
Bol. Soc. Paran. Mat. (3s.) v. 37 4 (2019): 103–117.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v37i4.32064

Inclusion And Equivalence Relations Between Absolute Nörlund And

Absolute Weighted Mean Summability Methods
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abstract: In this paper, a set of conditions under which the absolute Nörlund
summability method include in the absolute weighted mean method have been es-
tablished. Three non-trivial examples to show that this inclusion holds have been
given, and other three examples to show that even if both (N, r) and (N, q) are
regular, the inclusion fails to holds have been constructed. The paper give two
non-trivial examples to show that the equivalence of these two methods may holds.
Finally, we give two examples to show that inclusion may holds in only one way
without the other.
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1. Introduction

Let A be a sequence-to sequence transformation

tn =

∞
∑

k=0

An,kSk ; n = 0, 1, 2, · · · . (1.1)

The sequence {Sn} is said to be summable (A) to s if tn −→ s as n −→ ∞,
and if in addition {tn}, is of bounded variation, then {Sn} is said to be absolutely
summable (A) or summable |A|.
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We define the sequence of constants {Cn} formally by means of the identity

(

∞
∑

n=0

rnz
n

)−1

=
∞
∑

n=0

cnz
n ; c−n = 0 (n ≥ 0) (1.2)

and will write c(z) for
∞
∑

n−0
cnz

n.

If for n = 0, 1, 2, · · ·

rn > 0 ,
rn+1

rn
≤

rn+2

rn+1
≤ 1, (1.3)

then we shall write rn ∈ µ.
Let (N, r) denote the Nörlund method in which the sequence {Sn} is trans-

formed into the sequence {trn}, where

trn =
1

Rn

n
∑

k=0

rn−kSk; (1.4)

Rn = r0 + r1 + · · ·+ rn 6= 0 all n ≥ 0

R−m = r−m = 0 ; (m > 0) (1.5)

The special case in which rn = 1 (n ≥ 0), then (N, r) reduces to a simple
arithmetic mean of (C, 1).

Each sequence {qn} for which Qn = q0 + q1 + · · · , qn 6= 0 (all n ≥ 0) for each n

defines the weighted mean method (N, q) of the sequence {Sn}, where

t(q)n =
1

Qn

n
∑

k=0

qkSk n = 0, 1, 2, · · · (1.6)

A method of summability is called regular, if it sums every convergent series to
its ordinary sum. It follows from Toeplitz’s Theorem ( [6]; Theorem 2) that (N, r)
is regular if, and only if,

rn

Rn

→ 0 as n → ∞, (1.7)

and
n
∑

k=0

|rk| = O (|Rn|) (1.8)

And (N, q) is regular if, and only if,

|Qn| → 0 as n → ∞, (1.9)

and
n
∑

k=0

|qk| = O (|Qn|) (1.10)



Inclusion And Equivalence Relations 105

Let A be a sequence-to sequence transformation given by (1.1). If whenever
{Sn} has a bounded variation it follows that {tn} has a bounded variation, and if
the limits are preserved, we say that A is absolutely regular.

(A) ⊆ (B) means that any series summable by (A) to sum S is necessary
summable (B) to the same sum. (A) and (B) are equivalent if (A) ⊆ (B) and
(B) ⊆ (A). For any sequence {un} we shall write

∆un = un − un+1 (1.11)

2. Inclusion And Equivalence Relations

On inclusion and equivalence relations of different summability methods much
work have been done already, see [1], [2], [3], [4], [5] and [7].

3. Object Of The Paper

The author ( [2], Theorem 6.1) obtained necessary and sufficient conditions for
which

∣

∣(N, q)
∣

∣ ⊆ |(N, r)|. The object of this paper is to obtain a set of conditions
for the other way round, and to give some non-trivial special cases to show that
this inclusion may holds, and we will give some other special cases to show that
this inclusion fails to hold even if both (N, r) and (N, q) are regular. Finally, we
will give two examples involving the equivalence of these two methods, and another
two examples to show that the inclusion may holds in only one way without the
other. These results will be concluded in sections 5, 6 and 7.

