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abstract: This paper is devoted to the existence of solutions for a class of
Kirchhoff type systems involving critical exponents. The proof of the main results
is based on concentration compactness principle related to critical elliptic systems
due to Kang [12] combined with genus theory.

Key Words: Critical exponents, Quasilinear Schrödinger equations, Kirchhoff
type systems.

Contents

1 Introduction and main results 187

2 Preliminary lemmas and proof of main results 191

1. Introduction and main results

In this article, we are concerned with the multiplicity of nontrivial solutions for
the following nonlocal Schrödinger system




−
(
a+ b

∫
Ω
|∇u|2dx

)
∆u− a[∆(u2)]u = λFu(x, u, v)

+η α
α+β |u|

2(α−1)uv2β in Ω

−
(
a+ b

∫
Ω
|∇v|2dx

)
∆v − a[∆(v2)]v = λFv(x, u, v)

+η β
α+βu

2α|v|2(β−1)v in Ω

u = v = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
N(N ≥ 3) is a bounded smooth domain, a, b > 0, α, β > 1 with

α+β = 2∗ := 2N
N−2 , ∇F = (Fu, Fv) is the gradient of a C

1 function F : Ω×R
2 → R

with respect to (u, v).
When a(∆(u2)) = a(∆(v2)) = 0, system (1.1) reduces to standard nonlocal

problem which is related to the stationary problem of a model presented by Kirch-
hoff [13]. Recently, Kirchhoff type problems have been studied in many papers,
we refer to [5,6,7,18,9,22,23] in which different methods have been used to get the
existence and multiplicity of solutions.

On the other hand, problem (1.1) without nonlocal term arises naturally from
finding the standing wave solutions for quasilinear Schrödinger equations of the
form

− i∂tz = −∆z + V (x)∆z − g(|z|2)z − κ∆(h(|z|2))h′(|z|2)z, x ∈ R
N , (1.2)
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where κ is a real constant, V is a given potential, g and h are real functions.
The study of This type of equations is motivated by its various applications, for
example, the case h(s) = s was used to model the time evolution of the condensate
wave function in superfluid film, and is called the superfluid film equation in fluid
mechanics by Kurihura [14]; in the case h(s) = (1 + s)

1
2 , equation (1.2) was used

as a model of the self-channeling of ahigh-power ultra short laser in matter, see
[2,25] and the references therein. One of the main difficulties of the quasilinear
problem with nonhomogeneous term [∆(u2)]u is that there is no suitable space on
which the energy functional is well defined. There have been several approaches
used in recent years to overcome the difficulties such as minimizations [19,24], the
Nehari or Pohozaev manifold [20,26], and change of variables [1,8,21,27]. The
critical problems involving nonlocal operators create many difficulties in applying
variational methods, these is due to the lack of compactness of the imbedding
H1

0 (Ω) →֒ L2∗(Ω) and the Palais-Smale condition fails. In a recent paper [12],
D. S. Kang establish a variant of concentration compactness principle related to
critical elliptic systems, which is based on the ideas by P. L. Lions [16,17]. This
result is very useful for the study of the existence of solutions for critical elliptic
systems (see e.g., [11]).

Motivated by the above, our purpose is to establish the existence of a sequence
of solutions for system (1.1). We will assume that the function F satisfies the
following conditions.

(F0) F ∈ C1(Ω×R
2), F (x, 0, 0) = 0 and F (x,−s,−t) = F (x, s, t) for all (x, s, t) ∈

Ω× R
2;

(F1) lim
|(s,t)|→+∞

|∇F (x,s,t)(s,t)|
|s|2α|t|2β = 0 and lim sup

|(s,t)|→+∞

F (x,s,t)
|s|2α|t|2β ≤ 0 uniformly in x ∈ Ω;

(F2) lim
|(s,t)|→0

F (x,s,t)
|(s,t)|2 = +∞ uniformly in x ∈ Ω.

Let H1
0 (Ω) be the usual Sobolev space defined as the completion of C∞

0 (Ω) with
respect to the norm ||u||2 =

∫
Ω |∇u|2dx. Set X = H1

0 (Ω) × H1
0 (Ω). Then X is a

Hilbert space with respect to the inner product defined by

〈(u1, v1), (u2, v2)〉 =

∫

Ω

(∇u1∇u2 +∇v1∇v2) dx, for all (u1, v1), (u2, v2) ∈ X.

and equipped with the norm

||(u, v)||X =

(∫

Ω

(
|∇u|2 + |∇v|2

)
dx

)1/2

.



