

©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm

(3s.) **v. 37** 2 (2019): 9–21. ISSN-00378712 IN PRESS doi:10.5269/bspm.v37i2.32075

On Extended Generalized ϕ -Recurrent $(LCS)_{2n+1}$ -Manifolds

S.K. Yadav, D.L. Suthar and Mebrahtu Hailu

ABSTRACT: We introduce the notion of extended generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds and study its various geometric properties with an example. Finally, we construct an example of 3-dimensional extended generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifold which is neither ϕ -recurrent nor generalized ϕ -recurrent.

Key Words: Generalized recurrent $(LCS)_{2n+1}$ -manifolds, Concircular curvature tensor, Extended generalized ϕ -recurrent $(LCS)_{2n+1}$ - manifolds, Generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds and Concircular curvature tensor .

Contents

1	Introduction	9
2	Preliminaries	10
3	Generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds	12
4	Example of generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds	16

1. Introduction

In 2003, Shaikh [14] introduced the notion of Lorentzian concircular structure manifolds (briefly $(LCS)_{2n+1}$ -manifolds) with an example, which generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto [7]. The notion of local symmetry of a Riemannian manifold has been weakened by many authors in several ways to a different extent. As a weaker version of local symmetry, Takahashi [19] introduced the notion of local ϕ -symmetry on a Sasakian manifold. Generalizing the notion of local ϕ -symmetry of Takahashi [19], De et al. [2] introduced the notion of ϕ -recurrent Sasakian manifold. Recently De et al. [3] introduced the notion of ϕ -recurrent Kenmotsu manifolds. The locally ϕ -symmetric LP-Sasakian manifolds is also studied by Shaikh and Baishya [15]. Again locally ϕ -symmetric and locally ϕ -recurrent $(LCS)_{2n+1}$ -manifolds are respectively studied in [16] and [17]. The notion of generalized recurrent manifolds has been introduced by Dubey [6] and studied by De and Guha [4]. Again, the notion of generalized Ricci-recurrent manifolds has been introduced and studied by De et al. [5].

A Riemannian manifold $(M^n, g), n > 2$, is called generalized recurrent ([4], [6]), if its curvature tensor R satisfies the condition

$$\nabla R = A \otimes R + B \otimes G, \tag{1.1}$$

2010 Mathematics Subject Classification: 53C15, 53C10, 53C40. Submitted May 27, 2016. Published January 22, 2017

where A and B are non vanishing 1-forms defined by $A(\cdot) = g(\cdot, \rho_1), B(\cdot) = g(\cdot, \rho_2)$ and the tensor G is defined by

$$G(X,Y)Z = g(Y,Z)X - g(X,Z)Y,$$
(1.2)

for all $X,Y,Z \in \chi(M)$; $\chi(M)$ being the Lie algebra of smooth vector fields on M and ∇ denotes the operator of covariant differentiation with respect to metric g. The 1- forms A and B are called the associated 1-forms of the manifold. A Riemannian manifold $(M^n,g),n>2$, is called generalized Ricci-recurrent [5] if its Ricci tensor S of type (0,2) satisfies the condition

$$\nabla S = A \otimes S + B \otimes g,\tag{1.3}$$

where A and B are non vanishing 1-forms defined in (1.1).

In 2007, $\ddot{O}zg\ddot{u}r$ [10] studied generalized recurrent Kenmotsu manifolds. Generalizing the notion of $\ddot{O}zg\ddot{u}r$ [10], recently Basari and Murathan [1] introduced the notion of generalized ϕ -recurrent Kenmotsu manifolds. Also, the notion of generalized ϕ -recurrency to Sasakian manifold, Lorentzian α -Sasakian manifolds and generalized Sasakian space-forms are respectively studied in ([11], [12], [22], [24], [26]). By extending the notion of generalized ϕ -recurrency, Prakasha [13] and Shaikh and Hui [18] introduced the notion of extended generalized ϕ -recurrency to β -Kenmotsu manifolds and Sasakian manifolds respectively. As a continuation of this here we have introduce the notion of extended generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds.

The paper is organized as follows. Section 2 deals with a brief account of $(LCS)_{2n+1}$ -manifolds. In section 3, we study generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds and obtain a necessary and sufficient condition for a manifold to be a generalized Ricci-recurrent manifold. Also we study extended generalized concircularly ϕ -recurrent $(LCS)_{2n+1}$ -manifolds and find the nature of its associated 1-forms. Finally; the last section is responsible for the existence of extended generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds.

2. Preliminaries

An (2n+1)-dimensional Lorentzian manifold M is smooth connected paracontact Hausdroff manifold with Lorentzian metric g, that is, M admits a smooth symmetric tensor field ϕ of type (0,2) such that for each point $p \in M$ the tensor $g_p: T_pM \times T_pM \to \Re$ is a non degenerate inner product of signature (-,+,....,+), where T_pM denotes the tangent space of M at p and \Re is the real number space. A non-zero vector field $v \in T_pM$ is said to be time like (resp., non-spacelike, null, and spacelike) if it satisfies $g_p(v,v) < 0$ (resp., $\leq 0, =, > 0$) [9].