4. Results Required

This section is devoted to results that are necessary for our purposes:

Theorem 4.1. [8] The sequence-to-sequence transformation given by (1.1) is ab-
solutely regular if, and only if,

An,k → 0 as n → ∞ for each k (4.1)

∞
∑

k=0

An,k → 1 as n → ∞ (4.2)

and
∞
∑

n=0

∣

∣

∣

∣

∣

∞
∑

v=k

An,v −

∞
∑

v=k

An+1,v

∣

∣

∣

∣

∣

= O(1) ; k → ∞ (4.3)

Theorem 4.2. ( [2], Theorem 6.1) Suppose that (N, q) and (N, r) are regular,
qn 6= 0 (all n ≥ 0 ), then

∣

∣(N, q)
∣

∣ ⊆ |(N, r)| if, and only if,

∞
∑

n−k−1

∣

∣

∣

∣

∆n

1

Rn

(

Rn−k−1 +
Qr

qk
rn−k

)
∣

∣

∣

∣

= O(1), (all k ≥ 0), (4.4)

where
∆nBn,k = Bn,k −Bn+1,k (4.5)
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Lemma 4.3. ( [2], Example 7.2) Let (N, r) be (C, 1), then |(N, r)| ⊆ |(C, 1)| if,
and only if, Qn = O(nqn).

Theorem 4.4. ( [6], Theorem 22) Let rn ∈ µ and {cn} as defined in (1.2), then:

1. cn > 0 , cn ≤ 0 , n = 1, 2, · · · .

2.
∞
∑

n=0
cnz

n is absolutely convergent for |z| ≤ 1.

3.
∞
∑

n=0
cn > 0, except when

∞
∑

n=0
rn = ∞ in which case

∞
∑

n=0
cn = 0.

5. Main Result

In this section we shall state and prove our main result:

Theorem 5.1. Let (N, q) and (N, r) are regular; then |(N, r)| ⊆
∣

∣(N, q)
∣

∣ if, and
only if,

Bn,v → 0 as n → ∞ (5.1)

and
∞
∑

n=k−1

∣

∣

∣

∣

∣

k−1
∑

v=0

Bn,v −

k−1
∑

v=0

Bn+1,v

∣

∣

∣

∣

∣

= O(1) (5.2)

where

Bn,v =
Rv

Qn

n
∑

k=v

qkck−v 0 ≤ v ≤ n (5.3)

and
Bn,v = 0 otherwise (5.4)

Further, if rn ∈ µ, then (5.2) is alone is necessary and sufficient condition for
|(N, r)| ⊆

∣

∣(N, q)
∣

∣.

Proof: Let {trn} and {tqn} be respectively the (N, r) and (N, q) transforms of {Sn} ,
then

trn =
1

Rn

n
∑

k=0

rn−kSk (5.5)

and

tqn =
1

Qn

n
∑

k=0

qkSk (5.6)

To prove the result, we need to find tqn in terms of trn.

Observe that r0 6= 0 ,
∞
∑

n=0
rnz

n = r(z), say, is non-zero in some neighborhood

of the origin, we have
1

r(z)
= c(z), say, is regular in some neighborhood of the

origin, and so has a power series expansion c(z) =
∞
∑

n=0
cnz

n, which by
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∞
∑

n=0

Rnt
rzn =

∞
∑

n=0

rnz
n

∞
∑

n=0

Snz
n =

(

∞
∑

n=0

cnz
n

)−1 ∞
∑

n=0

Snz
n, (5.7)

so that
∞
∑

n=0

Snz
n =

∞
∑

n=0

cnz
n

∞
∑

n=0

Rnt
rzn. (5.8)

Comparing the coefficient of in (5.8), we have

Sn =

∞
∑

k=0

cn−kR
ktrk. (5.9)

Using (5.9), it follows from (5.6) that

tqn =
n
∑

v=0

Bn.vt
r
v, (5.10)

where Bn.v is given by (5.3) and (5.4)
The special case in which Sn = 1 , (n ≥ 0), then (5.5), (5.6) and (5.10) imply

that
n
∑

v=0

Bn.vt
r
v = 1. (5.11)