Multiple Solutions 189

The energy functional Iλ,η : X → R corresponding to system (1.1) is given by

Iλ,η(u, v) =
a

2

∫

Ω

(
|∇u|2 + |∇v|2

)
dx+

b

4

[(∫

Ω

|∇u|2dx

)2

+

(∫

Ω

|∇v|2dx

)2
]

+ a

∫

Ω

(u2|∇u|2 + v2|∇v|2)dx

−
η

2(α+ β)

∫

Ω

|u|2α|v|2βdx− λ

∫

Ω

F (x, u, v)dx

=
a

2

∫

Ω

(
(1 + 2u2)|∇u|2 + (1 + 2v2)|∇v|2

)
dx

+
b

4

[(∫

Ω

|∇u|2dx

)2

+

(∫

Ω

|∇v|2dx

)2
]

−
η

2(2∗)

∫

Ω

|u|2α|v|2βdx− λ

∫

Ω

F (x, u, v)dx.

Note that a major difficulty associated with (1.1) is that the functional Iλ,η is not
well defined in general, for instance, in X. To overcome this difficulty, we use an
argument developed by Colin and Jeanjean [8]. We make the changing of variables
(u, v) = (f(w), f(z)), where f is given by

f ′(t) =
1√

1 + 2f2(t)
for t ∈ [0,+∞) and f(t) = −f(−t) for t ∈ (−∞, 0].

Some properties of the function f are given in the following lemma.

Lemma 1.1. Concerning the function f(t) and its derivative satisfy the following
properties:

(f1) f is uniquely defined, C∞ and invertible;

(f2) |f ′(t)| ≤ 1 for all t ∈ R;

(f3) |f(t)| ≤ |t| for all t ∈ R;

(f4)
f(t)
t → 1 as t→ 0;

(f5)
f(t)√

t
→ 2

1
4 as t→ +∞;

(f6)
f(t)
2 ≤ tf ′(t) ≤ f(t) for all t ≥ 0;

(f7)
f2(t)
2 ≤ tf ′(t)f(t) ≤ f2(t) for all t ∈ R;

(f8) |f(t)| ≤ 2
1
4 |t|

1
2 for all t ∈ R;

(f9) The function f2 is strictly convex;



190 M. Massar, A. Hamydy and N. Tsouli

(f10) There exists a positive constant C > 0 such that

|f(t)| ≥

{
C|t|, |t| ≤ 1,

C|t|
1
2 , |t| ≥ 1;

(f11) |f(t)f ′(t)| ≤ 1√
2
for all t ∈ R.

So, by the change of variables, from Iλ,η, we can define the following functional

Φλ,η(w, z) :=
a

2

∫

Ω

(
|∇w|2 + |∇z|2

)
dx

+
b

4

[(∫

Ω

|f ′(w)|2|∇w|2dx

)2

+

(∫

Ω

|f ′(z)|2|∇z|2dx

)2
]

−
η

2(2∗)

∫

Ω

|f(w)|2α|f(z)|2βdx− λ

∫

Ω

F (x, f(w), f(z))dx.

Then Φλ,η is well defined. In view of assumptions, it standard to see that Φλ,η ∈
C1(X,R) and its derivative at (ϕ, ψ) ∈ X is given by

〈Φ′
λ,η(w, z), (ϕ, ψ)〉 = a

∫

Ω

(∇w∇ϕ+∇z∇ψ)dx

+ b

(∫

Ω

|∇w|2

1 + 2f2(w)

)∫

Ω

(1 + 2f2(w))∇w∇ϕ− 2|∇w|2f(w)f ′(w)ϕ

(1 + 2f2(w))2
dx

+ b

(∫

Ω

|∇z|2

1 + 2f2(z)

)∫

Ω

(1 + 2f2(z))∇z∇ψ − 2|∇w|2f(z)f ′(z)ψ

(1 + 2f2(z))2
dx

−
ηα

2∗

∫

Ω

|f(z)|2β |f(w)|2(α−1)f(w)f ′(w)ϕ −
ηβ

2∗

∫

Ω

|f(w)|2α|f(z)|2(β−1)f(z)f ′(z)ψ

− λ

∫

Ω

[Fu(x, f(w), f(z))f
′(w)ϕ + Fv(x, f(w), f(z))f

′(z)ψ]dx.

for all (ϕ, ψ) ∈ X. Furthermore, if (w, z) is a critical point of Φλ,η, then (w, z) is a
weak solution of the following system