Definition 2.1. In a Lorentzian manifold (M, g) a vector field ρ defined by

$$g(X, \rho) = A(X)$$

for any $X \in \chi(M)$ is said to be a concircular vector field if

$$(\nabla_X A)(Y) = \alpha \{ q(X, Y) + \omega(X) A(Y) \}$$

where α is a non-zero scalar and ω is a closed 1-form.

Let M be a Lorentzian manifold admitting a unit time like concircular vector field ξ , called the generator of the manifold. Then, we have

$$g(\xi, \xi) = -1,\tag{2.1}$$

Since, ξ is the unit concircular vector field, there exists a non-zero 1-form η such that

$$g(X,\xi) = \eta(X),\tag{2.2}$$

the equation of the following form holds

$$(\nabla_X \eta) (Y) = \alpha \{g(X, Y) + \eta(X) \eta(Y)\} (\alpha \neq 0)$$
(2.3)

since, ξ is a concircular field, therefore

$$\nabla_X \xi = \alpha \left\{ X + \omega(X) \xi \right\}$$

where ω is a 1-form. Also since ξ is a unit vector field from (2.1), which implies $g(\nabla_X \xi, \xi) = 0$ and hence, we get from above equation

$$\omega(X) = \eta(X),$$

where $\eta(X) = q(X, \xi)$, Now

$$q(\alpha X, Y) + q(\alpha \eta(X)\xi, Y) = q(\nabla_X \xi, Y),$$

which implies

$$\alpha \left[g(x, Y) + \eta(X)\eta(Y) \right] = g(Y, \nabla_X \xi),$$

we have $(\nabla_X \eta)Y = X\eta(Y) - \eta(\nabla_X Y)$ hence

$$(\nabla_X \eta)Y = Xq(Y,\xi) - q(\nabla_Y,\xi)$$

since $(\nabla_X g)(Y, \xi) = 0$, we have

$$(\nabla_X \eta) Y = g(Y, \nabla_X \xi)$$

now, we arrive at the result (2.3) for all vector fields X, Y, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzan metric g and α is a non-zero scalar function satisfies

$$\nabla_X \alpha = (X\alpha) = d\alpha(X) = \rho \eta(X) \tag{2.4}$$

 ρ being a certain scalar function given by $\rho = -(\xi \alpha)$. If we put

$$\phi X = \frac{1}{\alpha} \nabla_X \xi, \tag{2.5}$$

then from (2.3) and (2.5) we have

$$\phi X = X + \eta(X)\xi,\tag{2.6}$$

from which it follows that ϕ is a symmetric (1,1)-tensor and called the structure tensor of the manifold. Thus the Lorentzian manifold M together with the unit timelike concircular vector field ξ its associated 1-form η and (1,1)-tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(LCS)_{2n+1}$ -manifolds) [4]. Especially, if we take $\alpha = 1$, then we can obtain the LP-Sasakian structure of Motsumoto [7].

In a $(LCS)_{2n+1}$ -manifolds, the following relations hold [4]:

a)
$$\eta(\xi) = -1$$
, b) $\phi \xi = 0$, c) $\phi^2 X = X + \eta(X)\xi$, (2.7)

d)
$$\eta(\phi X) = 0$$
, e) $g(\phi X, \phi Y) = g(X, Y) + \eta(X) \eta(Y)$,

$$\eta(R(X,Y)Z) = (\alpha^2 - \rho) \{ g(Y,Z) \eta(X) - g(X,Z) \eta(Y) \},$$
 (2.8)

$$R(X,Y)\xi = (\alpha^2 - \rho) \{ \eta(Y) X - \eta(X) Y \},$$
 (2.9)

$$R(\xi, X)Y = (\alpha^2 - \rho) \{ g(X, Y) \xi - \eta(Y) X \},$$
 (2.10)

$$R(\xi, X)\xi = (\alpha^2 - \rho) \{ \eta(X)\xi + X \},$$
 (2.11)

$$(\nabla_X \phi) (Y) = \alpha \{ g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \}, \qquad (2.12)$$

$$S(X,\xi) = 2n(\alpha^2 - \rho)\,\eta(X),\tag{2.13}$$

$$S(\phi X, \phi Y) = S(X, Y) + 2 n (\alpha^2 - \rho) \eta(X) \eta(Y), \qquad (2.14)$$

$$(X\rho) = d\rho(X) = \beta\eta(X). \tag{2.15}$$

We now state some curvature properties of $(LCS)_{2n+1}$ -manifolds which will be frequently used later on.

Lemma 2.2. From [17], Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a Lorentzian concircular structure manifold. Then for any vector fields X, Y, W the following relation holds:

$$(\nabla_W R)(X,Y)\xi = (2\alpha\rho - \beta) \{\eta(Y)\eta(W)X - \eta(X)\eta(W)Y\} + \alpha(\alpha^2 - \rho) \{g(Y,W)X - g(X,W)Y\} - \alpha R(X,Y)W.$$

3. Generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds

Definition 3.1. A Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g)$, n > 1, is said to be an extended generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds if its curvature tensor R satisfies the condition

$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = A(W)\phi^{2}(R(X,Y)Z) + B(W)\phi^{2}(G(X,Y)Z), \tag{3.1}$$

for all $X,Y,Z,W \in \chi(M)$, where ∇ denotes the operator of covariant differentiation with respect to the metric g, i.e. ∇ is the Riemannian connection; A and B are non-vanishing 1-form such that $A(X) = g(X,\rho_1), B(X) = g(X,\rho_2)$ and G is a tensor of type (1,3) defined in (1.2). The 1-forms A and B are called the associated 1-forms of the manifold.