This implies (4.2). Using (5.4), it follows from (5.11) that the left hand sides of
(4.3) and (5.2) are equivalent, and Mears Theorem (5.1) implies the result. Next,
if rn ∈ µ, then (N, r) is regular. Using Kaluza Theorem (5.3), it follows that{cn}
is bounded and cc → 0 as n → ∞. Using this and the regularity of (N, q), (5.1)
holds and the proof is completed. ✷

Remark 5.2. We remark that the condition Bn,n = O(1) is necessary (but not suf-
ficient) for (5.2) to be satisfied. It follows from Theorems 4.2 and 5.1 the following
Lemma:

Lemma 5.3. |(N, r)| ∼
∣

∣(N, q)
∣

∣ if, and only if (4.4), (5.1) and (5.2) are satisfied.

6. Examples

In this section we will construct six examples to show in the first three that
|(N, r)| ⊆

∣

∣(N, q)
∣

∣ in some non-trivial cases, and in examples 6.4 and 6.5 we will

show that even if both (N, r) and (N, q) are regular, neither (5.1) nor (5.2) are
satisfied, and in example ?? we will show that (5.1) is satisfied but (5.2) does not.

Example 6.1. Let
rn = 1 , (n ≥ 0), (6.1)

and let

q0 = 1 and qn = n+
1

2
(n ≥ 1), (6.2)
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then
|(C, 1)| ⊆

∣

∣(N, q)
∣

∣ .

Proof: Using (6.1), we see that rn ∈ µ, which by Theorem 5.1 gives (5.1). Next,
comparing the coefficient of zn−k in the equation r(z)c(z) = 1, we see that

n
∑

k=v

rn−kck−v =

{

0 , n > v

1 , n = v
(6.3)

Using (6.1), it follows from (6.3) that

c0 = 1 , c1 = −1 and cn = 0 , (n ≥ 2). (6.4)

Using (6.1), we have

Qn =
(n+ 1)2 + 1

2
, (n ≥ 0). (6.5)

The regularity of (N, r) and (N, q) follows from (6.1), (6.2) and (6.5). Using
(6.4) and (6.5), it follows from (5.3) that

Bn,n =
(n+ 1)(2n+ 1)

(n+ 1)2 + 1
, n ≥ 1, (6.6)

Bn,v = −
2(v + 1)

(n+ 1)2 + 1
, 1 ≤ v ≤ n− 1, (6.7)

Bn,0 = −
1

(n+ 1)2 + 1
, n ≥ 1, (6.8)

and
B0,0 = 1. (6.9)

Using (6.6)-(6.8), the left hand side of (5.2) reduces to:

∣

∣

∣

∣

∣

k−1
∑

v=0

Bk−1,v −

k−1
∑

v=0

Bk,v

∣

∣

∣

∣

∣

+

∞
∑

n=k

∣

∣

∣

∣

∣

Bn,0 +

k−1
∑

v=1

Bk,v −Bn+1,0 −

k−1
∑

v=1

Bn+1,v

∣

∣

∣

∣

∣

= |Bk,k|

+(k2 + k − 1)

∞
∑

n=k

(

1

(n+ 1)2 + 1
−

1

(n+ 2)2 + 1

)

=
(k + 1)(2k + 1)

(k + 1)2 + 1
+ (k2 + k − 1) ·

1

(k + 1)2 + 1

=
3k2 + 4k

(k + 1)2 + 1

= O(1),

so (5.2) is satisfied, and Theorem 5.1 yields the result. ✷
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Example 6.2. Let

rn =
1

2n
, (n ≥ 0) (6.10)

and let

q0 = 1 (6.11)

qn = n−
1

3
, (n ≥ 1), (6.12)

then

|(N, r)| ⊆
∣

∣(N, q)
∣

∣ .

.