−a∆w − b
(∫

Ω
|f ′(w)|2|∇w|2dx

)
Λ[w] = λFu(x, f(w), f(z))f

′(w)
+ ηα

2∗ |f(w)|
2(α−1)f(w)f ′(w)|f(z)|2β

−a∆z − b
(∫

Ω
|f ′(z)|2|∇z|2dx

)
Λ[z] = λFv(x, f(w), f(z))f

′(z)
+ ηβ

2∗ |f(z)|
2(β−1)f(z)f ′(z)|f(w)|2α,

(1.3)
where

Λ[w] := |f ′(w)|2∆w + 2f ′(w)f ′′(w)|∇w|2 + 2f(w)|f ′(w)|5|∇w|2,

and therefore (u, v) = (f(w), f(z)) is a solution of problem (1.1).
The main results of this paper are the following theorems.
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Theorem 1.2. Assume that (F0)− (F2) hold. Then

(i) for any η > 0 there exists λ∗ > 0 such that for all λ ∈ (0, λ∗), system (1.3)
admits a sequence of nontrivial solutions {(wn, zn)} such that (wn, zn) → 0
as n→ +∞;

(ii) for any λ > 0 there exists η∗ > 0 such that for all η ∈ (0, η∗), system (1.3)
admits a sequence of nontrivial solutions {(wn, zn)} such that (wn, zn) → 0
as n→ +∞.

Theorem 1.3. Assume that (F0)− (F2) hold. Then

(i) for any η > 0 there exists λ∗ > 0 such that for all λ ∈ (0, λ∗), system (1.1)
admits a sequence of nontrivial solutions {(un, vn)} such that (un, vn) → 0
as n→ +∞;

(ii) for any λ > 0 there exists η∗ > 0 such that for all η ∈ (0, η∗), system (1.1)
admits a sequence of nontrivial solutions {(un, vn)} such that (un, vn) → 0
as n→ +∞.

2. Preliminary lemmas and proof of main results

We start with stating a few known results and giving a preliminary lemmas
which we need in our argument. First we recall a variant of concentration com-
pactness principle related to critical elliptic systems of D. S Kang [12].

Lemma 2.1. Let Ω ⊂ R
N be a bounded domain and α, β > 1 with α + β = 2∗.

Let (un, vn)⇀ (u, v) in X, |∇un|
2+ |∇vn|

2 ⇀ |∇u|2+ |∇v|2 +µ and |un|
α|vn|

β ⇀

|u|α|v|β + ν in the sense of measures, where µ and ν are nonnegative bounded mea-
sures on R

N . Then there exist an at most countable set J and families {xj}j∈J ⊂
R

N and {µj}j∈J , {νj}j∈J ⊂ [0,+∞) such that

µ ≥
∑

j∈J

µjδxj
, ν =

∑

j∈J

νjδxj
, ν

2
2∗

j Sα,β ≤ µj , ∀j ∈ J,

where δxj
is the Dirac mass at xj and Sα,β is given by

Sα,β = inf
(u,v)∈X\{0}

∫
Ω
(|∇u|2 + |∇v|2)dx
(∫

Ω
|u|α|v|βdx

) 2
α+β

.

From (F0)− (F1), for each ε > 0, there exists C(ε) > 0 such that

|∇F (x, s, t)(s, t)| ≤ ε|s|2α|t|2β + C(ε), for all (x, s, t) ∈ Ω× R
2 (2.1)

and

F (x, s, t) ≤ ε|s|2α|t|2β + C(ε), for all (x, s, t) ∈ Ω× R
2. (2.2)

Then, by (2.1) and (2.2), for any ε > 0, we can find C0(ε) > 0 such that

F (x, s, t)−
1

4
[Fu(x, s, t)s+Fv(x, s, t)t] ≤ ε|s|2α|t|2β+C0(ε), for all (x, s, t) ∈ Ω×R

2.

(2.3)
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Lemma 2.2. Assume that (F0)− (F1) hold. Then for any λ, η > 0, the functional

Φλ,η satisfies the (PS)c condition for all c ∈

(
−∞, η

4N

(
aSα,β

2η

)N
2

− λ|Ω|C0(ε)

)
,

where ε = η
4Nλ .

Proof: Let {(wn, zn)} ⊂ X be a sequence such that

Φλ,η(wn, zn) → c and Φ′
λ,η(wn, zn) → 0 inX∗, asn→ +∞. (2.4)

Let ŵn :=
√
1 + 2f2(wn)f(wn) and ẑn :=

√
1 + 2f2(zn)f(zn). We have (ŵn, ẑn) ∈

X and

|∇ŵn| =

(
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn| ≤ 2|∇wn|,

|∇ẑn| =

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn| ≤ 2|∇zn|.

Thus

||(ŵn, ẑn)||X ≤ C1||(wn, zn)||X . (2.5)

On the other hand, we have

〈Φ′
λ,η(wn, zn), (ŵn, ẑn)〉

= a

∫

Ω

[(
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn|

2 +

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn|

2

]
dx

+ b

[(∫

Ω

|∇wn|
2

1 + 2f2(wn)

)2

+

(∫

Ω

|∇zn|
2

1 + 2f2(zn)

)2
]
− η

∫

Ω

|f(wn)|
2β |f(zn)|

2α

− λ

∫

Ω

[Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn)]dx.

