n]) \\ &= d(j)[j,n] + j[j,n] \text{ for all } j \in J, n \in \mathbb{N} \end{split}$$

the above expression becomes

$$d(j)nj = d(j)jn \text{ for all } j \in J, n \in \mathbb{N}.$$
 (3.11)

Putting nm instead of n in (3.11) and using it again, we get

$$d(j)nmj = d(j)njm$$
 for all $j \in J, m, n \in \mathbb{N}$

this reduced to

$$d(j)\mathcal{N}[j,m] = \{0\} \text{ for all } j \in J, m \in \mathcal{N}$$
(3.12)

By 3-primeness of \mathbb{N} , we get d(j)=0 or $j\in Z(\mathbb{N})$ for all $j\in J$. So from Lemma 2.1 (iv), the above two cases imply that $d(J)\subseteq Z(\mathbb{N})$ and using Theorem 3.1, we

deduce that d = 0 or J is commutative. (iii) Suppose that

$$[d(j), n)] = [j, d(n)] \text{ for all } j \in J, n \in \mathcal{N}$$
(3.13)

Putting d(j)n instead of n in (3.13), we get

$$\begin{aligned} [d(j), d(j)n] &= [j, d(d(j)n)] \\ &= jd(d(j)n) - d(d(j)n)j \\ &= jd(j)d(n) + jd^2(j)n - d^2(j)nj \\ &- d(j)d(n)j \end{aligned}$$

for all $j \in J, n \in \mathbb{N}$

On the other hand, we have

$$\begin{aligned} [d(j), d(j)n] &= d(j)[d(j), n] \\ &= d(j)[j, d(n)] \\ &= d(j)jd(n) - d(j)d(n)j \end{aligned}$$

for all $j \in J, n \in \mathbb{N}$

Comparing the above expression, we find that

$$jd(j)d(n) + jd^{2}(j)n - d^{2}(j)nj = d(j)jd(n)$$
(3.14)

for all $j \in J, n \in \mathbb{N}$

Since jd(j) = d(j)j for all $j \in J$ by (3.13), then (3.14) becomes

$$jd^{2}(j)n = d^{2}(j)nj \text{ for all } j \in J, n \in \mathcal{N}$$
(3.15)

Putting nm instead of n in (3.15) and using it again, we get

$$d^{2}(j)\mathcal{N}[j,m] = \{0\} \text{ for all } j \in J, m \in \mathcal{N}.$$

$$(3.16)$$

By 3-primeness of \mathbb{N} , (3.16) becomes

$$d^{2}(j) = 0 \text{ or } j \in Z(N) \text{ for all } j \in J.$$
 (3.17)

If there is an element $j_0 \in J$ such that $d^2(j_0) = 0$. Replacing j by j_0 in (3.13) after applying d to it, we obtain $j_0d^2(n) = d^2(n)j_0$ for all $n \in \mathbb{N}$, in this case, (3.17) becomes

$$id^2(n) = d^2(n)i$$
 for all $i \in J, n \in \mathbb{N}$.

Taking d(n) instead of n in (3.13), we arrive at

$$d(j)d(n) = d(n)d(j) \text{ for all } j \in J, n \in \mathbb{N}.$$
(3.18)

Replacing n by d(n)m in (3.18) and using the same again, we obtain

$$d^{2}(n)md(j) = d(j)d^{2}(n)m \text{ for all } j \in J, n, m \in \mathbb{N}.$$
(3.19)

Putting mt instead of m in (3.19) and using it again, we also have

$$d^{2}(n)\mathbb{N}[d(j), t] = \{0\} \text{ for all } j \in J, n, t \in \mathbb{N}.$$
 (3.20)

By 3-primeness of \mathbb{N} , we arrive at $d^2(\mathbb{N}) = \{0\}$ or $d(J) \subseteq Z(\mathbb{N})$. Now Lemma 2.1 (iii) and Theorem 3.1, forces us to conclude that, d = 0 or J is commutative. \square

As a direct consequence of Theorem 3.6, we obtain the following results.

Corollary 3.7. [3, Theorem 4.1] Let \mathbb{N} be a 2-torsion free 3-prime near-ring. If \mathbb{N} admits a nonzero derivation d such that d([x,y]) = 0 for all $x,y \in \mathbb{N}$, then \mathbb{N} is a commutative ring.

