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Coefficient Inequalities For A Class Of Analytic Functions Associated

With The Lemniscate Of Bernoulli

Trailokya Panigrahi and Janusz Sokó l

abstract: In this paper, a new subclass of analytic functions ML∗

λ
associated

with the right half of the lemniscate of Bernoulli is introduced. The sharp upper
bound for the Fekete-Szegö functional |a3 − µa2

2
| for both real and complex µ are

considered. Further, the sharp upper bound to the second Hankel determinant
|H2(1)| for the function f in the class ML∗

λ
using Toeplitz determinant is studied.

Relevances of the main results are also briefly indicated.

Key Words: Starlike Function, Fekete-Szegö Inequality, Hankel Determinant,
Lemniscate of Bernoulli.

Contents

1 Introduction and Motivation 83

2 Preliminaries 85

3 Main Results 86

1. Introduction and Motivation

Let A be the class of functions of the form

f(z) = z +
∞
∑

n=2

anz
n (1.1)

which are analytic in U := {z ∈ C : |z| < 1}.
Let S be the subclass of A consisting of univalent functions in U. A function f ∈ A

is said to be starlike of order α, (0 ≤ α < 1), denoted by S(α) if and only if

ℜ
{

zf ′(z)

f(z)

}

> α (z ∈ U). (1.2)

It may be noted that for α = 0, the class S(α) = S∗, the familiar subclass of starlike
functions in U. Similarly, a function f ∈ A is said to be in the class R̃(α), α > 0,
if it satisfies the inequality

|(f ′(z))2 − α| < α (z ∈ U). (1.3)

The class R̃(1) = R̃ was considered by Sahoo and Patel [28].
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Let f and g be two analytic functions in U. We say f is subordinate to g,
written f(z) ≺ g(z) (z ∈ U), if and only if there exists an analytic function w in U

such that w(0) = 0 and |w(z)| < 1 for |z| < 1 and f(z) = g(w(z)). In particular, if
g is univalent in U, we have the following (see [19]):

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

In 1966, Pommerenke [26] defined the q th Hankel determinant of f for q ≥ 1 and
n ≥ 1 as

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

. . . .

. . . .

. . . .

an+q−1 an+q · · · an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

A good amount of literature is available about the importance of Hankel deter-
minant. It is useful in the study of power series with integral coefficients (see
[5]), meromorphic functions (see [32]) and also singularities (see [7]). Noonan and
Thomas [22] studied about the second Hankel determinant of a really mean p-
valent functions. Noor [23] determined the rate of growth of Hq(n) as n −→ ∞
for the functions in S with a bounded boundary. Ehrenborg [9] studied the Hankel
determinant of exponential polynomials.

For q = 2, n = 1, a1 = 1 and q = 2, n = 2, the Hankel determinant simplifies
respectively to

H2(1) =

∣

∣

∣

∣

1 a2
a2 a3

∣

∣

∣

∣

= a3 − a22

and

H2(2) =

∣

∣

∣

∣

a2 a3
a3 a4

∣

∣

∣

∣

= a2a4 − a23.

It is well-known that for f ∈ S and given by (1.1) (see [8]), the sharp inequal-
ity |a3 − a22| ≤ 1 holds. This corresponds to the Hankel determinant with q = 2
and n = 1. Fekete-Szegö (see [10]) problem is to estimate |a3 − µa22| with µ real
and f ∈ S. For details, see [6,24,25]. Given family F of the functions in A, the
functional |H2(2)| is popularly known as the second Hankel determinant. Second
Hankel determinant for various subclasses of analytic functions were obtained by
different researchers including Janteng et al. [14], Mishra and Gochhayat [20]
and Murugusundaramoorthy and Magesh [21]. For some more recent works see
[1,3,4,11,12,13,15,31].

Sokó l and Stankiewicz [29](also see [2,30]) introduced the class SL∗ consisting

of normalized analytic functions f in U satisfying the condition

∣

∣

∣

∣

[

zf ′(z)
f(z)

]2

− 1

∣

∣

∣

∣

<

1, (z ∈ U). We called such function as Sokó l-Stankiewicz starlike function. Re-
cently, Raza and Malik [27] determined the upper bound of third Hankel determi-
nant H3(1) for the class SL∗. Further, Sahoo and Patel [28] obtained the upper
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bound to the second Hankel determinant for the class R̃ = {f ∈ A : |(f ′(z))2−1| <
1, z ∈ U}.