Proof: Conditions (1.7) and (1.8) follow from (6.10), and conditions (1.9) and
(1.10) follow from (6.11) and (6.12), and these imply that (N, r) and (N, q) are
regular. Using (6.10), it follows from (1.4) and (6.3) that

Rn = 2−
1

2n
, (n ≥ 0) (6.13)

and

c0 = 1 , c1 = −
1

2
and cn = 0 , (n ≥ 2). (6.14)

Using (6.11) and (6.12), we have

Qn =
1

6

(

3n2 + n+ 6
)

, (n ≥ 0) (6.15)

Using (6.13)-(6.15), it follows from (5.3) that

Bn,n =







(2n+1 − 1)(3n− 1)

3 · 2nQn

, n ≥ 1

1 , n = 1
(6.16)

Bn,v =
(2v+1 − 1)(3v − 4)

6 · 2vQn

, 1 ≤ v ≤ n− 1, (6.17)

and

Bn,0 = −
2

3Qn

n ≥ 1. (6.18)

Condition (5.1) follows from (6.15) and (6.17). The left hand side of (5.2) is equiv-
alent to:

∣

∣

∣

∣

∣

k−1
∑

v=0

Bk−1,v −
k−1
∑

v=0

Bk,v

∣

∣

∣

∣

∣

+
∞
∑

n=k

∣

∣

∣

∣

∣

Bn,0 +
k−1
∑

v=1

Bn,v +Bn+1,0 −
k−1
∑

v=1

Bn+1,v

∣

∣

∣

∣

∣

(6.19)



110 Amjed Zraiqat

Using (5.11), (6.13)-(6.18), we see that (6.19) reduces to:

|Bk,k| +
∞
∑

n=k

∣

∣

∣

∣

2

3

(

1

Qn

−
1

Qn+1

)

+
1

6

(

1

Qn

−
1

Qn+1

) k−1
∑

v=1

(2v+1 − 1)(3v − 4)

2v

∣

∣

∣

∣

∣

≤ |Bk,k|

+
2

3

∞
∑

n=k

∣

∣

∣

∣

∣

1

Qn

−
1

Qn+1
+

1

6

k−1
∑

v=1

(2v+1 − 1)(3v − 4)

2v

∣

∣

∣

∣

∣

∞
∑

n=k

∣

∣

∣

∣

1

Qn

−
1

Qn+1

∣

∣

∣

∣

= A+B + C, say, (6.20)

it is clear that
A+B = O(1),

and

C =
1

Qn

∣

∣

∣

∣

−
1

4
+

1

6

k−1
∑

v=2

(

6v − 8−
3v

2v
+

4

2v

)∣

∣

∣

∣

≤
1

Qn

{

1

4
+

1

3

k−1
∑

v=2
(3v − 4)

}

= O(1)

Therefore A+B+C is bounded, so (5.2) is satisfied and Theorem (5.1) yields the
result. ✷

Example 6.3. Let

r0 = 1 , r1 = −
1

2
and rn = 0 , (n ≥ 0) (6.21)

and let
qn = en (n ≥ 0), (6.22)

then
|(N, r)| ⊆

∣

∣(N, q)
∣

∣ .

Proof: We will show that (5.1) and (5.2) are satisfied, and the result follows from
Theorem (5.1).

Using (6.21) and (6.22), we have

R0 = 1 , Rn =
1

2
, (n ≥ 1), (6.23)

and

Qn =
en+1 − 1

e− 1
, (n ≥ 0), (6.24)

Using (6.21)-(6.24), it follows that (1.7)-(1.10) are all satisfied which imply that
(N, r) and

∣

∣(N, q)
∣

∣ are regular. Using (6.21), it follows from (6.3) that

cn =
1

2n
, (n ≥ 0). (6.25)
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Using (6.22), (6.24) and (6.25), it follows from (5.3) that

Bn,v =
2vRv(e − 1)

en+1 − 1

n
∑

u=v

(e

2

)u

, 0 ≤ v ≤ n

=
(e − 1)en+1Rv2

v

(e− 2)2n(en+1 − 1)
−

2(e− 1)Rv2
v

(e− 2)(en+1 − 1)
, 0 ≤ v ≤ n

(6.26)

and (5.1) follows from (6.26). Next, using (6.23), we have

k−1
∑

v=0

Rv2
v = 2k−1, (6.27)

and
k−1
∑

v=0

Rve
v =

ek + e− 2

2(e− 1)
, (6.28)