Corollary 3.8. [5, Theorem 2.2] Let \mathbb{N} be a 2-torsion free 3-prime near-ring. If \mathbb{N} admits a nonzero derivation d such that d([x,y]) = [x,y] for all $x,y \in \mathbb{N}$, then \mathbb{N} is a commutative ring.

Corollary 3.9. [6, Theorem 2.1] Let \mathbb{N} be a 2-torsion free 3-prime near-ring. If \mathbb{N} admits a nonzero derivation d such that [d(x), y] = [x, d(y)] for all $x, y \in \mathbb{N}$, then \mathbb{N} is a commutative ring.

The following examples show that the "3-primeness of \mathbb{N} " in the Theorem 3.6 (i) and Theorem 3.6 (ii) can not be omitted.

Example 3.10. Let S be a 2-torsion free left near-ring. Define \mathbb{N} , J, d by:

$$\mathcal{N} = \left\{ \left(\begin{array}{ccc} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{array} \right) \mid x,y,z \in S \right\}, \ \ J = \left\{ \left(\begin{array}{ccc} 0 & 0 & m \\ 0 & 0 & 0 \\ 0 & n & 0 \end{array} \right) \mid m,n \in S \right\} \ and$$

$$d\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
 Then it can be seen easily that $\mathbb N$ is a left near-

ring which is not 3-prime, J is a nonzero Jordan ideal of \mathbb{N} and d is a derivation on \mathbb{N} such that d([j,n]) = 0 for all $j \in J$, $n \in \mathbb{N}$. However, J is not commutative.

Example 3.11. Let S be a 2-torsion free left near-ring. Define \mathbb{N} , J, d by:

$$\mathcal{N} = \left\{ \left(\begin{array}{cc} x & y \\ 0 & 0 \end{array} \right) \mid x, y \in S \right\}, \ J = \left\{ \left(\begin{array}{cc} 0 & m \\ 0 & 0 \end{array} \right) \mid m \in S \right\} \ and$$

 $d\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \text{ Then it can be seen easily that } \mathbb{N} \text{ is a left near-ring which}$ is not 3-prime, J is a nonzero Jordan ideal of \mathbb{N} and d is a derivation on \mathbb{N} such that d([j,n]) = [j,n] for all $j \in J$, $n \in \mathbb{N}$. However, J is not commutative.

Theorem 3.12. Let $\mathbb N$ be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of $\mathbb N$. If $\mathbb N$ admits a derivation d satisfying one of the following conditions

Commutativity of Near-rings With Certain Constrains on Jordan Ideals 167

- (i) $d([j,n]) = j \circ n$ for all $j \in J$, $n \in N$, or
- (ii) $d(j \circ n) = [j, n]$ for all $j \in J$, $n \in N$,

then d = 0 or J is commutative.

Proof. (i) Suppose that $d([j,n]) = j \circ n$ for all $j \in J$, $n \in N$. Replacing n by jn, we get

$$\begin{array}{lcl} j \circ jn & = & d([j,jn]) \\ & = & d(j[j,n]) \\ & = & jd([j,n]) + d(j)[j,n] \\ & = & j(j \circ n) + d(j)[j,n] \\ & = & j \circ jn + d(j)[j,n] \text{ for all } j \in J, n \in \mathbb{N} \end{array}$$

which implies that

$$d(j)nj = d(j)jn \text{ for all } j \in J, n \in \mathbb{N}$$
 (3.21)

Since (3.21) is the same as (3.9), then using the same techniques as used after (3.9), we conclude that d=0 or J is commutative. In this case, for n=i, we obtain $i \circ j = 0$ for all $i, j \in J$ which implies that 2ij = 0 for all $i, j \in J$, using the 2-torsion freeness, we get ij = 0 for all $i, j \in J$. Using $j \circ n$ in the place of j, where $n \in \mathbb{N}$ in the previous relation and with the help of the fact that N is 3-prime, we conclude that $J = \{0\}$; leading to a contradiction.