Motivated by the above mentioned works obtained by earlier researchers, we
introduce the following subclass of analytic function as below:

Definition 1.1. A function f ∈ A is said to be in the class ML∗
λ, 0 ≤ λ ≤ 1, if it

satisfies the condition
∣

∣

∣

∣

∣

[

zf ′(z)

(1 − λ)f(z) + λz

]2

− 1

∣

∣

∣

∣

∣

< 1 (z ∈ U). (1.4)

Note that for λ = 0, the class ML∗
0 reduces to the class SL∗, studied by Raza

and Malik [27] and while for λ = 1, the class ML∗
1 reduces to R̃ studied by Sahoo

and Patel [28]. In term of subordination, relation (1.4) can be written as.

zf ′(z)

(1 − λ)f(z) + λz
≺ q(z) =

√
1 + z (z ∈ U), (1.5)

where q(0) = 1. To state the geometrical significance of the class ML∗
λ, consider

w = q(eiθ) =
√

1 + eiθ (0 ≤ θ ≤ 2π). (1.6)

It follows from (1.6) that w2−1 = eiθ, which implies |w2−1| = 1. Taking w = u+iv
and simplifying we get

(u2 + v2)2 = 2(u2 − v2).

Therefore, q(U) is the region bounded by the right half of the lemniscate of Bernoulli
given by (u2 + v2)2 − 2(u2 − v2) = 0.

In this paper, following the techniques devised by Libera and Z lotkiewicz [16,
17], we solve the Fekete-Szegö problem and also determine the upper bounds of the
Hankel determinant |H2(1)| for a subclass ML∗

λ.

2. Preliminaries

Let P be the class of analytic functions p normalized by

p(z) = 1 +

∞
∑

n=1

pnz
n, (2.1)

such that
ℜ{p(z)} > 0 (z ∈ U).

Each of the following results will be required in our present investigation.

Lemma 2.1. [18] Let p ∈ P and of the form (2.1). Then

|p2 − νp21| ≤











−4ν + 2, ν < 0

2, 0 ≤ ν ≤ 1,

4ν − 2, ν > 1.
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When ν < 0 or ν > 1, the equality holds if and only if p(z) = 1+z
1−z

or one of its

rotations. If 0 < ν < 1, then the equality holds if and only if p(z) = 1+z2

1−z2 or one

of its rotations. If ν = 0, the equality holds if and only if p(z) =
(

1
2 + η

2

)

1+z
1−z

+
(

1
2 − η

2

)

1−z
1+z

, (0 ≤ η ≤ 1), or one of its rotations. If ν = 1, the equality holds if
and only if p is the reciprocal of one of the functions such that the equality holds
in the case of ν = 0. Although the above upper bound is sharp, when 0 < ν < 1, it
can be improved as follows:

|p2 − νp21| + ν|p1|2 ≤ 2

(

0 < ν ≤ 1

2

)

,

and

|p2 − νp21| + (1 − ν)|p1|2 ≤ 2

(

1

2
< ν ≤ 1

)

.

Lemma 2.2. [18] Let p ∈ P be of the form (2.1), then for any complex number ν,

|p2 − νp21| ≤ 2 max(1, |2ν − 1|). (2.2)

This result is sharp for the functions

p(z) =
1 + z2

1 − z2
, p(z) =

1 + z

1 − z
.

Lemma 2.3. ( [16], [17, p. 254]) Let the function p ∈ P be given by the power
series (2.1). Then

2p2 = p21 + x(4 − p21) (2.3)

and
4p3 = p31 + 2(4 − p21)p1x− (4 − p21)p1x

2 + 2(4 − p21)(1 − |x|2)z (2.4)

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

3. Main Results

The first two theorems give the results related to Fekete-Szegö functional, which
is a special case of the Hankel determinant.

Theorem 3.1. Let the function f given by (1.1) be in the class ML∗
λ. Then for

real µ, we have

|a3 − µa22| ≤















1−3λ2−2λ−2λµ−4µ
8(2+λ)(1+λ)2 , µ < δ1,
1

2(2+λ) , δ1 ≤ µ ≤ δ2,

−
[

1−3λ2−2λ−2λµ−4µ
8(2+λ)(1+λ)2

]

, µ > δ2.