We consider a Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, which is extended generalized ϕ -recurrent. Then from (2.7) and (3.1) yields

$$(\nabla_{W}R)(X,Y)Z + \eta ((\nabla_{W}R)(X,Y)Z)\xi = A(W) \{R(X,Y)Z + \eta(R(X,Y)Z)\xi\} + B(W) \{G(X,Y)Z + \eta(G(X,Y)Z)\xi\},$$
(3.2)

from which it follows that

$$g((\nabla_W R)(X, Y)Z, U) + \eta ((\nabla_W R)(X, Y)Z) \eta(U) = A(W) \{g(R(X, Y)Z, U) + \eta(R(X, Y)Z))\eta(U)\} +B(W) \{g(G(X, Y)Z, U) + \eta(G(X, Y)Z))\eta(U)\}.$$
(3.3)

Let $\{e_i : i = 1, 2, 3,, 2n + 1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Replacing $X = U = e_i$ in (3.3) and taking summation over $i, 1 \le i \le 2n + 1$, and then using (2.10), we have

$$(\nabla_{W}S)(Y,Z) - g((\nabla_{W}R)(\xi,Y)Z,\xi) = A(W) \{ S(Y,Z) - (\alpha^{2} - \rho)\{g(Y,Z) + \eta(Y)\eta(Z)\} \} + B(W) \{ (2n-1)g(Y,Z) + \eta(Y)\eta(Z) \}.$$
(3.4)

Also from (2.8), we obtain

$$g((\nabla_{W}R)(\xi,Y)Z,\xi) = 2 \alpha \rho \eta(W) \{g(Y,Z) + \eta(Y)\eta(Z)\} + (\alpha^{2} - \rho) \{g(W,Z) - \eta(W)\eta(Z)\} \eta(Y)$$
(3.5)

In view of (3.5), it follows from (3.4) that

$$\begin{aligned} &(\nabla_{W}S)(Y,Z) = A(W)S(Y,Z) \\ &+ \left\{ 2\alpha\rho\eta(W) + (2n-1)B(W) - (\alpha^{2} - \rho)A(W) \right\} g(Y,Z) \\ &+ \left\{ 2\alpha\rho\eta(W) + B(W) - (\alpha^{2} - \rho)A(W) \right\} \eta(Y)\eta(Z) \\ &+ (\alpha^{2} - \rho) \left\{ g(W,Z) - \eta(W) \eta(Z) \right\} \eta(Y). \end{aligned}$$
 (3.6)

From (3.6), it follows that an extended generalized ϕ -recurrent $(LCS)_{2n+1}, n > 1$, manifolds is a generalized Ricci-recurrent manifold if and only if

$$\begin{cases}
2 \alpha \rho \eta(W) + B(W) - (\alpha^2 - \rho) A(W) \\
+(\alpha^2 - \rho) \{g(W, Z) - \eta(W) \eta(Z)\} \eta(Y) = 0.
\end{cases} (3.7)$$

This leads to the following:

Theorem 3.2. An extended generalized ϕ -recurrent Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, is generalized Ricci-recurrent if and only if the relation (3.7) holds.

Substituting $Z = \xi$ in (3.2), we obtain

$$(\nabla_W R)(X, Y)\xi = \{(\alpha^2 - \rho)A(W) + B(W)\} \ (\eta(Y)X - \eta(X)Y)$$
(3.8)

By virtue of Lemma 2.2 and (3.8), we yields

$$\begin{split} &\alpha R(X,Y)W = \alpha \, (\alpha^2 - \rho) \, \left\{ g(Y,W)X - g(X,W)Y \, \right\} \\ &+ (2\alpha\rho - \beta) \, \left\{ \eta(Y)\eta \, (W)X - \eta(X) \, \eta(W)Y \right\} \\ &- \left\{ \, (\alpha^2 - \rho) \, A(W) + B(W) \right\} \, \left(\eta \, (Y)X - \eta \, (X) \, Y \, \right) \, . \end{split} \tag{3.9}$$

This leads to the following:

Theorem 3.3. In an extended generalized ϕ -recurrent Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, the curvature tensor is of the form of (3.9).