(ii) Assume that $d(j \circ n) = [j, n]$ for all $j \in J$, $n \in \mathbb{N}$. Replacing n by jn in the last equation and using it again, we get

$$j[j,n] = d(j(j \circ n))$$

$$= jd(j \circ n) + d(j)(j \circ n)$$

$$= j[j,n] + d(j)(j \circ n) \text{ for all } j \in J, n \in \mathbb{N}$$

the above expression becomes

$$d(j)nj = -d(j)jn \text{ for all } j \in J, n \in \mathbb{N}$$
(3.22)

Taking nm instead of n in (3.22) and using it again, we have for all $j \in J, m, n \in \mathbb{N}$

$$\begin{array}{rcl} d(j)nmj & = & -d(j)jnm \\ & = & d(j)jn(-m) \\ & = & d(j)n(-j)(-m) \end{array}$$

Putting -j instead of j in the last expression, we obtain

$$d(-j)\mathcal{N}[j,m] = \{0\} \text{ for all } j \in J, m \in \mathcal{N}$$
(3.23)

By 3-primeness of \mathbb{N} , we get d(-j) = 0 or $j \in Z(\mathbb{N})$ for all $j \in J$ this gives $d(J) \subseteq Z(\mathbb{N})$ by Lemma 2.1(iv). Now using the Theorem 3.1, we conclude that then

d=0 or J is commutative. In this case, for $n=j\circ jm$, we obtain $2d(j(j\circ jm))=0$ for all $j\in J, m\in \mathbb{N}$, which implies that by 2-torsion freeness $d(j(j\circ jm))=0$ for all $j\in J, m\in \mathbb{N}$, by the simple calculation, we find that $j^2[j,m]=0$ for all $j\in J, m\in \mathbb{N}$. Putting nm instead of m in the previous relation and using the same again with the 3-primeness of \mathbb{N} , we conclude that $j^2=0$ or $j\in Z(\mathbb{N})$ for all $j\in J$ and by Lemma 2.5 (i), we get $J\subseteq Z(\mathbb{N})$. The application of Lemma 2.5 (ii) assures that \mathbb{N} is a commutative ring. In this case, returning to our hypothesis, we get 2d(jn)=0 for all $j\in J, n\in \mathbb{N}$ and by the 2-torsion freeness and definition of d, we find that d(j)n+jd(n)=0 for all $j\in J, n\in \mathbb{N}$. Replacing n by nj in the last equation, we get $d(j)\mathbb{N}j=\{0\}$ for all $j\in J$, by 3-primeness of \mathbb{N} , we obtain $d(J)=\{0\}$. By Lemma 2.4 and Lemma 2.7, we conclude that d=0 or J is commutative.

As a consequences, we get the following results:

Corollary 3.13. Let \mathbb{N} be a 2-torsion free 3-prime near-ring. Then \mathbb{N} admits no nonzero derivation such that $d([x,y]) = x \circ y$ for all $x,y \in \mathbb{N}$.

Corollary 3.14. Let \mathbb{N} be a 2-torsion free 3-prime near-ring. Then \mathbb{N} admits no nonzero derivation such that $d(x \circ y) = [x, y]$ for all $x, y \in \mathbb{N}$.

Theorem 3.15. Let \mathbb{N} be a 2-torsion free 3-prime near-ring with $Z(\mathbb{N}) \neq \{0\}$ or and J be a nonzero Jordan ideal of \mathbb{N} . If \mathbb{N} admits a nonzero derivation d such that $d(j) \circ n = j \circ d(n)$ for all $j \in J$, $n \in \mathbb{N}$, then J is commutative.

Proof. Suppose that $d(j) \circ n = j \circ d(n)$ for all $j \in J$, $n \in N$. In particular, for $n \in Z(\mathbb{N})$ and by 2-torsion freeness, we obtain d(j)n = jd(n) for all $j \in J$. Replacing n by nm where $m \in Z(\mathbb{N})$ in the last expression and using it again, we get

$$d(j)nm = jd(nm)$$

$$= jd(n)m + jnd(m)$$

$$= d(j)nm + jnd(m)$$

for all $j \in J, m, n \in Z(\mathbb{N})$ which implies that $n \mathbb{N} j \mathbb{N} d(m) = \{0\}$ for all $j \in J, m, n \in Z(\mathbb{N})$. Since $J \neq \{0\}$ and \mathbb{N} is 3-prime, we obtain $d(Z(\mathbb{N})) = \{0\}$. Returning to our hypothesis, we obtain $d(j) \circ n = 0$ for all $j \in J, n \in \mathbb{N}$ this means that 2d(j)n = 0 for all $j \in J, n \in Z(\mathbb{N})$ and by 2-torsion freeness, we can conclude that $d(J)\mathbb{N} Z(\mathbb{N}) = \{0\}$. Using the fact that $Z(\mathbb{N}) \neq \{0\}$ and the 3-primeness of \mathbb{N} , we deduce that J is commutative.