Using (6.26)-(6.28), we have

k−1
∑

v=0

Bn,v =
en+1(e− 1)2k−1

2n(e− 2)(en+1 − 1)
−

ek + e − 2

(e− 2)(en+1 − 1)
(6.29)

= An,k−1 , n ≥ k − 1, say. (6.30)

Hence

k−1
∑

v=0

Bn,v =
k−1
∑

v=0

Bn+1,v = An,k−1 −An+1,k−1. (6.31)

Since Ak−1,k−1 = 1 and lim
k→∞

Ak2,k−1 = 0 condition (5.2) will be satisfied if we

show that the right hand side of (6.31) is positive.
Write An,k −An+1,k−1 in the form

en+12k(e − 1)(en+2 + e− 2)

(e − 2)2n+2(en+1 − 1)(en+2 − 1)
−

en+1(e − 1)(ek + e− 2)

(e− 2)(en+1 − 1)(en+2 − 1)

=
en+1(e − 1)

⌊

2k(en+2 + e − 2)− 2n+2(ek + e− 2)
⌋

2n+2(e− 2)(en+1 − 1)(en+2 − 1)

(6.32)

Thus (5.2) will be satisfied if we show that

en+2 + e− 2

2n+2
−

ek + e− 2

2k
> 0

Write

Uk =
ek + e − 2

2k
, it follows that
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Un+2 − Uk = Dn+2 +Dn+1 · · ·+Dk+1, (6.33)

where

Dn+2 = Un+2 − Un+1. (6.34)

Using (6.34), we have for n ≥ k − 1,

Dn+1 =
en+2 + e− 2

2n+2
−

en+1 + e− 2

2n+1

=
(e− 2)(en+1 − 1

2n+2
> 0 , 0 ≤ k − 1 ≤ n.

So that (5.2) is satisfied. ✷

Example 6.4. Let

r0 = 1 , r1 = −2 , rn = 0 , (n ≥ 2), (6.35)

, and let

q0 = 1 , (n ≥ 0), i.e (N, q) is (C, 1), (6.36)

then (N, r) and (N, q) are regular, but neither (5.1) nor (5.2) satisfied.

Proof: (C, 1) is known to be regular. Using (6.35), it follows from (1.7) and (1.8)
that (N, r) is regular. Taking the special case in which Sn = 1 (all n ≥ 0), it follows
from (5.5) that trn = 1 (all n ≥ 0), and (5.9) reduces to

n
∑

k=0

cn−kRk = R0cn +

n
∑

k=1

cn−kRk

Using (6.35), we have R0 = 1 , Rn = −1 (n ≥ 1), then

1 = cn −

n
∑

k=1

cn−k,

which implies that

cn = 2n , (n ≥ 0) (6.37)

Using (6.35)-(6.37), it follows from (5.3) that

Bn,n =
Rv

n+ 1

(

n
∑

k=v

2k−v

)

=
Rv(2

n−v+1 − 1)

n+ 1
6→ 0 as n → ∞

(6.38)
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so that (5.1) is not satisfied. Using (6.38) we have that

∞
∑

v=0

Bn,v =
2n+1

n+ 1

(

k−1
∑

v=0

Rv

2v

)

−
1

n+ 1

k−1
∑

v=0

Rv,

which by (6.35) reduces to:

∞
∑

v=0

Bn,v =
1

n+ 1

(

2n−k+2 + k − 2
)

= Un,k−1 , say. (6.39)

Using (6.39) and note that Un,k−1 < Un+1,k−1, it follows that the left hand side
of (5.2) is equal to:

lim
k−→∞

(

Uk2,k−1 − Uk−1,k−1

)

= lim
n−→∞

2k
2−k+2 + k − 2

k2 + 1
− 1 6= O(1).

Therefore (5.2) is not satisfied. This completes the proof. ✷

Example 6.5. Let

rn = 2n+ 1 , (n ≥ 0), (6.40)

and let

qn = 2n , (n ≥ 0), (6.41)

then (N, r) and (N, q) are regular, but neither (5.1) nor (5.2) satisfied.