Also from (3.9), we have

$$\begin{split} &\alpha \stackrel{\frown}{R} \left(X,Y,W,U\right) = \alpha \left(\alpha^2 - \rho\right) \left\{g(Y,W)g(X,U) - g(X,W)g(Y,U)\right\} \\ &+ \left(2\alpha\rho - \beta\right) \left\{\eta(Y)\eta\left(W\right)g(X,U) - \eta(X)\left(W\right)g(Y,U)\right\} \\ &- \left\{\left(\alpha^2 - \rho\right)A(W) + B(W)\right\} \left(\eta\left(Y\right)g(X,U) - \eta\left(X\right)g(Y,U)\right), \end{split}$$

where $\overset{\frown}{R}(X,Y,W,U)=g(R(X,Y)W,U)$. Setting $X=U=e_i$ in above and taking summation over $i,\ 1\leq i\leq 2n+1,$ we yield that

$$\alpha S(Y,W) = 2n\alpha \left(\alpha^2 - \rho\right) g(Y,W) + 2n \left(2\alpha\rho - \beta\right) \eta(Y) \eta(W) -2n \left\{ \left(\alpha^2 - \rho\right) A(W) + B(W) \right\} \eta(Y).$$

$$(3.10)$$

This leads to the following:

Theorem 3.4. In an extended generalized ϕ -recurrent Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, the Ricci tensor is of the form of (3.11).

Again, in view of lemma 2.2, equation (3.2) can be written as

$$(\nabla_{W}R)(X,Y)Z = \begin{bmatrix} (2\alpha\rho - \beta)\{g(X,Z)\eta(Y)\eta(W) - g(Y,Z)\eta(X)\eta(W)\} \\ +\alpha(\alpha^{2} - \rho)\{g(X,Z)g(Y,W) - g(Y,Z)g(X,W)\} \\ -\alpha g(R(X,Y)W,Z) \end{bmatrix} \xi$$

$$+A(W)\{R(X,Y)Z + \eta(R(X,Y)Z)\xi\} + B(W)\{G(X,Y)Z + \eta(G(X,Y)Z)\xi\},$$
(3.11)

Conversely, applying ϕ^2 on both sides of (3.12), we get the relation (3.1). This leads to the following:

Theorem 3.5. A Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g)$, n > 1, is an extended generalized ϕ -recurrent if and only if the relation (3.12) holds.

Definition 3.6. A Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g)$, n > 1, is said to be an extended generalized concircularly ϕ -recurrent $(LCS)_{2n+1}$ -manifolds if its concircular curvature tensor C satisfies the condition

$$\phi^{2}((\nabla_{W}C)(X,Y)Z) = A(W)\phi^{2}(C(X,Y)Z) + B(W)\phi^{2}(G(X,Y)Z), \tag{3.12}$$

for all $X,Y,Z,W \in \chi(M)$, where ∇ denotes the operator of covariant differentiation with respect to the metric g, i.e. ∇ is the Riemannian connection; A and B are non-vanishing 1-forms defined in (1.1) and G is a tensor of type (1,3) defined in (1.2).

The concircular curvature tensor C of type (1,3) is given by [20]

$$C(X,Y)Z = R(X,Y)Z - \frac{r}{2n(2n+1)}G(X,Y)Z,$$
 (3.13)

where r is the scalar curvature of the manifold.

Let us consider an extended generalized concircularly ϕ -recurrent Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$. Then from (2.7) and (3.13) yields

$$(\nabla_W C)(X, Y)Z + \eta ((\nabla_W C)(X, Y)Z)\xi$$

= $A(W) \{C(X, Y)Z + \eta(C(X, Y)Z)\xi\}$
+ $B(W) \{G(X, Y)Z + \eta(G(X, Y)Z)\xi\},$ (3.14)

from which it follows that

$$g((\nabla_{W}C)(X,Y)Z,U) + \eta ((\nabla_{W}C)(X,Y)Z) \eta(U) = A(W) \{g(C(X,Y)Z,U) + \eta(C(X,Y)Z))\eta(U)\} + B(W) \{g(G(X,Y)Z,U) + \eta (G(X,Y)Z)) \eta(U)\}.$$
(3.15)

Taking contraction of (3.16) over X and U, we get

$$(\nabla_W S)(Y,Z) - \frac{dr(W)}{2n+1}g(Y,Z) + g((\nabla_W C)(\xi,Y)Z,\xi)$$

$$= A(W) \left\{ S(Y,Z) - \frac{r}{2n+1}g(Y,Z) + \eta((C(\xi,Y)Z)) \right\}$$

$$+B(W) \left\{ (2n-1)g(Y,Z) - \eta(Y)\eta(Z) \right\}$$
(3.16)

In view of (3.5) and (3.14), we have

$$g((\nabla_W C)(\xi, Y)Z, \xi) = \left\{ 2\alpha \rho(W) + \frac{dr(W)}{2n(2n+1)} \right\} \left\{ g(Y, Z) + \eta(Y)\eta(Z) \right\} + (\alpha^2 - \rho)\eta(Y) \left\{ g(Z, W) + \eta(Z)\eta(W) \right\}.$$
(3.17)

Also from (2.10) and (3.14), we get

$$\eta(C(\xi, Y)Z) = \left\{ \frac{r}{2n(2n+1)} - (\alpha^2 - \rho) \right\} \left\{ g(Y, Z) + \eta(Y) \eta(Z) \right\}$$
(3.18)