As a consequence, we get the following result:

Corollary 3.16. [6, Theorem 2.7] Let \mathbb{N} be a 2-torsion free 3-prime near-ring with $Z(\mathbb{N}) \neq \{0\}$. Then \mathbb{N} admits no nonzero derivation such that $d(x) \circ y = x \circ d(y)$ for all $x, y \in \mathbb{N}$.

The following example proves that the "3-primeness of \mathbb{N} " in Theorem 3.5, Theorem 3.6(iii), Theorem 3.12 and Theorem 3.15 can not be omitted.

Example 3.17. Let S be a 2-torsion free left near-ring and let

$$\mathcal{N} = \left\{ \left(\begin{array}{ccc} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{array} \right) \mid x,y,z \in S \right\} \ and \ J = \left\{ \left(\begin{array}{ccc} 0 & m & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \mid m \in S \right\}.$$

Define
$$d: \mathbb{N} \to \mathbb{N}$$
 by $d \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then it can be seen easily

that \mathbb{N} is a left near-ring which is not 3-prime with $Z(\mathbb{N}) \neq \{0\}$, J is a nonzero Jordan ideal of \mathbb{N} and the maps d is a derivation on \mathbb{N} such that:

(i)
$$d^2(J) = J$$

$$(ii) [d(j), n] = [j, d(n)]$$

(iii)
$$d([j,n]) = j \circ n$$

$$(iv)$$
 $d(j \circ n) = [j, n]$

(v)
$$d(j) \circ n = j \circ d(n)$$
 for all $j \in J, n \in \mathbb{N}$.

References

- N. Argaç and H. E. Bell, Some results on derivations in near-rings, Near-rings and near-fields (Stellenbosch, 1997), 42-46, Kluwer Acad. Publ., Dordrecht, 2001.
- 2. M. Ashraf and N. Rehman On commutativity of rings with derivations, Results Math., 42 (1-2)(2002), 3-8.
- 3. M. Ashraf and A. Shakir, $On(\sigma,\tau)$ -derivations of prime near-rings-II, Sarajevo J. Math., Vol. 4 (16) (2008), No. 1, pp. 2330.
- 4. H. E. Bell and G. Mason, On derivations in near-rings. Near-rings and near-fields, (Tübingen, 1985), 31–35, North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987.
- 5. A. Boua and L. Oukhtite, *Derivations on prime near-rings*, Int. J. Open Probl. Comput. Sci. Math., 4 (2011), no. 2, 162-167.
- 6. H. E. Bell, A. Boua, L. Oukhtite, On derivations of prime near-rings, Afr. Diaspora J. of Math., Volume 14, Number 1, pp. 65-72 (2012).
- A. Boua, L. Oukhtite, A. Raji, Jordan ideals and derivations in prime near-rings, Comment. Math. Univ. Carolin., 55, 2 (2014) 131-139.
- 8. A. Boua and A. A. M. Kamal, *Lie ideals and Jordan ideals in 3-prime near-rings with derivations*, JP. Journal of Alg., Number of Theorie and Application, 55, 2 (2014) 131-139.
- 9. M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. & Math. Sci., 15(1992), 205-206.
- A. A. M. Kamal and K. H. Al-Shaalan, Existence of derivations on near-rings, Math. Slovaca, 63 (2013), no. 3, 431-448.
- 11. G. Pilz, Near-rings. The theory and its applications, Second edition. North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, (1983).
- 12. X. K. Wang, Derivations in prime rings, Proc. Amer. Math. Soc., 121 (2), 1994, 361-366.

Abdelkarim Boua,
Abdelmalek Essaadi University,
Polydisciplinary Faculty,
Departement Of Mathematics,
Rabat road, Km 2Larache P. O. Box. 745-92004,
Larache; Morocco.
E-mail address: abdelkarimboua@yahoo.fr, karimoun2006@yahoo.fr