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Riesz Triple Probabilisitic of Almost Lacunary Cesaro C1; Statistical
Convergence of x> Defined by a Musielak Orlicz Function

Vandana, Deepmala, N. Subramanian and Vishnu Narayan Mishra

ABSTRACT: In this paper we study the concept of almost lacunary statistical Cesaro
of x? over probabilistic p— metric spaces defined by Musielak Orlicz function. Since
the study of convergence in PP-spaces is fundamental to probabilistic functional
analysis, we feel that the concept of almost lacunary statistical Cesaro of x2 over
probabilistic p— metric spaces defined by Musielak in a PP-space would provide a
more general framework for the subject.
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1. Introduction

Throughout w, xy and A denote the classes of all, gai and analytic scalar
valued single sequences, respectively. We write w? for the set of all complex triple
sequences (Tpnk), where m,n,k € N, the set of positive integers. Then, w? is a
linear space under the coordinate wise addition and scalar multiplication.

Some initial work on double series is found in Apostol [1], Aotaibi et al. [2],
Mursaleen et al. [19-22] and Mishra et al. [23-24] and double sequence spaces is
found in Hardy [6], Deepmala et al. [7, 8] and many others. The initial work on
triple sequence spaces is found in Sahiner et al. [11], Esi [3-4] and Esi et al. [5],
Deepmala et al. [9], [10], Subramanian et al. [12], Shri Prakash et al. [13] and
many others.
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Let (2mni) be a triple sequence of real or complex numbers. Then the se-
ries Z:n k—1 Tmnk is called a triple series. Then the triple series is said to be
convergent if and only if the triple sequence (S,,,k) is convergent, where

s,k
Smnk = Zzljzzl Tijg(m,n,k=1,2,3,...) .
A sequence © = (Znk)is said to be triple analytic if

1
SUDm ke | Trmnke | TTTE < 00.

The vector space of all triple analytic sequence is usually denoted by A2. A sequence
2 = (Tmnk) is called triple entire sequence if

1
|Tmnk| T FE — 0 as m,n, k — oo.

A sequence & = (Znk) is called triple gai sequence if ((m + n + k) | 2mnk|) e
0 as m,n, k — oo. The triple gai sequences will be denoted by 3.

Consider a triple sequence 2 = (Zmnk). The (m,n, k)" section x[™™F of the

sequence is defined by zl™mkl = Z%,Zfoxiquijq for all m,n, k € N,
0 0 .0 0 ..]
0 0 .0 O
Sijg =
00 .1 0
00 .0 0 ..]
with 1 in the (4, j,q)™" position and zero otherwise. The notion of difference

sequence spaces (for single sequences) was introduced by Kizmaz [15] as follows
Z(A)={z=(z) ew: (Azxy) € Z}
for Z = ¢, ¢p and lo, where Az, = xp, — 2541 for all £ € N.

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z(A) = {z = (2mn) € W : (Azmn) € Z}

where Z = A27X2 and Aznmn = (xmn - zanrl) - (szrln - :Ceranrl) = Tmn —
T+l — Tmtin + Tmtin+1 for all myn € N.

Consider the triple difference sequence space is defined as
Amnk = Tmnk — Tmn+l,k — Tmn,k+1 + Tmn+1,k+1 — Tm+1,n,k + Tm+1,n+1,k +
Tm+1,n,k+1 — Tm4+1,n+1,k+1 and A01'7nnk - <xmnk> .
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2. Definitions and Preliminaries

Definition 2.1. An Orlicz function ([see [14]) is a function M : [0,00) — [0, 00)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0, for
x> 0and M (x) = oo as ¢ — oo. If convexity of Orlicz function M is replaced by
M (x+vy) <M (x)+ M (y), then this function is called modulus function.
Lindenstrauss and Tzafriri ([17]) used the idea of Orlicz function to construct
Orlicz sequence space.
A sequence g = (gmn) defined by

gmn (V) = sup{|v|uw = (frank) () 1w >0}, mn,k=1,2,---

is called the complementary function of a Musielak-Orlicz function f. For a given
Musielak-Orlicz function f, [see [16,18] | the Musielak-Orlicz sequence space ty is
defined as follows

1/m+n+k

tf:{xewg:lf(|:cmnk|) %Oasm,n,k%oo},

where [ is a convex modular defined by

00 0o 00 1/m+4n+k
I (@) = Yooy Yooty Sorsy Fomnk ([T 2 = (i) € 1.