By virtue of (3) and (3.18), equation (3.17) reduces to

$$(\nabla_{W}S)(Y,Z) = A(W)S(Y,Z) + (2n-1)B(W) - \frac{r}{2n+1}A(W) + A(W)\left(\frac{r}{2n(2n+1)} - (\alpha^{2} - \rho)\right) + \frac{dr(W)}{2n+1} - 2\alpha(W\alpha) - \frac{dr(W)}{2n(2n+1)}g(Y,Z) + \left[A(W)\left(\frac{r}{2n(2n+1)} - (\alpha^{2} - \rho)\right) - (2\alpha(W\alpha)) - \frac{dr(W)}{2n(2n+1)}\right]\eta(Y)\eta(Z) - (\alpha^{2} - \rho)\eta(Y)\left(g(Z,W) + \eta(Z)\eta(W)\right)$$
(3.19)

In view of (3.19), we can state the following:

Theorem 3.7. An extended generalized concircularly ϕ -recurrent Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, is generalized Ricci-recurrent if and only if the following relation holds.

$$\begin{split} \left[A(W) \left\{ \frac{r}{2n(2n+1)} - (\alpha^2 - \rho) \right\} - (2\alpha(W\alpha)) - \frac{dr(W)}{2n(2n+1)} - B(W) \right] \eta(Y) \eta(Z) \\ - (\alpha^2 - \rho) \eta(Y) \left\{ g(Z, W) + \eta(Z) \eta(W) \right\} = 0. \end{split}$$

Setting $Y = Z = \xi$ in (3.19) and using (2.13), we get

$$\left[\frac{2r(n-1)}{2n(2n+1)} + 2(n-1)(\alpha^2 - \rho)\right] A(W) - 2(n-1)B(W)
= dr(W) \left\{\frac{2n-1}{2n(2n+1)}\right\} - 4\alpha(W\alpha).$$
(3.20)

This leads to the following:

Theorem 3.8. In an extended generalized concircularly ϕ -recurrent Lorentzian concircular structures manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, the 1-forms A and B are related by the relation (3.20).

Corollary 3.9. In an extended generalized concircularly ϕ -recurrent LP-Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, with constant scalar curvature, the associated 1-forms A and B are related by A = cB, where c is a nonzero constant.

Finally, in view of Lemma 2.2 and (3.20), (3.13), can be reduces to

$$(\nabla_W C)(X,Y)Z = \left\{ \frac{dr(W)}{2n(2n+1)} - (2\alpha\rho - \beta)\eta(W) \right\} (g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi) + \alpha (\alpha^2 - \rho) \left\{ g(Y,W)g(X,Z)\xi - g(X,W)g(Y,Z)\xi \right\} - \alpha g(R(X,Y)W,Z)\xi + A(W) \left\{ C(X,Y)Z + \eta(C(X,Y)Z)\xi \right\} + B(W) \left\{ G(X,Y)Z + \eta(G(X,Y)Z)\xi \right\}.$$
(3.21)

Conversely, applying ϕ^2 on both sides of (3.21), we get the relation (3.17). This leads to the following:

Theorem 3.10. A Lorentzian concircular structure manifold $M^{2n+1}(\phi, \xi, \eta, g), n > 1$, is an extended generalized concircularly ϕ -recurrent if and only if the relation (3.21)) holds.

4. Example of generalized ϕ -recurrent(LCS)_{2n+1}-manifolds

We consider a 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . Let $\{E_1, E_2, E_3\}$ be linearly independent global frame on M given by

$$E_1 = e^z \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right), \ E_2 = e^z \frac{\partial}{\partial y}, \ E_3 = e^{2z} \frac{\partial}{\partial z}.$$

Let q be the Lorentzian metric defined by

$$g(E_1, E_3) = g(E_2, E_3) = g(E_1, E_2) = 0,$$

 $g(E_1, E_1) = g(E_2, E_2) = 1, \quad g(E_3, E_3) = -1.$

Let η be the 1-form defined by $\eta(V)=g(V,E_3)$ for any $V\in\chi(M)$. Let ϕ be the (1,1)-tensor field defined by ϕ $E_1=E_1, \ \phi$ $E_2=E_2, \ \phi$ $E_3=0$. Then using the linearity of ϕ and g we have

$$\eta(E_3) = -1, \quad \phi V = V + \eta(V) E_3, \quad g(\phi V, \phi W) = g(V, W) + \eta(V) \eta(W),$$

for any $V, W \in \chi(M)$.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$[E_1, E_2] = -e^z E_2, [E_1, E_3] = -e^{2z} E_1, [E_2, E_3] = -e^{2z} E_2.$$

Taking $E_3 = \xi$ and using Koszula formula for the Lorentzian metric g, we can easily calculate

$$\nabla_{E_1} E_3 = -\frac{1}{z} E_1, \ \nabla_{E_1} E_1 = -e^{2z} E_3, \ \nabla_{E_1} E_2 = 0,$$

$$\nabla_{E_2} E_3 = -e^{2z} E_2, \ \nabla_{E_3} E_2 = 0, \ \nabla_{E_2} E_1 = -e^{2z} E_2,$$

$$\nabla_{E_2} E_3 = 0, \ \nabla_{E_2} E_2 = -e^{2z} E_3, -e^z E_1, \ \nabla_{E_2} E_1 = 0.$$