(3.1)

Furthermore, for δ1 < µ ≤ δ1 + β,

|a3 − µa22| + (µ− δ1)|a2|2 ≤ 1

2(2 + λ)
, (3.2)
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and for δ1 + β < µ < δ1 + 2β,

|a3 − µa22| + (δ1 + 2β − µ)|a2|2 ≤ 1

2(2 + λ)
, (3.3)

where

δ1 = −
[

3 + 10λ+ 7λ2

2(2 + λ)

]

, (3.4)

δ2 =
5 + 6λ+ λ2

2(2 + λ)
(3.5)

and

β =
2(1 + λ)2

λ+ 2
. (3.6)

These results are sharp.

Proof. Let f ∈ ML∗
λ. In view of Definition 1.1, there exists an analytic function

w(z) satisfying the condition of Schwarz lemma such that

zf ′(z)

(1 − λ)f(z) + λz
=

√

1 + w(z) (z ∈ U). (3.7)

Define a function

p(z) =
1 + w(z)

1 − w(z)
= 1 + p1z + p2z

2 + · · · (z ∈ U). (3.8)

Clearly p ∈ P. From (3.8), we get

w(z) =
p(z) − 1

p(z) + 1
(z ∈ U). (3.9)

From (3.7) and (3.9), we have

zf ′(z)

(1 − λ)f(z) + λz
=

√

p(z) − 1

p(z) + 1
+ 1 =

√

2p(z)

1 + p(z)
. (3.10)

Now, by substituting the series expansion of p(z) from (3.8) in (3.10), it follows
that
√

2p(z)

1 + p(z)
= 1 +

1

4
p1z +

(

p2

4
− 5

32
p21

)

z2 +

(

p3

4
− 5

16
p1p2 +

13

128
p31

)

z3 + · · · .

(3.11)
Using series expansions for f(z) and f ′(z) from (1.1) give

zf ′(z)

(1 − λ)f(z) + λz
= 1 + (1 + λ)a2z + {(2 + λ)a3 − (1 − λ2)a22}z2 + {(3 + λ)a4

−(1 − λ)(2λ+ 3)a2a3 + (1 + λ)(1 − λ)2a32}z3 + · · · .(3.12)
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Making use of (3.11) and (3.12) in (3.10) and equating the coefficients of z, z2 and
z3 in the resulting equation, we deduce that

a2 =
p1

4(1 + λ)
, (3.13)

a3 =
1

4(2 + λ)

[

p2 −
7λ+ 3

8(1 + λ)
p21

]

, (3.14)

and

a4 =
1

4(3 + λ)

[

p3 −
7λ2 + 16λ+ 7

4(1 + λ)(2 + λ)
p1p2 +

13 + 40λ+ 25λ2

32(1 + λ)(2 + λ)
p31

]

. (3.15)

For real µ, it follows from (3.13) and (3.14) that

|a3 − µa22| =
1

4(2 + λ)
|p2 − νp21|, (3.16)

where

ν =
3 + 10λ+ 7λ2 + 4µ+ 2λµ

8(1 + λ)2
.

In view of (3.16) and by an application of Lemma 2.1, we obtain the desired
assertion.
The results are sharp for the functions ψi(z), i = 1, 2, 3, 4 such that

zψ′
1(z)

(1 − λ)ψ1(z) + λz
=

√
1 + z (µ < δ1 or µ > δ2),

zψ′
2(z)

(1 − λ)ψ2(z) + λz
=

√

1 + z2 (δ1 < µ < δ2),

zψ′
3(z)

(1 − λ)ψ3(z) + λz
=

√

1 + φ(z) (µ = δ1),

and
zψ′

4(z)

(1 − λ)ψ4(z) + λz
=

√

1 − φ(z) (µ = δ2),

where

φ(z) =
z(z + η)

1 + ηz
(0 ≤ η ≤ 1).

Thus, the proof of Theorem 3.1 is completed. ✷

Remark 3.2. Putting λ = 1 in Theorem 3.1, we get the result due to Sahoo and
Patel (see [28, Corollary 2.2 ]).