By (2.4)-(2.5), for n large enough

1 + c+ ||(wn, zn)||X ≥ Φλ,η(wn, zn)−
1

4
〈Φ′

λ,η(wn, zn), (ŵn, ẑn)〉

=
a

4

∫

Ω

(
|∇wn|

2

1 + 2f2(wn)
+

|∇zn|
2

1 + 2f2(zn)

)
dx

+ η

(
1

4
−

1

2(2∗)

)∫

Ω

|f(wn)|
2α|f(zn)|

2βdx− λ

∫

Ω

F (x, f(wn), f(zn))dx

−
λ

4

∫

Ω

[Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn)]dx

≥
η

2N

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx− λ

∫

Ω

F (x, f(wn), f(zn))dx

−
λ

4

∫

Ω

[Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn)]dx.
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It follows from (2.3) that

η

2N

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx ≤λε

∫

Ω

|f(wn)|
2α||f(zn)|

2βdx + λ|Ω|C0(ε)

+ 1 + c+ ||(wn, zn)||X .

By choosing ε = η
4Nλ , we obtain

η

4N

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx ≤ λ|Ω|C0

( η

4Nλ

)
+ 1 + c+ ||(wn, zn)||X .

Combine this with (2.2), for n large enough

1 + c ≥Φλ,η(wn, zn)

=
a

2

∫

Ω

[(
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn|

2 +

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn|

2

]
dx

−
η

2(2∗)

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx− λ

∫

Ω

F (x, f(wn), f(zn))dx

≥
a

2
||(wn, zn)||

2
X −

(
η

2(2∗)
+ ελ

)∫

Ω

|f(wn)|
2α|f(zn)|

2βdx− λ|Ω|C(ε)

≥
a

2
||(wn, zn)||

2
X − (N − 1)

(
λ|Ω|C0

( η

4Nλ

)
+ 1 + c+ ||(wn, zn||X

)

− λ|Ω|C
( η

4Nλ

)
. (2.6)

This last inequality shows that {(wn, zn)} is bounded in X. Therefore {wn} and
{zn} are bounded in H1

0 (Ω) and hence {(f2(wn), f
2(zn))} is bounded in X. Then

passing to a subsequence if necessary, we may assume that




wn ⇀ w in H1
0 (Ω)

wn → w a.e. in Ω
zn ⇀ z in H1

0 (Ω)
zn → z a.e. in Ω.

(2.7)

By using the fact that f is continuous, it follows that (f2(wn), f
2(zn)) →

(f2(w), f2(z)) a.e. in Ω. Since {(f2(wn), f
2(zn))} is bounded in X, we deduce

that (f2(wn), f
2(zn))⇀ (f2(w), f2(z)) in X and

{
|∇f2(wn)|

2 + |∇f2(zn)|
2 ⇀ |∇f2(w)|2 + |∇f2(z)|2 + µ

|f(wn)|
2α|f(zn)|

2β ⇀ |f(w)|2α|f(z)|2β + ν
(2.8)

in the sense of measures, where µ and ν are nonnegative bounded measures on
R

N . According to Lemma 2.1, there exist an at most countable set J and families
{xj}j∈J ⊂ R

N and {µj}j∈J , {νj}j∈J ⊂ [0,+∞) such that

µ ≥
∑

j∈J

µjδxj
, ν =

∑

j∈J

νjδxj
, ν

2
2∗

j Sα,β ≤ µj , ∀j ∈ J. (2.9)
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Let φ ∈ C∞
0

(
R

N
)
such that

0 ≤ φ ≤ 1, φ ≡ 1 in B(0, 1), φ = 0 in R
N\B(0, 2), |∇φ|∞ ≤ 2.

For ε > 0 and j ∈ J denote

φjε(x) := φ

(
x− xj

ε

)
, for allx ∈ R

N .

By (2.5),
(
ŵnφ

j
ε, ẑnφ

j
ε

)
is bounded in X and therefore

〈
Φ′

λ,η(wn, zn),
(
ŵnφ

j
ε, ẑnφ

j
ε

)〉
−→

n→+∞
0.