We consider t; equipped with the Luxemburg metric

1/m+n+k)

d(z,y) = Zﬁzl 220:1 220:1 Jmnk (lzmnkrlnnk

is an exteneded real number.

Definition 2.2. A triple sequence & = (Zynk) of real numbers is called almost
P— convergent to a limit 0 if
P_

r+p—1 s+q—1 t+u—1

limPa‘]a“‘}oosup“s’tzoﬁ Zm:r Zn:s k=t ((m +n+ k)' |xmnk|)1/m+n+k —

that is, the average value of (k) taken over any rectangle
{(mn,k):r<m<r+p—-1,s<n<s+qg—1,t<k<t+u—1} tends to 0 as
both p,q and u to oo, and this P— convergence is uniform in ,¢ and j. Let denote

the set of sequences with this property as [;(5} .

Definition 2.3. Let (Q,), (@) , (a) be sequences of positive numbers and

g1 qi2 .- qis 0.
21 22 .- q2s O...
Qr=1 - =qi+q2+...+qs#0,
dri qr2 Adrs 0
| 0 0 .0 0 0..]
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gll gu ?15 0...
Go1 oz - Qo 0.
Qs: . :qll+§12+"'+qrs7é0a
qu qr2 qrs 0
| 0 0 0 0 0..]
gu 212 gls 0
qd21 422 dss 0

Q= ntdet+ - +q,#0

|
2l

67"1 67"2 qrs 0...
| 0 0 .0 0 0.
and is given by

_ 1 r s t _ = ' 1/m+n+k . led
Tt = 52 s Ky Shs oy (m 1+ 8! ] i call

TWswt

the Riesz mean of triple sequence @ = (Zppi). If P — lim,Trst (2) = 0,0 € R,
then the sequence = (k) is said to be Riesz convergent to 0. If @ = (ynk) 18
Riesz convergent to 0, then we write Pr — lima = 0.

Definition 2.4. The four dimensional matrix A is said to be RH-regular if it maps
every bounded P— convergent sequence into a P— convergent sequence with the
same P— limit.

Definition 2.5. The triple sequence 6; ¢ ; = {(m;,ne, k;)} is called triple lacunary
if there exist three increasing sequences of integers such that

mo =0,h; =m; —m,_1 — 00 as i — oo and
no=0,hy =ng —ny_1 — 00 as £ — oo.

koz(),hj:kjfkj,lﬁooasj%oo.

Let m; ¢ ; = minek;, hie; = hihehj, and 6; ¢ ; is determine by

Lio;={(m,nk):mi—1 <m<myandng_1 <n <ngandkj_1 <k <k;},
L — Kk

qr = mTZilaqf = nZilaQJ = —kjil .

Using the notations of lacunary Fuzzy sequence and Riesz mean for triple sequences.

0i0; = {(mi,ne, k;)} be a triple lacunary sequence and ¢,,g,,g;, be sequences of

positive real numbers such that @Q,,, = Eme(o,mi} D> @n, = EnE(O,nz] Py, Qn,; =

Zke(o,mpkj and H; = Zme(o,mi]pmi’ﬁ = Zne(o,m]pnwﬁ = Zke(o,mpkr

Clearly, H; = Qm, — Qmiil,ﬁg = Qn, — wal,ﬁj = Qk; — Qg;_,. If the Riesz
transformation of triple sequences is RH-regular, and H; = Qp,, — Qm, , —> 00 as

i — o0, H = Zne(o,ng]pn/z — o0 as { — oo, H = Eke(o,kj]pkj — 00 as j — 00,
then 9;7&3’ = {(mi,ne, kj)} = {(QmianQkk)} is a triple lacunary sequence. If the

assumptionsQT%ooasr%oo,Qs—>ooass—>ooand@t—>ooast—>oomay
be not enough to obtain the conditions H; — oo as ¢ — oo, Hy — o0 as £ — oo
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and ﬁj — 00 as j — oo respectively. For any lacunary sequences (m;), (ng) and
(k;) are integers. B

Throughout the paper, we assume that Q, = g11+q12+. . .+¢rs — 00 (r — ), Q; =
Gii T Qo+ +Gps = 00(s > 00),Q; =Toy +qyo+ .. +qpg — 00 (t = 00), such
that H; = Qm, — Qm, , 00 asi —00,Hy =Qpn, — Qn, , = 00 as £ — oo and

Ej:ijkajil—)OO_aSj%OO. o
Let Qm,nek; = QmiQn,Qr,» Hiej = HiH(H j,

/

Ly, = {(m,n,k) (Qmi s <M< Qs Q, | << Qpyand Qy, | <k < @kj},
Vi= g2t Vi = g and V; = Q‘f]’fil. and Vg, = ViV, V.

