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Abstract. In this paper, we establish coincidence point and common fixed point theorems
involving two pairs of weakly compatible mapping satisfying contraction condition with
complex coefficient are proved in complex valued metric space. The presented theorems
generalize, extend and improve many existing results in the literature. An example is given
at the end of the paper.

1. Introduction with Preliminaries

In 2011, Azam et al.(cf.[1]) and Fayyaz et al. (cf.[2]) studied complex valued metric spaces
wherein some fixed point theorems for mappings satisfying a rational inequality were estab-
lished. Naturally, this new idea can be utilized to define complex valued normed spaces and
complex valued inner product spaces which ,in turn, offer a lot of scopr for further investi-
gation. Though complex valued metric spaces form a special class of cone metric space, yet
this idea is intended to define rational expressions which are not meaningfull in cone metric
spaces and thus many results of analysis cannot be generalized to cone metric spaces. Indeed
the definition of a cone metric space banks on the underlying Banach space which is not a
division Ring . However , in complex valued metric spaces, we can study improvements of a
host of results of analysis involving divisions.
In this paper we prove coincidence point and common fixed point theorems involving two
pairs of weakly compatible mappings satisfying complex inequality expressions in complex
valued metric space.

To begin with, we collect some definitions and basic facts on the complex valued metric
space, which will be needed in the sequel.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as
follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
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(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied and

we write z1 ≺ z2 if only (iii) is satisfied. Notice that 0 - z1 � z2 ⇒ |z1| < |z2|, and
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.1. (cf.[2]) Let X be a nonempty set whereas C be the set of complex numbers.
Suppose that the mapping d : X ×X → C, satisfies the following conditions:

(d1). 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2). d(x, y) = d(y, x) for all x, y ∈ X;
(d3). d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a complex valued metric on X, and (X, d) is called a complex valued

metric space.

Example 1.1. (cf.[2]) Let X = C be a set of complex number. Define d : C× C→ C, by

d(z1, z2) = |x1 − x2|+ i|y1 − y2|

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued metric space.

Example 1.2. Let X = C be a set of complex number. Define d : C× C→ C, by

d(z1, z2) = eik|z1 − z2|

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (X, d) is a complex valued metric space.

Definition 1.2. Let (X, d) be a complex valued metric space and B ⊆ X

(i) b ∈ B is called an interior point of a set B whenever there is 0 ≺ r ∈ C such that

N(b, r) ⊆ B

where N(b, r) = {y ∈ X : d(b, y) ≺ r}.
(ii) A point x ∈ X is called a limit point of B whenever for every 0 ≺ r ∈ C,

N(x, r) ∩ (B\X) 6= ∅.

(iii) A subset A ⊆ X is called open whenever each element of A is an interior point of A.
A subset B ⊆ X is called closed whenever each limit point of B belongs to B.The family

F = {N(x, r) : x ∈ X, 0 ≺ r}

is a sub-basis for a topology on X. We denote this complex topology by τc. Indeed, the
topology τc is Hausdorff.

Definition 1.3. Let (X, d) be a complex valued metric space and {xn}n≥1 be a sequence in
X and x ∈ X. We say that
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(i) the sequence{xn}n≥1 converges to x if for every c ∈ C, with 0 ≺ c there is n0 ∈ N such
that for all n > n0, d(xn, x) ≺ c, . We denote this by limn xn = x, or xn → x, as n→∞,

(ii) the sequence{xn}n≥1 is Cauchy sequence if for every c ∈ C with 0 ≺ c there is n0 ∈ N
such that for all n > n0, d(xn, xn+m) ≺ c,

(iii) the metric space (X, d) is a complete complex valued metric space If every Cauchy
sequence is convergent.

Definition 1.4. (cf.[4]) Two families of self-mappings {Ti}mi=1 and {Si}ni=1 are said to be
pairwise commuting if:
(i)TiTj = TjTi, i, j ∈ {1, 2, ...m}.
(ii)SiSj = SjSi, i, j ∈ {1, 2, ...n}.
(iii)TiSj = SjTi, i ∈ {1, 2, ...m}, j ∈ {1, 2, ...n}.

Definition 1.5. let S : C → C be a given mapping. we say that S is a non-decreasing
mapping with respect - if for every x, y ∈ C, x - y implies Sx - Sy.

Definition 1.6. (cf.[3]) let S and T be two self-maps defined on set X. Then S and T are
said to be weakly compatible if they commute at every coincidence point.

In [1], Azam et al. established the following two lemmas.