From the above it can be easily seen that $E_3 = \xi$ is a unit timelike concircular vector field and hence (ϕ, ξ, η, g) is a $(LCS)_3$ -structure on M. Consequently $M^3(\phi, \xi, \eta, g)$ is a $(LCS)_3$ -manifolds with $\alpha = -e^{2z} \neq 0$ such that $(X\alpha) = \rho \eta(X)$ where $\rho = 2e^{4z}$ Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor R as follows:

$$R(E_2, E_3)E_3 = e^{4z}E_2, \ R(E_1, E_3)E_3 = e^{4z}E_1, \ R(E_1, E_2)E_2 = \{e^{4z} - e^{2z}\}E_1,$$

$$[R(E_2, E_3)E_2 = e^{4z}E_3, \ R(E_1, E_3)E_1 = e^{4z}E_3, \ R(E_1, E_2)E_1 = \{-e^{4z} - e^{2z}\}E_2.$$

and the components which can be obtained from these by the symmetric properties. Since $\{E_1, E_2, E_3\}$ forms a basic of the 3-dimensional (LCS)-manifolds, any vector field $X, Y, Z \in \chi(M)$ can be written as

$$X = a_1E_1 + b_1E_2 + c_1E_3, Y = a_2E_1 + b_2E_2 + c_2E_3, Z = a_3E_1 + b_3E_2 + c_3E_3,$$

where $a_i, b_i, c_i \in \mathbb{R}^+$ (the set of all positive real numbers), i = 1, 2, 3. Then

$$R(X,Y)Z = \begin{bmatrix} e^{4z} \{ (b_2b_3 - c_2c_3)a_1 + b_1b_2(c_3 - a_3) \} + e^{3z} \{ (2c_3 - c_2)b_1b_2 \\ -e^z(b_1b_2b_3) \end{bmatrix} E_1$$

$$+ \begin{bmatrix} e^{4z} \{ (a_3 + b_3)b_1b_2 + (b_1c_3 - a_2b_1)a_3 + b_1(a_2c_3 - a_3c_2) \\ +b_2(c_2c_3 - a_1a_3) \} + e^{3z}(a_1b_2b_3) \end{bmatrix} E_2$$

$$+ \begin{bmatrix} e^{4z} \{ (c_3 - a_3)b_1b_2 - a_1(a_2c_3 - a_3c_2) - (a_3b_1b_3) \} + e^{3z}(b_3 - a_3)b_1b_2 \\ -e^{2z}(b_1b_2a_3) \end{bmatrix} E_3,$$

$$(4.1)$$

$$G(X,Y)Z = (a_2a_3 + b_2b_3 - c_2c_3)(a_1E_1 + b_1E_2 + c_1E_3) - (a_1a_3 + b_1b_3 - c_1c_3)(a_2E_1 + b_2E_2 + c_2E_3)$$

$$(4.2)$$

By virtue of (4.1) we have the following

$$(\nabla_{E_1}R)(X,Y)Z = \begin{bmatrix} 4e^{6z}\{(b_1b_3 - c_1c_3)a_2 + b_1b_2(c_2 - a_3)\} \\ +3e^{5z}\{(2c_3 - c_2)b_1b_2\} - e^{3z}(b_1b_2b_3) \end{bmatrix} E_1$$

$$+ \begin{bmatrix} 4e^{6z}\{(5a_3 + b_3)b_1b_2 + 3(b_3c_3 - a_2b_1)a_3 \\ +b_2(a_2c_3 - a_3c_2) + b_3(c_2c_1 - a_1a_3)\} + 3e^{5z}(a_2b_1b_3) \end{bmatrix} E_2$$

$$+ \begin{bmatrix} 4e^{6z}\{(c_3 - a_3)b_3b_1 - a_1(a_2c_3 - a_3c_2) - (a_3b_1b_3)\} \\ +4e^{5z}(b_3 - a_3)b_1b_2 \end{bmatrix} E_3,$$

$$(4.3)$$

$$(\nabla_{E_2}R)(X,Y)Z = \begin{bmatrix} -e^{5z} \{ b_1b_2(c_3+a_3) + (b_1c_3-b_1b_2)a_3 \\ +b_2(c_2c_3-a_1a_3) + b_1a_3(c_3-c_2) \} - e^{4z}(a_1b_2b_3) \end{bmatrix} E_1$$

$$+ \begin{bmatrix} -e^{6z} \{ (c_3-a_3)b_1b_2 + (b_2b_3-c_2c_3)a_1 \} \\ -e^{-5z}(b_1b_2c_3) + e^{3z}(b_1b_2b_3) \end{bmatrix} E_2$$

$$+ \begin{bmatrix} -e^{6z} \{ (a_3+b_3)b_1b_2 + (c_3-a_2)b_1a_3 \\ +b_2(c_2c_3-a_1a_3) + a_3b_1(c_3-c_2) \} - e^{5z}(a_1b_2b_3) \end{bmatrix} E_3,$$

$$(4.4)$$

$$(\nabla_{E_3}R)(X,Y)Z = \begin{bmatrix} 4e^{64z}\{(b_2b_3 - c_2c_3)a_1 + b_1b_2(c_3 - a_3)\} \\ +3e^{5z}\{(2c_3 - c_2)b_1b_2\} - e^{3z}(b_1b_2b_3) \end{bmatrix} E_1$$