Proof: Using (6.40) and (6.41), we have

Rn = (n+ 1)2 , (n ≥ 0), (6.42)

and

Qn = 2n+1 − 1 , (n ≥ 0), (6.43)

which imply that (1.7)-(1.10) are all satisfied, so (N, r) and (N, q) are regular.
Using induction on n, it follows from (6.3) and (6.40) that

c0 = 1 , c1 = −3 , cn = 4(−1)n , (n ≥ 2), (6.44)

Using (6.41)-(6.44); it follows from (5.3) that

Bn,n =
Rnqn

Qn

=
(n+ 1)2 · 2n

2n+1 − 1
, (n ≥ 0), (6.45)

Bn,n−1 = −
5Rn−1qn−1

Qn

= −
5n2 · 2n−1

2n+1 − 1
, (n ≥ 1), (6.46)
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Bn,v =
Rv

Qn

[

−5.2v +
n
∑

µ=v+2
qµcµ−(v+2)

]

, 0 ≤ v ≤ n− 2

=
(v + 1)2

3(2n+1 − 1)

[

2v − 2n+3(−1)n−1(−1)−v
]

0 ≤ v ≤ n− 2,

(6.47)

and
Bn,v = 0 otherwise. (6.48)

Using (6.47), we see that (5.1) is not satisfied. Next, observe that the first term of
the left hand side of (5.2) is equivalent to:

∣

∣

∣

∣

∣

k−1
∑

v=0

Bk−1,v −
k−1
∑

v=0

Bk,v

∣

∣

∣

∣

∣

,

which by (5.11) reduces to |Bk,k|.
Using (6.45), we see that

|Bk,k| =
(k + 1)2 · 2k

2k+1 − 1
6= O(1).

Using remark (5.2), we see that (5.2) is not valid. This completes the proof. ✷

Example 6.6. Let
qn = kn , (n ≥ 0) , |k| > 1 (6.49)

and let (N, r) be (C, 1), then both (N, r) and (N, q) are regular, and (5.1) is satisfied
but (5.2) does not.

Proof: (C, 1) is known to be regular, and (6.49) implies that

Qn =
kn+1 − 1

k − 1
, n ≥ 0, (6.50)

so that the regularity of (N, q) follows from the satisfaction of (1.9) and (1.10).
Next, using the assumptions, it follows from (6.1) and (6.3) that (6.4) is satisfied,
and so (5.3) reduces to:

Bn,v =
(v + 1)(k − 1)

kn+1 − 1

n
∑

µ=v

kµcµ−v

=
(v + 1)(k − 1)

kn+1 − 1

[

kv − kv+1
]

, 0 ≤ v ≤ n− 1

(6.51)

and

Bn,n =
(n+ 1)(k − 1)kn

kn+1
6= O(1). (6.52)

So that (5.1) follows from (6.51). Also, remark (5.2) together with (6.52) imply
that (5.2) is not satisfied. ✷
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7. Equivalence Relations

With the aid of Lemma (5.3), it is natural to give some examples to show that
the equivalence may holds in some trivial and non-trivial cases. In this section we
will construct two examples to show that |(N, r)| ∼

∣

∣N, q)
∣

∣, and two other examples
to show that the inclusion may valid in only one way without the other.

Example 7.1. Let {rn} be defined as in (6.1). Let {qn} be defined as in (6.2),
then |(N, r)| ∼

∣

∣N, q)
∣

∣.

Proof: Using the assumptions, it follows from example (6.1) that |(C, 1)| ⊆
∣

∣N, q)
∣

∣.
Using (6.2), it follows from (6.5) that Q − n = Q(nqn), and lemma (??) implies
that

∣

∣N, q)
∣

∣ ⊆ |(C, 1)|. This completes the proof. ✷

Example 7.2. Let the sequences {rn} and {qn} be defined respectively as in (6.21)
and (6.22), then |(N, r)| ∼

∣

∣N, q)
∣

∣.