Thus

on(1)− a

∫

Ω

(√
1 + 2f2(wn)f(wn)∇wn +

√
1 + 2f2(zn)f(zn)∇zn

)
∇φj

εdx

− b

(∫

Ω

|∇wn|
2

1 + 2f2(wn)
dx

)∫

Ω

f(wn)∇wn∇φ
j
ε√

1 + 2f2(wn)
dx

− b

(∫

Ω

|∇zn|
2

1 + 2f2(zn)
dx

)∫

Ω

f(zn)∇zn∇φ
j
ε√

1 + 2f2(zn)
dx

+ λ

∫

Ω

[Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn)]φ
j
εdx

=a

∫

Ω

[(
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn|

2 +

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn|

2

]
φjεdx

+ b

(∫

Ω

|∇wn|
2

1 + 2f2(wn)
dx

)∫

Ω

|∇wn|
2φj

ε

1 + 2f2(wn)
dx

+ b

(∫

Ω

|∇zn|
2

1 + 2f2(zn)
dx

)∫

Ω

|∇zn|
2φjε

1 + 2f2(zn)
dx− η

∫

Ω

|f(wn)|
2α|f(zn)|

2βφjεdx.

(2.10)

In view of Lemma 1.1 (f5), Hölder’s inequality and Lebesgue’s dominated conver-
gence theorem,

lim sup
n→+∞

∣∣∣∣
∫

Ω

√
1 + 2f2(wn)f(wn)∇wn∇φ

j
εdx

∣∣∣∣

≤ C2 lim sup
n→+∞

∫

Ω

|wn∇wn∇φ
j
ε|dx

≤ C2 lim sup
n→+∞

(∫

Ω

|∇wn|
2dx

) 1
2
(∫

Ω

|wn∇φ
j
ε|

2dx

) 1
2

≤ C3

(∫

B(xj ,2ε)

|w∇φjε|
2dx

) 1
2
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≤ C4

(∫

B(xj ,2ε)

|w|2
∗

dx

) 1
2∗

−→
ε→0

0.

Hence, up to subsequence

lim
ε→0

lim
n→+∞

∫

Ω

√
1 + 2f2(wn)f(wn)∇wn∇φ

j
εdx = 0, (2.11)

and we also have

lim
ε→0

lim
n→+∞

∫

Ω

√
1 + 2f2(zn)f(zn)∇zn∇φ

j
εdx = 0. (2.12)

In the similar way, we get

lim
ε→0

lim
n→+∞

(∫

Ω

|∇wn|
2

1 + 2f2(wn)
dx

)∫

Ω

f(wn)∇wn∇φ
j
ε√

1 + 2f2(wn)
dx = 0, (2.13)

lim
ε→0

lim
n→+∞

(∫

Ω

|∇zn|
2

1 + 2f2(zn)
dx

)∫

Ω

f(zn)∇zn∇φ
j
ε√

1 + 2f2(zn)
dx = 0. (2.14)

Since f2(wn) and f
2(zn) are bounded in H1

0 (Ω), Hölder’s inequality yields

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx ≤

(∫

Ω

|f(wn)|
2(2∗)dx

) α
2∗
(∫

Ω

|f(wn)|
2(2∗)dx

) β

2∗

≤ C5.

(2.15)

Furthermore, by the continuity of Fu and Fv, we have

lim
n→+∞

Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn) =

Fu(x, f(w), f(z))f(w) + Fv(x, f(w), f(z))f(z) a.e. inΩ.

Therefore, by (2.1), (2.15) and Egorov’s theorem, we obtain

lim
n→+∞

∫

Ω

[Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn)]dx

=

∫

Ω

Fu(x, f(w), f(z))f(w) + Fv(x, f(w), f(z))f(z)dx, (2.16)

and hence

lim
ε→0

lim
n→+∞

∫

Ω

[Fu(x, f(wn), f(zn))f(wn) + Fv(x, f(wn), f(zn))f(zn)
]
φj
εdx = 0.

(2.17)

Tacking account that

1

2
|∇f2(wn)|

2 ≤

(
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn|

2,
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1

2
|∇f2(zn)|

2 ≤

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn|

2,

it follows from (2.8)-(2.14) and (2.17) that

0 = lim
ε→0

lim
n→+∞

[
a

∫

Ω

[(
1 +

2f2(wn)

1 + 2f2(wn)

)
|∇wn|

2

+

(
1 +

2f2(zn)

1 + 2f2(zn)

)
|∇zn|

2

]
φjεdx

+ b

(∫

Ω

|∇wn|
2

1 + 2f2(wn)
dx

)∫

Ω

|∇wn|
2φj

ε

1 + 2f2(wn)
dx

+ b

(∫

Ω

|∇zn|
2

1 + 2f2(zn)
dx

)∫

Ω

|∇zn|
2φjε

1 + 2f2(zn)
dx− η

∫

Ω

|f(wn)|
2α|f(zn)|

2βφjεdx
]

≥ lim
ε→0

lim
n→+∞

[a
2

∫

Ω

(
|∇f2(wn)|

2 + |∇f2(zn)|
2
)
φjεdx

− η

∫

Ω

|f(wn)|
2α|f(zn)|

2βφj
εdx
]

≥
a

2
µj − ηνj .