$$+ \begin{bmatrix} 4e^{6z}\{(a_3 + b_3)b_1b_2 + (b_1c_3 - a_2b_1)a_3 \\ +b_1(a_2c_3 - a_3c_2) + b_2(c_2c_3 - a_1a_3)\} + 3e^{5z}(a_1b_2b_3) \end{bmatrix} E_2$$

$$+ \begin{bmatrix} 4e^{6z}\{(c_3 - a_3)b_1b_2 - a_1(a_2c_3 - a_3c_2) \\ -(a_3b_1b_3)\} + 3e^{5z}(b_3 - a_3)b_1b_2 - 2e^{4z}(b_1b_2a_3) \end{bmatrix} E_3,$$

$$(4.4)$$

In view of (4.1) and (4.2), we get

$$\phi^2(R(X,Y)Z) = l E_1 + m E_2, \ \phi^2(G(X,Y)Z) = n E_1 + p E_2, \tag{4.6}$$

where
$$l = e^{4z} \{ (b_2b_3 - c_2c_3)a_1 + b_1b_2(c_3 - a_3) \} + e^{3z} \{ (2c_3 - c_2)b_1b_2 \} - e^z(b_1b_2b_3),$$

$$m = e^{4z} \{ (a_3 + b_3)b_1b_2 + (b_1c_3 - a_2b_1)a_3 + b_1(a_2c_3 - a_3c_2) + b_2(c_2c_3 - a_1a_3) \} + e^{3z}(a_1b_2b_3),$$

$$n = (a_1b_2 - a_2b_1)b_3 - (a_1c_2 - a_3c_1)c_3,$$

$$p = (a_2b_1 - a_1b_2)a_3 - (b_1c_2 - b_2c_1)c_3.$$

Thus from (4.3)-(4.5), we have following

$$\phi^2((\nabla_{E_i}R)(X,Y)Z) = q_i E_1 + r_i E_2, \quad \forall \ i = 1, 2, 3$$
(4.7)

where

$$\begin{split} q_1 &= 4e^{6z}\{(b_1b_3-c_1c_3)a_2+b_1b_2(c_2-a_3)\} + 3e^{5z}\{(2c_3-c_2)b_1b_2\} - e^{3z}(b_1b_2b_3),\\ q_2 &= -e^{5z}\{\,b_1b_2(c_3+a_3)+(b_1c_3-b_1b_2)a_3\ + b_2(c_2c_3-a_1a_3)+b_1a_3(c_3-c_2)\}\\ &- e^{4z}(a_1b_2b_3),\\ q_3 &= 4e^{6z}\{(b_2b_3-c_2c_3)a_1+b_1b_2(c_3-a_3)\} + 3e^{5z}\{(2c_3-c_2)b_1b_2\} - e^{3z}(b_1b_2b_3), \end{split}$$

$$\begin{split} r_1 &= 4e^{6z} \{ (5a_3 + b_3)b_1b_2 + 3(b_3c_3 - a_2b_1)a_3 + b_2(a_2c_3 - a_3c_2) + b_3(c_2c_1 - a_1a_3) \} \\ &+ 3e^{5z}(a_2b_1b_3), \\ r_2 &= -e^{6z} \{ (c_3 - a_3)b_1b_2 + (b_2b_3 - c_2c_3)a_1 \} - e^{-5z}(b_1b_2c_3) + e^{3z}(b_1b_2b_3), \\ r_3 &= 4e^{6z} \{ (a_3 + b_3)b_1b_2 + (b_1c_3 - a_2b_1)a_3 + b_1(a_2c_3 - a_3c_2) + b_2(c_2c_3 - a_1a_3) \} \\ &+ 3e^{5z}(a_1b_2b_3). \end{split}$$

Now we consider the 1-form as follows

$$A(E_i) = \frac{pq_i - nr_i}{lp - mn} B(E_i) = \frac{lr_i - mq_i}{lp - mn}$$

$$(4.8)$$

for i = 1, 2, 3 such that $lp - mn \neq 0, pq_i - nr_i \neq 0$ and $lr_i - mq_i \neq 0, i = 1, 2, 3$. From (3.1), we have

$$\phi^{2}((\nabla_{E_{i}}R)(X,Y)Z) = A(E_{i}) \phi^{2}(R(X,Y)Z) + B(E_{i}) \phi^{2}(G(X,Y)Z), i = 1, 2, 3.$$
(4.9)

From (4.6)-(4.8), it can be easily shown that the manifold satisfies the relation (4.9). Hence the manifold under consideration is an extended generalized ϕ -recurrent $(LCS)_{2n+1}$ -manifolds, which is neither ϕ -recurrent nor generalized ϕ -recurrent. Therefore we have the following:

Theorem 4.1. There exists an extended generalized ϕ -recurrent $(LCS)_{2n+1}$ - manifolds $M^3(\phi, \xi, \eta, g)$, which is neither ϕ -recurrent nor generalized ϕ -recurrent.