Remark 3.3. Putting λ = 0 in Theorem 3.1, we get the Fekete-Szegö functional
for the class SL∗ due to Raza and Malik (see [27, Theorem 2.1]).
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Theorem 3.4. Let the function f given by (1.1) be in the class ML∗
λ. Then, for

a complex number µ, we have

|a3 − µa22| ≤
1

2(2 + λ)
max

{

1,

∣

∣

∣

∣

3λ2 + 2λ+ 2λµ+ 4µ− 1

4(1 + λ)2

∣

∣

∣

∣

}

. (3.17)

The estimate in (3.17) is sharp.

Proof. From (3.16), we have

|a3 − µa22| =
1

4(2 + λ)
|p2 − νp21|.

Therefore, by virtue of Lemma 2.2, we obtain the desired assertion.
The result is sharp for the function

zf ′(z)

(1 − λ)f(z) + λz
=

√
1 + z,

or
zf ′(z)

(1 − λ)f(z) + λz
=

√

1 + z2.

✷

Remark 3.5. Putting λ = 0 and λ = 1 in Theorem 3.4, we get the result of Raza
and Malik (see [27, Theorem 2.2]) and Sahoo and Patel (see [28, Thoerem 2.1])
respectively.

Taking λ = 0 and µ = 1 in Theorem 3.4, we get the result for |H2(1)| as follows.

Corollary 3.6. [27] If the function f , given by (1.1) belongs to the class SL∗,
then

|a3 − a22| ≤
1

4
.

Further, putting λ = µ = 1 and λ = 1, µ = 0 in Theorem 3.4, we have the
following results due to Sahoo and Patel [28].

Corollary 3.7. [28, Corollary 2.1] If the function f , given by (1.1) belongs to the
class R̄, then

|a3 − a22| ≤
1

6
and |a3| ≤

1

6
. (3.18)

The estimates are sharp.

Now, we determine the sharp upper bound to the second Hankel determinant
|H2(1)| for the class ML∗

λ.

Theorem 3.8. Let f ∈ A given by (1.1) be in the class ML∗
λ. Assume that its

coefficients a2, a3 and a4 are given by (3.13), (3.14) and (3.15), with p1 > 0. Then

|a2a4 − a23| ≤
1

4(2 + λ)2
. (3.19)

The estimate in (3.19) is sharp.
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Proof. From (3.13), (3.14) and (3.15), we have

a2a4 − a23 =
p1

16(1 + λ)(3 + λ)

(

p3 −
7λ2 + 16λ+ 7

4(1 + λ)(2 + λ)
p1p2 +

13 + 40λ+ 25λ2

32(1 + λ)(2 + λ)
p31

)

−
[

1

4(2 + λ)

(

p2 −
3 + 7λ

8(1 + λ)
p21

)]2

=
1

16

[

p1p3

(1 + λ)(3 + λ)
− p22

(2 + λ)2

+
−5 − 6λ+ λ2

4(1 + λ)2(2 + λ)2(3 + λ)
p21p2

+
25 + 51λ− 9λ2 + λ3

64(1 + λ)2(2 + λ)2(3 + λ)
p41

]

. (3.20)

For convenience of notation, we write p1 = p (0 ≤ p ≤ 2). Putting the values of p2
and p3 from Lemma 2.3 in (3.20), we obtain

|a2a4 − a23| =
1

16

∣

∣

∣

∣

p1{p3 + 2(4 − p2)px− (4 − p2)px2 + 2(4 − p2)(1 − |x|2)z}
4(1 + λ)(3 + λ)

− (5 + 6λ− λ2)p2{p2 + (4 − p2)x}
8(1 + λ)2(2 + λ)2(3 + λ)

−{p2 + (4 − p2x)}2
4(2 + λ)2

+
25 + 51λ− 9λ2 + λ3

64(1 + λ)2(2 + λ)2(3 + λ)
p4
∣

∣

∣

∣

=
1

16

∣

∣

∣

∣

λ3 − λ2 + 19λ+ 1

64(1 + λ)4(2 + λ)2(3 + λ)
p4

− 1 + 2λ− λ2

8(1 + λ)2(2 + λ)2(3 + λ)
(4 − p2)p2x

− p2 + 4λ2 + 16λ+ 12

4(1 + λ)(2 + λ)2(3 + λ)
(4 − p2)x2

+
p(4 − p2)(1 − |x|2)z

2(1 + λ)(3 + λ)