By (2.9), we conclude that

νj ≥

(
aSα,β

2η

)N
2

or νj = 0. (2.18)

Suppose by contradiction that νj ≥
(

aSα,β

2η

)N
2

for some j ∈ J. Then, by (2.3) with

ε = η
4Nλ , (2.8)-(2.9) and using the fact that 0 ≤ φjε ≤ 1,

c = lim
n→+∞

(
Φλ,η(wn, zn)−

1

4
〈Φ′

λ,η(wn, zn), (ŵn, ẑn)〉

)

≥
( η

2N
− λε

)
lim

n→+∞

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx− λ|Ω|C0(ε)

≥
η

4N
lim

n→+∞

∫

Ω

|f(wn)|
2α|f(zn)|

2βφjεdx− λ|Ω|C0

( η

4Nλ

)

≥
η

4N

∫

Ω

|f(w)|2α|f(z)|2βφj
εdx+

η

4N
νj − λ|Ω|C0

( η

4Nλ

)

≥
η

4N

(
aSα,β

2η

)N
2

− λ|Ω|C0

( η

4Nλ

)
,

which is impossible. Therefore νj = 0 and hence

lim
n→+∞

∫

Ω

|f(wn)|
2α|f(zn)|

2βdx =

∫

Ω

|f(w)|2α|f(z)|2βdx. (2.19)
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By the weak lower semicontinuity of the norm and f ∈ C∞, we entail that

lim inf
n→+∞

∫

Ω

|∇wn|
2

1 + 2f2(wn)
dx ≥

∫

Ω

|∇w|2

1 + 2f2(w)
dx,

lim inf
n→+∞

∫

Ω

f2(wn)|∇wn|
2

1 + 2f2(wn)
dx ≥

∫

Ω

f2(w)|∇w|2

1 + 2f2(w)
dx,

lim inf
n→+∞

∫

Ω

|∇zn|
2

1 + 2f2(zn)
dx ≥

∫

Ω

|∇z|2

1 + 2f2(z)
dx,

lim inf
n→+∞

∫

Ω

f2(zn)|∇zn|
2

1 + 2f2(zn)
dx ≥

∫

Ω

f2(z)|∇z|2

1 + 2f2(z)
dx. (2.20)

It follows from (2.16) and (2.19)-(2.20) that

0 = lim
n→+∞

〈Φ′
λ,η(wn, zn), (ŵn, ẑn)〉

≥a lim inf
n→+∞

||(wn, zn)||
2
X + a

∫

Ω

[
2f2(w)

1 + 2f2(w)
|∇w|2 +

2f2(z)

1 + 2f2(z)
|∇z|2

]
dx

+ b

(∫

Ω

|∇w|2

1 + 2f2(w)
dx

)2

+ b

(∫

Ω

|∇z|2

1 + 2f2(z)
dx

)2

− η

∫

Ω

|f(w)|2α|f(z)|2βdx

− λ

∫

Ω

(Fu(x, f(w), f(z))f(w) − Fv(x, f(w), f(z))f(z))dx. (2.21)

On the other hand, up to subsequence, Brezis-Lieb’s Lemma [3] leads to

lim inf
n→+∞

||(wn, zn)||
2
X = lim

n→+∞
||(wn, zn)||

2
X = lim

n→+∞
||(wn−w, zn−z)||

2
X+||(w, z)||2X .

Combining this with (2.21), we obtain

0 ≥a lim
n→+∞

||(wn − w, zn − z)||2X + a||(w, z)||2X

+ a

∫

Ω

[
2f2(w)

1 + 2f2(w)
|∇w|2 +

2f2(z)

1 + 2f2(z)
|∇z|2

]
dx

+ b

(∫

Ω

|∇w|2

1 + 2f2(w)
dx

)2

+ b

(∫

Ω

|∇z|2

1 + 2f2(z)
dx

)2

− η

∫

Ω

|f(w)|2α|f(z)|2βdx

− λ

∫

Ω

(Fu(x, f(w), f(z))f(w) − Fv(x, f(w), f(z))f(z))dx

= lim
n→+∞

||(wn − w, zn − z)||2X + 〈Φλ,η(w, z), (ŵ, ẑ)〉, (2.22)

where ŵ :=
√
1 + 2f2(w)f(w) and ẑ :=

√
1 + 2f2(z)f(z). Using the same argu-

ments as above, we can prove that

0 = lim
n→+∞

〈Φ′
λ,η(wn, zn), (ϕ, ψ)〉 = 〈Φ′

λ,η(w, z), (ϕ, ψ)〉 ∀(ϕ, ψ) ∈ X.