References

- 1. Basari, A., Murathan, C., On generalized ϕ -recurrent Kenmotsu manifolds, Fen Derg. 3 (1), 91-97, (2008).
- 2. De, U.C., Shaikh, A.A., Biswas, S., On ϕ -recurrent Sasakian manifolds, Novi Sad J. Math. 33, 13-48, (2003).
- 3. De, U.C., Yildiz, A., Yaliniz, A.F., On ϕ -recurrent Kenmotsu manifolds, Turkish J. Math.32, 1-12, (2008).
- De, U.C., Guha, N., On generalized recurrent manifolds, J. Nat. Acad. Math. India 9, 85-92, (1991).
- De, U.C., Guha, N., Kamilya. D., On generalized Ricci recurrent manifolds, Tensor, N.S. 56, 312-317, (1995).
- Dubey, R.S.D., Generalized recurrent spaces, Indian J. Pure Appl. Math. 10, (12), 1508-1513, (1979).
- Matsumoto, K., On Lorentzain almost paracontact manifolds, Bull. Yamagata Univ. Nature. Sci. 12, 151-156, (1989).
- Narain, Dhruwa, Yadav, Sunil, On weak Symmetric of Lorentzian concircular structure manifolds, CUBO A Mathematical Journal 15, (2), 33-42, (2013).
- O'Neill, B., Semi-Riemannian geometry with applications to Relativity, Academic Press, Inc., New York, (1983).
- Özgür, C., On generalized recurrent Kenmotsu manifolds, World Applied Sci. J. 2 (1), 9-33, (2007).
- Patil, D.A., Prakasha, D.G., Bagewadi, C.S., On generalized φ-recurrent Sasakian manifolds, Bull. Math. Anal. Appl. 1 (3), 42-48, (2009).

- 12. Prakasha, D.G., Yildiz, A., Generalized ϕ -recurrent Lorentzian α -Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1, 59 (1), 53-65, (2010).
- 13. Prakasha, D.G., On extended generalized ϕ -recurrent Sasakian manifolds, Journal of the Egyptian Mathematical Society 21, 25-31, (2013).
- Shaikh, A.A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43, 305-314, (2003).
- 15. Shaikh, A.A., Baishya, K.K., On $\phi\text{-symmetric }LP\text{-}Sasakian manifolds, Yokohama Math. J. 52, 97-112, (2006).$
- 16. Shaikh, A.A., Basu, T., Eyasmin, S., On locally ϕ -symmetric(LCS)_n-manifolds, Int. J. Pure Appl. Math. 41 (8), 1161-1170.
- 17. Shaikh, A.A., Basu, T., Eyasmin, S., On the existence of ϕ -recurrent (LCS)_n-manifolds, Extr. Math. 23 (1), 71-83, (2008).
- 18. Shaikh, A.A., Hui, S.K., On extended generalized ϕ -recurrent β -Kenmotsu manifolds, Publ. De. L'Institut Mathematique, Nouvelle series, tome 89 (103), 77-88, (2011).
- 19. Takahashi, T., Sasakian φ-symmetric spaces, Tohoku Math. J. 29, 91-113, (1977).
- 20. Yano, K., Concircular geometry, I, Proc. Imp. Acad. Tokyo 16, 195-200, (1940).
- 21. Yadav, Sunil, Suthar, D.L., Dwivedi, P.K., Some results on $(LCS)_{2n+1}$ -manifolds IAMURE, International journal of Mathematics, Engineering & Technology, 6, 73-84, (2013).
- 22. Yadav, Sunil, Suthar, D.L., Some global properties of $M(f_1, f_2, f_3)_{2n+1}$ manifolds, Acta Universitatis Apulensis 33, 247-256, (2013).
- 23. Yadav, Sunil, Dwivedi, P.K., On $(L\,C\,S)_n$ -manifolds satisfying certain conditions on D-conformal curvature tensor, Global Journal of Frontier science Research, Mathematics & Decision Science, 13, 14, Version 1.0, (2012).
- 24. Yadav, Sunil, Suthar, D.L., Narain, Dhruwa, On generalized ϕ -recurrent generalized Sasakian space forms, International Journal of Research & Review Applicable in Mathematics and computer science research, 1 (6), 104-112, (2011).
- 25. Yadav, Sunil, Dwivedi, P.K., Suthar, D.L., On $(LCS)_{2n+1}$ manifolds satisfying certain conditions on the concircular curvature tensor, Thai Journal of Mathematics 9, 597-603, (2011).
- 26. Yadav, Sunil, Suthar, D.L., Srivastawa, A.K., Some results on $M(f_1, f_2, f_3)_{2n+1}$ manifolds, Int. J. of Pure & Applied Mathematics, 70, (3), 415-423, (2011).

S.K. Yadav, Department of Mathematics, Poornima College of Engineering, ISI-6, RIICO Institutional Area, Sitapura, Jaipur, (302022), Rajasthan, India. $E ext{-}mail\ address: prof\ sky16@yahoo.com}$

and

D.L. Suthar, Department of Mathematics, Wollo University, P.O. Box: 1145, Dessie, $South\ Wollo,\ Amhara\ Region,$ Ethiopia.

 $E\text{-}mail\ address: \verb"dlsuthar@gmail.com"$

 $Mebrahtu\ Hailu,$ $Department\ of\ Mathematics,$ Wollo University, P.O.Box: 1145, Dessie, South Wollo, Amhara Region, Ethiopia. $E ext{-}mail\ address: mebrinho@gmail.com}$