If we take g, = 1,9, = 1 and g, = 1 for all m,n and k then His;, Qizj, Vie; and
I;Zj reduce to higj, Giej, Viej and Lyg;.

Let n € N and X be a real vector space of dimension m, where n < m. A real
valued function dp(z1,...,2,) = [|[(d1(z1),...,dn(zs))|lp on X satisfying the fol-
lowing four conditions:

(@) |[(d1(z1),-- -, dn(zn))]lp = 0 if and and only if dy(x1),...,d,(x,) are linearly
dependent,

(i) |[(di(z1), ..., dn(xn))|lp is invariant under permutation,

(iii) [[(edy (21), - .., adn (@n))]lp = | [[(di(21), -, dn(2n))llp, @ € R

(1V) dp ((:Ela yl)a (-T2392) te (xn; yn)) - (dX(-Tlaan e xn)p + dY(yla Y2, 'yn)p)l/p
for 1 < p < oo; is called the p product metric.

3. Almost Lacunary Cesaro (;;-statistical convergence of PP-triple
sequence spaces

Let A = [ab?" 1™ . _, be a triple infinite matrix of real number for p,q,r =
1,2, -+ forming the sum

Hpgr (X) = i iiaiﬁﬁk ((<m+n+k>! (@))UWM ,6> (3.1)

m=0n=0 k=0 mnk

is called a triple sequence space of summable to the limit 0, i.e.,

1/m+n+k
Lo Yo o 1 abtn, ((m4m+ k) (e )) = g
and
limpgr oo Hopgr = 0
Define the means
Tpgr = p_;r =0 Dm0 2_k=0 ((m +n+k)! (%ﬁ‘)) e

and

r r ; 1/m+n+k _
Aoy, = # =0 2om=0 2 k=0 Dok (((m+”+ k)! (%)) 30) .

mnk
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We say that ( ’""’“) is statistically lacunary equivalent summable (C,1,1,1) to 0, if

the sequence o = (offmk) is statistically convergent to 0, that is, stz —limpq-0
0. It is denoted by 0111 (Stg) .

Let ¢m,q, and G, be sequences of positive numbers and Q, = qi1 + -+ + ¢,
Qs:qll+"'+qrs anth :611+...+6TS'

Definition 3.1. A triple (X, P, x) be a PP— space. Then a triple sequence X =
(Xomnk) is said to statistically convergent to 0 with respect to the probabilistic p—
metric P— provided that for every e > 0 and v € (0,1)

X pr—
par

5({m,n,k EN:IP —limystsoo——=

(o))

or equivalently

qu Tl

@@mlnlkl

limuvﬁm <kn</tlk<wv:

P - limr,s,t—)ooﬁ Zrmzl 22:1 22:1 qmqnak [f (Agi.f;r) (6)] S 1 -7 = 0
T st

In this case we write Stpp — limx = 0.

Definition 3.2. A triple (X, P,*) be a PP— space. The two non-negative se-
quences X = (Xpnk) and Y = (YVy,nk) are said to be almost asymptotically statis-
tical equivalent of multiple 0 in PP— space X if for every ¢ > 0 and v € (0,1).

1

Q.Q.Q,

£ 5 Fuaal(en) () 1-7)

or equivalently

6({m, n,ke€N: P —1limystsoo

. 1
limgey 77

{mgk,ngﬂ,kgv:P( )1/m+n+k O()Sl'y}'().

(m+n+k)“

5(pp)
In this case we write X = Y.