∣

∣

∣

∣

, (3.21)

for some x (|x| ≤ 1) and for some z (|z| ≤ 1). An application of triangle inequality
in (3.21) and replacing |x| by y in the resulting equation with assumption that
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(p2 + 4λ2 + 16λ+ 12 − 8p− 8λp− 2λ2p) > 0, we get

|a2a4 − a23| ≤ 1

16

[

λ3 − λ2 + 19λ+ 1

64(1 + λ)2(2 + λ)2(3 + λ)
p4

+
(1 + 2λ− λ2)(4 − p2)p2y

8(1 + λ)2(2 + λ)2(3 + λ)

+
p2 + 4λ2 + 16λ+ 12 − 8p− 8λp− 2λ2p

4(1 + λ)(2 + λ)2(3 + λ)
(4 − p2)y2

+
(4 − p2)p

2(1 + λ)(3 + λ)

]

= F (p, y;λ) (0 ≤ p ≤ 2, 0 ≤ y ≤ 1)(say). (3.22)

Differentiating on both sides of (3.22) with respect to y, we have

∂F (p, y;λ)

∂y
=

1

16

[

(1 + 2λ− λ2)(4 − p2)p2

8(1 + λ)2(2 + λ)2(3 + λ)

+
(p2 + 4λ2 + 16λ+ 12 − 8p− 8λp− 2λ2p)

2(1 + λ)(2 + λ)2(3 + λ)
(4 − p2)y

]

.(3.23)

It is observed that ∂F (p,y;λ)
∂y

> 0 for 0 < p < 2, 0 < y < 1. Thus F (p, y;λ) is

an increasing function of y which implies F (p, y;λ) cannot have maximum in the
interior on the closed rectangle [0, 2] × [0, 1]. Therefore, for fixed p ∈ [0, 2],

max
0≤y≤1

F (p, y;λ) = F (p, 1, λ) = H(p;λ)(say), (3.24)

where

H(p;λ) =
1

16

[

λ3 − λ2 + 19λ+ 1

64(1 + λ)2(2 + λ)2(3 + λ)
p4 +

(1 + 2λ− λ2)(4 − p2)p2

8(1 + λ)2(2 + λ)2(3 + λ)

+
(4 − p2)p

2(1 + λ)(3 + λ)
+
p2 + 4λ2 + 16λ+ 12 − 8p− 8λp− 2λ2p

4(1 + λ)(2 + λ)2(3 + λ)
(4 − p2)

]

. (3.25)

Therefore

H ′(p;λ) =
1

16

[

λ3 − λ2 + 19λ+ 1

16(1 + λ)2(2 + λ)2(3 + λ)
p3 +

p(1 + 2λ− λ2)(2 − p2)

2(1 + λ)2(2 + λ)2(3 + λ)

− 3p2

2(1 + λ)(3 + λ)
− p(4p2 + 8λ2 + 32λ+ 16 + 16p+ 6λ2p+ 24λp− 2p2)

4(1 + λ)(2 + λ)2(3 + λ)

]

,

and

H ′′(p;λ) =
1

16

[

3(λ3 − λ2 + 19λ+ 1)

16(1 + λ)2(2 + λ)2(3 + λ)
p2 +

(1 + 2λ− λ2)(2 − 3p2)

2(1 + λ)2(2 + λ)2(3 + λ)

− 3p

(1 + λ)(3 + λ)
− 12p2 + 8λ2 + 32λ+ 16 + 32p+ 12λ2p+ 48λp− 6p2 + 16p

4(1 + λ)(2 + λ)2(3 + λ)

]

.
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By elementary calculus we have H ′′(p;λ) < 0 for 0 ≤ p ≤ 2 and H(p;λ) has real
critical point at p = 0. This shows that the maximum of H(p;λ) occurs at p = 0.
Thus, the upper bound in (3.22) corresponds to p = 0 and y = 1 from which we
get the required estimate (3.19).
The result is sharp for the functions

zf ′(z)

(1 − λ)f(z) + λz
=

√
1 + z,

or
zf ′(z)

(1 − λ)f(z) + λz
=

√

1 + z2.

The proof of Theorem 3.8 is thus completed. ✷

Remark 3.9. Putting λ = 0 and λ = 1 in Theorem 3.8, we get the result of Raza
and Malik (see [27]) and Sahoo and Patel (see [28]).

The sharp upper bound for the fourth coefficient of the function f ∈ ML∗
λ is

given by the following theorem.