Proof: Using the assumptions, |(N, r)| ⊆
∣

∣N, q)
∣

∣ follows from example (6.3). Using
(6.21) and (6.22), we have

R0 = 1 , Rn

1

2
, (n ≥ 1) and Qn =

en+1 − 1

e− 1
. (7.1)

Using (6.21), (6.22) and (7.1), we have

∆
1

Rn

(

Rn−k−1 +
Qk

qk
rn−k

)

= 0 , n ≥ k + 2 (7.2)

Using (7.2), we see that the left hand side of (4.4) is equivalent to:

∣

∣

∣

∣

Qk

Rkqk

∣

∣

∣

∣

+

∣

∣

∣

∣

Qk

Rkqk
−

1

Rk+1
−

Qkr1

Rk+1qk

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Rk+1
−

Qkr1

Rk+1qk
−

R1

Rk+2
−

Qkr2

Rk+2qk

∣

∣

∣

∣

=

∣

∣

∣

∣

ek+1 − 1
1
2e

k

∣

∣

∣

∣

+

∣

∣

∣

∣

ck+1 − 1
1
2e

k
− 2 +

ek+1 − 1

ek

∣

∣

∣

∣

+

∣

∣

∣

∣

1−
ek+1 − 1

ek

∣

∣

∣

∣

= O(1)

and (4.4) is satisfied which implies that
∣

∣N, q)
∣

∣ ⊆ |(N, r)|. This completes the
proof. ✷

Example 7.3. Let the assumptions on {rn} and {qn} be given as in (6.10)-(6.12),
then |(N, r)| ⊆

∣

∣N, q)
∣

∣ but the converse is not valid.

Proof: The result that |(N, r)| ⊆
∣

∣N, q)
∣

∣ follows from example (6.2). Next, observe

that the first term of the left hand side of (4.4) is equivalent to
Qk

Rkqk
which is
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necessary condition for (4.4) to be satisfied. Using (6.12), (6.13) and (6.15), we
have

Qk

Rkqk
=

1
2k

2 + 1
6k + 1

(

2−
1

2k

)(

k −
1

3

) 6= O(1)

Therefore, (4.4) is not satisfied, and so
∣

∣N, q)
∣

∣ 6⊆ |(N, r)|. ✷

Example 7.4. Let the assumptions on {rn} and {qn} be given as in (6.40) and
(6.41), then

∣

∣N, q)
∣

∣ ⊆ |(N, r)| but the converse is not valid.

Proof: The proof of example (6.5) shows that |(N, r)| 6⊆
∣

∣N, q)
∣

∣. We will show

that (4.4) is satisfied, and Theorem (4.2) implies that
∣

∣N, q)
∣

∣ ⊆ |(N, r)|. Using
(6.40)-(6.43), we see that the left hand side of (4.4) is equivalent to:

∞
∑

n=k−1

∣

∣

∣

∣

Rn−k−1

Rn

+
Qkrn−k

Rnqk
−

Rn−k

Rn+1
−

Qkrn−k

Rn+1qk

∣

∣

∣

∣

∣

∣

∣

∣

Qk

Rkqk

∣

∣

∣

∣

+

∣

∣

∣

∣

Qk

Rkqk
−

1

Rk+1
−

Qkr1

Rk+1qk

∣

∣

∣

∣

+

∣

∣

∣

∣

1

Rk+1
−

Qkrk

Rk+1qk
−

R1

Rk+2
−

Qkr2

Rk+2qk

∣

∣

∣

∣

=
∞
∑

n=k+2

|F (n, k)− F (n+ 1, k)| , say,

(7.3)
where

F (n, k) =
Pn−k−1

Rn

+
Qkrn−k

qkRn

=
(n− k)2

(n+ 1)2
+

(2k+1 − 1)(2n− 2k + 1)

2k(n+ 1)2
. (7.4)

Use differentials, we see (after straightforward manipulations) that Fx(x, k) >

0 , (x ≥ k + 2). This implies that the quantity inside the absolute of sigma in
(7.3) is negative. This implies that the left hand side of (4.4) is equivalent to:

Ak + lim
N−→∞

(F (N + 1, k)− F (k + 2, k)) ,

where Ak is the first three terms of (7.3) which is clearly bounded. Also,

lim
N−→∞

(

(N − k + 1)2

(N + 2)2
+

(2k+1 − 1)(2N − 2k + 3)

2k(N + 2)2

)

− F (k + 2, k) = O(1) (7.5)

Therefore (4.4) is satisfied, and Theorem (4.2) yields the result. ✷
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