Definition 3.3. A triple (X, P, %) be a PP— space and 6 = (m,nsk:) be alacunary
sequence. The two non-negative sequences X = (Xpnk) and Y = (Vi) are said
to be a almost asymptotically lacunary statistical equivalent of multiple 0 in PP—
space X if for every € > 0 and v € (0,1)

dg <{m,n, kEelsy: P<(m+n+k)!|);_mmfDl/m,+n,+k_6 () <1-— 'y}) =0 (3.2

or equivalently
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limrstﬁ Hm,n € I : P< )1/m+n+k_6 (6) <1- ’Y}‘ =0.

minso st

In this case we write X = Y.
)

Lemma 3.4. A triple (X, P,*) be a PP— space. Then for every e > 0 and vy €
(0,1), the following statements are equivalent:

(1) timraz |{

5 bl P
© 9<{m’”’ R (e

(3) do ({m,n,kz S P<(

m,n,k € I.g : P

)1/m+n+k_6 (6) < 1-— 'y}‘ = 0,

((metneth)t| Fmak |

|)1/m+n+k_6 (6) S 1 - > = 0,

)1/m+n+k76 () <1-— 7}) =1,

)1/m+n+k_6 (6) <1- fy}‘ = 1.

1| Xmnk
m+n+k) ’ ‘ Ymnk

. 1 .
(4) limy sl Hm” B oot Py

mnk

4. Main Results

Theorem 4.1. Let f be a Musielak Orlicz function and a triple (X, P, ) be a PP—
space. If two triple sequences X = (Xynk) and Y = (Yink) are almost asympotot-
ically lacunary statistical equivalent of multiple 0 with respect to the probabilistic
p— metric P, then 0 is unique sequence.

so(pP
Proof: Assume that X 9(5 : Y. For a given A > 0 choose v € (0, 1) such that
(1 =) >1— A\ Then, for any € > 0, define the following set:

ot

K= {m,n,k S P( |)1/m+n+k_6 () <1-— 'y}

Then, clearly

LMy IZDP =1,
: : S§(PP) o
so K is non-empty set,since x = = y,0p (K) = 0 for all € > 0, which implies
0 (N—K)=1.If m,n,k € N— K, then we have

Py (e) = )1/m+n+k_6 () >1—v)>1-X

st

since A is arbitrary, we get Py (¢) = 1.

This completes the proof.

Theorem 4.2. Let f be a Musielak Orlicz function and a triple (X, P, *) be a
PP— space. For any lacunary sequence 6 = (mynsk:),Se (PP) C S(PP) if
limsuprsthst < o0.

Proof: If limsup,stqrst < 0o. then there exists a B > 0 such that ¢.s < B for

Se(PP .
all 7, s,t > 1. Let X G(E ) Y and € > 0. Now we have to prove S (PP). Set
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K,g = Hm,n,k ISP P<( B
m--Tn Ui

|X—;nff“ )1/7n+n+k_6 (6) >1— 'y}‘ .

Then by definition, for given € > 0, there exists rosoto € N X N x N such that

h”‘ <355 for all » > rg,s > sg and t > tg.

rst
Let M = max {K,st: 1 <r <rop,1<s<s0,1<t<t} and let uvw be any posi-
tive integer with m,_1 < u < m,,ns_1 < v <ng and k1 < w < k;. Then

a1

1
uvw

{m <wu,n<v,k<w: P((ernJrk) ‘ o

Yimnk
-1
Mp_1Ms—1ki—1

m < mp,n <ngk <k P((m+n+k)!|%ﬂff()l/m'M'M—G (€ >1- WH -

ey W+ K}

M M <
S Tk 1T050t0 + 55Ut < s R Tosoto + 5

This completes the proof.

Theorem 4.3. Let f be a Musielak Orlicz function and a triple (X, P, *) be a
PP— space. For any lacunary sequence 0 = (myngks),S (PP) C So (PP) if
liminfrst‘]rst > 1.

Proof: If liminfrsqrs¢ > 1, then there exists a f > 0 such that ¢, > 1+ S
for sufficiently large rst, which implies

K% 2 TiE
Let X (E Y, then for every € > 0 and for sufficiently large r, s,t we have
T { <mp,n<ngk<k:P (k] Soma ) /77 g (€) >1-— 7}‘ >
o [ € s P 92 1 |2
1+,8 hm {m n,k € Lg : P<(m+n+k)!|%?f§Dl/m,+n,+k_6 () >1— 'VH . Therefore
x Sy

This completes the proof.

Corollary 4.4. Let f be a Musielak Orlicz function and a triple (X, P,x) be a
PP— space. For any lacunary sequence 6 = (myns), with 1 < liminf,sqrs <
limsup,stqrst < 00, then S (PP) = Sy (PP).

Proof: The result clearly follows from Theorem 4.2 and Theorem 4.3.
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