From this and (2.22), we deduce that (wn, zn) → (w, z) strongly in X. This com-
pletes the proof of Lemma 2.2. ✷
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Now we use minimax procedure to prove Theorem 1.2. For a Banach space X,
let

Σ = {E ⊂ X\{0} : E is closed inX and symmetric with respect to the origin}.

For each E ∈ Σ, define

γ(E) = inf{k ∈ N : ∃ϕ ∈ C(E,Rk\{0}), ϕ(x) = −ϕ(−x)}.

If there is nomapping ϕ as above for any k ∈ N, then γ(E) = +∞. Set

Σk = {E ∈ Σ : γ(E) ≥ k}.

This next proposition is a version of the symmetric mountain-pass lemma [10].

Proposition 2.3. Let X be an infinite dimensional space and Φ ∈ C1(X,R) and
assume the following assertions holds.

(i) Φ is even, Φ(0) = 0, bounded from below and satisfies the (PSc) condition
for c < c̃, for some c̃ > 0;

(ii) For each k ∈ N there exists Ek ∈ Σk such that sup
u∈Ek

Φ(u) < 0.

Then, either (R1) or (R2) below holds.

(R1)There exists a sequence {uk} such that Φ′(uk) = 0, Φ(uk) < 0 and uk → 0;

(R2)There exist two sequences {uk} and {vk} such that Φ′(uk) = 0, Φ(uk) = 0,

uk 6= 0, uk → 0,Φ′(vk) = 0, Φ(vk) < 0 and {vk} converges to a non-zero limit.

Now, choosing ε = η
2(2∗)λ , by (2.2) and Young’s inequality, we have

Φλ,η(w, z)

≥
a

2

∫

Ω

(
|∇w|2 + |∇z|2

)
dx −

(
η

2(2∗)
+ λε

)∫

Ω

|f(w)|2α|f(z)|2βdx− λC(ε)|Ω|

=
a

2

∫

Ω

(
|∇w|2 + |∇z|2

)
dx −

η

2∗

∫

Ω

|f(w)|2α|f(z)|2βdx− λC(ε)|Ω|

≥
a

2
||(w, z)||2X −

η

2∗

(
α

2∗

∫

Ω

|f(w)|2(2
∗)dx+

β

2∗

∫

Ω

|f(z)|2(2
∗)dx

)
− λC(ε)|Ω|

In view of Lemma 1.1 and the Sobolev embedding theorem, we get

Φλ,η(w, z) ≥ A0||(w, z)||
2
X−ηA1||(w, z)||

2∗

X −λA2, for some A0, A1, A2 > 0. (2.23)

Set

h(t) = A0t
2 − ηA1t

2∗ − λA2, for all t ≥ 0.
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Then for any η > 0, there exists λ∗ := 2A0

NA2

(
2A0

2∗ηA1

)(N−2)/2

such that for all

λ ∈ (0, λ∗), there exists t∗ :=
(

2A0

2∗ηA1

)(N−2)/4

such that

s∗ := h(t∗) = max
t≥0

h(t) > 0.

Analogously, for any λ > 0, there exists η∗ := 2A0

2∗A1

(
2A0

NλA2

)2/(N−2)

such that for

all η ∈ (0, η∗),
h(t∗) = max

t≥0
h(t) > 0.

Therefore, for s0 ∈ (0, s∗), we can find t0 < t∗ such that h(t0) = s0. Let us now
define

Q(t) =





1, 0 ≤ t ≤ t0
A0t

2−s∗−λA2

ηA1t2
∗ t ≥ t∗

l(t) ∈ [0, 1], t0 ≤ t ≤ t∗, where l ∈ C∞.

Clearly, 0 ≤ Q ≤ 1 and Q ∈ C∞. Consider the functional

Φ̃λ,η(w, z) :=
a

2

∫

Ω

(
|∇w|2 + |∇z|2

)
dx

+
b

4

[(∫

Ω

|f ′(w)|2|∇w|2dx

)2

+

(∫

Ω

|f ′(z)|2|∇z|2dx

)2
]

−
η

2(2∗)
Q(||(w, z)||X)

∫

Ω

|f(w)|2α|f(z)|2βdx

− λQ(||(w, z)||X)

∫

Ω

F (x, f(w), f(z))dx. (2.24)

Thus, (2.23) implies

Φ̃λ,η(w, z) ≥ A0||(w, z)||
2
X − ηA1Q(||(w, z)||X)||(w, z)||2

∗

X − λA2

= h̃(||(w, z)||X),

where h̃(t) = A0t
2 − ηA1Q(t)t2

∗

− λA2. Observe that

h̃(t) =

{
h(t), 0 ≤ t ≤ t0
s∗ t ≥ t∗.