Theorem 3.10. Let the function f given by (1.1) be in the class ML∗
L. Then

|a4| ≤
1

2(3 + λ)
(0 ≤ λ ≤ 1). (3.26)

Proof. Proceeding similarly as in the proof of Theorem 3.8 and making use of
Lemma 2.2 in (3.15) assuming that (1 − 4λ− 3λ2) > 0, it follows that

|a4| ≤
1

16(3 + λ)

[

1 + 5λ2

8(1 + λ)(2 + λ)
p3 +

(1 − 4λ− 3λ2)

2(1 + λ)(2 + λ)
(4 − p2)py

+(4 − p2)py2 + 2(4 − p2)(1 − y2)
]

= T (p, y;λ) (say) . (3.27)

Now we maximize the function T (p, y;λ) on the closed rectangle [0, 2] × [0, 1].
Suppose that the maximum of T occurs at the interior point of [0, 2] × [0, 1]. Dif-
ferentiating (3.27) with respect to y, we obtain

∂T

∂y
=

1

16(3 + λ)

[

(1 − 4λ− 3λ2)

2(1 + λ)(2 + λ)
p+ 2(p− 2)y

]

(4 − p2). (3.28)

It is clear that ∂T
∂y

< 0 for 0 < p < 2 and 0 < y < 1. Thus, T (p, y, λ) is an
decreasing function of y, contradicting our assumption. Therefore,

max
0≤y≤1

T (p, y;λ) = T (p, 0, λ) =
1

16(3 + λ)

[

1 + 5λ2

8(1 + λ)(2 + λ)
p3 + 2(4 − p2)

]

= S(p) (say) . (3.29)
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From (3.29), we have

S′(p) =
1

16(3 + λ)

[

3(1 + 5λ2)p2

8(1 + λ)(2 + λ)
− 4p

]

, (3.30)

and

S′′(p) =
1

16(3 + λ)

[

3(1 + 5λ2)p

4(1 + λ)(2 + λ)
− 4

]

. (3.31)

For extreme values of S(p), consider S′(p) = 0. From (3.30), we have

3(1 + 5λ2)p2

8(1 + λ)(2 + λ)
− 4p = 0

=⇒ p

[

3(1 + 5λ2)p

8(1 + λ)(2 + λ)
− 4

]

= 0 (3.32)

We now discuss the following cases.
Cases 1: If p = 0, then

S′′(p) = − 1

4(3 + λ)
< 0.

By the second derivative test, S(p) has maximum value at p = 0.
Cases 2: If p 6= 0, then (3.33) gives

p =
32(1 + λ)(2 + λ)

3(1 + 5λ2)
. (3.33)

Using the value of p given in (3.33) in (3.31), we get

S′′(p) =
1

4(3 + λ)
> 0 (0 ≤ λ ≤ 1).

Hence by second derivative test, S(p) has minimum value at p, where p is given by
(3.33).
From the above discussion, it is clear that S(p) attains its maximum at p = 0.
Thus, the upper bound in (3.27) corresponds to p = 0 and y = 0 from which we
get the required estimate (3.26).
The estimate in (3.26) is sharp for the function f ∈ A given by

zf ′(z)

(1 − λ)f(z) + λz
=

√

1 + z3 (z ∈ U).

This complete the prove of Theorem 3.10. ✷

Remark 3.11. Taking λ = 0 and λ = 1 in Theorem 3.10, we get the upper bounds
for |a4| for the class of SL∗ and R̃ respectively studied by Raza and Malik [27] and
Sahoo and Patel [28].

Acknowledgement: The authors would like to express their gratitude to the
reviewers for careful reading of the manuscript and making valuable suggestions
which leads to better presentation of the paper.
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References

1. A. Abubaker and M. Darus, Hankel determinant for a class of analytic functions involving a
generalized linear differential operator, Int. J. Pure Appl. Math., 69(4) (2011), 429–435.

2. R. M. Ali, N. E. Cho, V. Ravichandran and S. S. Kumar, Differential subordination for func-
tions associated with the lemniscate of Bernoulli, Taiwanese J. Math, 16(3) (2012), 1017-1026.

3. O. AL-Refai and M. Darus, Second Hankel determinant for a class of analytic functions defined
by a fractional operator, European Journal of Scientific Research, 28(2)(2009), 234–241.

4. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions,
Appl. Math. Lett., 26 (2013), 103–107 .

5. D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc., 69(1963), 362–
366.
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