We then have the following lemma.

Lemma 2.4. Assume that (F0) − (F1) hold. Then the functional Φ̃λ,η given by
(2.24) satisfies the following proprieties:

i) Φ̃λ,η ∈ C1(X,R) and Φ̃λ,η is even and bounded from below;

ii) If Φ̃λ,η(w, z) < s0, then ||(w, z)||X < t0 and Φ̃λ,η(w, z) = Φλ,η(w, z);
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iii) For all λ ∈ (0, λ∗), Φ̃λ,η satisfies (PS)c condition for c < s0 with

s0 ∈

(
0,min

{
s∗,

η

4N

(
aSα,β

2η

)N/2

− λC0(ε)|Ω|

})
, where ε =

η

4Nλ
.

Lemma 2.5. Assume that (F0)− (F2) hold. Then for any k ∈ N, there is δk > 0
such that

γ
({

(w, z) ∈ X : Φ̃λ,η(w, z) ≤ −δk

}
\{0}

)
≥ k. (2.25)

Proof: For each k ∈ N, we can choose Xk k-dimensional subspace of X such that
Xk ⊂ L∞(Ω)× L∞(Ω). Then for some ̺k, ςk > 0,

|(w, z)|L∞(Ω)×L∞(Ω) ≤ ̺k||(w, z)||X , for all (w, z) ∈ Xk, (2.26)

||(w, z)||X ≤ ςk|(w, z)|L2(Ω)×L2(Ω), for all (w, z) ∈ Xk. (2.27)

By (F2), for any ξ > 0, there exists 0 < ϑ < 1 such that

F (x, s, t) ≥ ξ−1|s, t|2, for all |s, t| < ϑ and all x ∈ Ω.

According to Lemma 2.1 (f3), (f10), for some C > 0 we have

C|(s, t)| ≤ |(f(t), f(s))| ≤ |(s, t)|, for all |s, t| ≤ 1.

Therefore

F (x, f(s), f(t)) ≥ C2ξ−1|s, t|2, for all |s, t| < ϑ < 1 and all x ∈ Ω. (2.28)

Let (w, z) ∈ Xk such that ||(w, z)||X = τ < min
{

ϑ
̺k
, 1, t0

}
with t0 is given in

Lemma 2.4. Then, by Lemma 2.1 (f2) and (2.26)-(2.28), for ξ > 0 small enough,

Φ̃λ,η(w, z) =
a

2

∫

Ω

(
|∇w|2 + |∇z|2

)
dx

+
b

4

[(∫

Ω

|f ′(w)|2|∇w|2dx

)2

+

(∫

Ω

|f ′(z)|2|∇z|2dx

)2
]

−
η

2(2∗)
Q(||(w, z)||X)

∫

Ω

|f(w)|2α|f(z)|2βdx

− λQ(||(w, z)||X)

∫

Ω

F (x, f(w), f(z))dx

≤
a

2
τ2 +

b

4
τ4 − λQ(τ)C2ξ−1

∫

Ω

|(w, z)|2dx

≤
a

2
τ2 +

b

4
τ4 −

λQ(τ )C2

ς2k
ξ−1||(w, z)||2X

≤

(
a

2
+
b

4
−
λC2

ς2k
ξ−1

)
τ2

= : −δk < 0, (2.29)
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here we use the fact that Q(τ) = 1, and ξ−1 → +∞ as ξ → 0+. This last equality
shows that

Sk(0, τ) := {(w, z) ∈ Xk : ||(w, z)||X = τ} ⊂
{
(w, z) ∈ X : Φ̃λ,η(w, z) ≤ −δk

}
\{0}

and hence
γ
({

(w, z) ∈ X : Φ̃λ,η(w, z) ≤ −δk

}
\{0}

)
≥ k.

✷

Proof of Theorem 1.2. Setting

Σk := {E ⊂ X\{0} : E is closed and E = −E, γ(E) ≥ k}

and
ck := inf

E∈Σk

sup
(w,z)∈E

Φ̃λ,η(w, z).

By Lemma 2.5 and Lemma 2.4 (i), −∞ < ck < 0. Therefore the functional Φ̃λ,η

satisfies all assumptions of Proposition 2.3, and consequently, Φ̃λ,η has a sequence
of critical points {(wn, zn)} ⊂ X\{0} such that (wn, zn) → 0. Thanks to Lemma
2.4 (ii), {(wn, zn)} is a solution of problem (1.3).
Proof of Theorem 1.3. This is a consequence of Theorem 1.2.
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