Lemma 1.1. (cf.[1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence
in X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 1.2. (cf.[1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence
in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n→∞.

2. MAIN RESULTS

Theorem 2.1. If S, T, I and J are self-mappings defined on complex valued metric space
(X, d) satisfying TX ⊆ IX, SX ⊆ JX and

(2.1) λd(Sx, Ty) - Ad(Ix, Jy) +Bd(Ix, Sx) + Cd(Jy, Ty) +Dd(Ix, Ty) + Ed(Sx, Jy),

for all x, y ∈ X, where D,E ∈ R+, λ, A,B,C ∈ C+ and 0 ≺ A+B+C +D+E ≺ λ. If one
of SX, TX, IX or JX is a complete subspace of X, then:
(a) {S, I} and {T, J} have a unique point of coincidence in X,
(b) if {S, I} and {T, J} are weakly compatible, then S, T, I and J have a unique common
fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since SX ⊆ JX, we find a point x1 in X such that
Sx0 = Jx1. Also, since TX ⊆ IX, we choose a point x2 with Tx1 = Ix2. Thus in general for
the point x2n−2 one find a point x2n−1 such that Sx2n−2 = Jx2n−1 and then a point x2n with
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Tx2n−1 = Ix2n for n = 0, 1, 2, · · · . Repeating such arguments one can construct sequences
{xn} and {yn} in X such that,

y2n−1 = Sx2n−2 = Jx2n−1, y2n = Tx2n−1 = Ix2n, n = 0, 1, 2, · · · .

Using inequality 2.1, we have

λd(Sx2n, Tx2n+1) - Ad(Ix2n, Jx2n+1) +Bd(Ix2n, Sx2n) + Cd(Jx2n+1, T y2n+1) +Dd(Ix2n, Tx2n+1)

+Ed(Sx2n, Jx2n+1),

or

λd(y2n+1, y2n+2) - Ad(y2n, y2n+1) +Bd(y2n, y2n+1) + Cd(y2n+1, y2n+2) +Dd(y2n, y2n+2)

+Ed(y2n+1, y2n+1),

and

λd(y2n+1, y2n+2) - Ad(y2n, y2n+1) +Bd(y2n, y2n+1) + Cd(y2n+1, y2n+2) +Dd(y2n, y2n+2),

since D ∈ R+,

(λ− C −D)(d(y2n+1, y2n+2)) - (A+B +D)(d(y2n, y2n+1)),

therefore,

|λ− C −D||d(y2n+1, y2n+2)| ≤ |A+B +D||d(y2n, y2n+1)|,

and

|d(y2n+1, y2n+2)| ≤
|A+B +D|
|λ− (C +D)|

|d(y2n, y2n+1)|,

|d(y2n+1, y2n+2)| ≤ h1|d(y2n, y2n+1)|,(2.2)

where, h1 = | A+B+D
λ−(C+D)

|.
since D,E ∈ R+, λ, A,B,C ∈ C+ and 0 ≺ A+B+C +D+E ≺ λ then h1 = | A+B+D

λ−(C+D)
| < 1.

Again, using inequality 2.1,

λd(Sx2n, Tx2n−1) - Ad(Ix2n, Jx2n−1) +Bd(Ix2n, Sx2n) + Cd(Jx2n−1, T y2n−1) +Dd(Ix2n, Tx2n−1)

+Ed(Sx2n, Jx2n−1),

or

λd(y2n+1, y2n) - Ad(y2n, y2n−1) +Bd(y2n, y2n+1) + Cd(y2n−1, y2n) +Dd(y2n, y2n)

+Ed(y2n+1, y2n−1).

Since E ∈ R+,

(λ− C − E)(d(y2n+1, y2n)) - (A+B + E)(d(y2n, y2n−1)),
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therefore,

|d(y2n+1, y2n)| ≤ |A+B + E|
|λ− (C + E)|

|d(y2n, y2n−1)|,

and

|d(y2n+1, y2n)| ≤ h2|d(y2n, y2n−1)|,(2.3)

where, h2 = | A+B+E
λ−(C+E)

|.
since E ∈ R+, λ, A,B,C ∈ C+ and 0 ≺ A+B + C +D + E ≺ λ then h2 = | A+B+E

λ−(C+E)
| < 1.

Combining 2.2 and 2.3, we have

|d(y2n+1, y2n+2)| ≤ h|d(y2n, y2n−1)|,

where h = h1h2.
Continuing this process, we get

|d(y2n+1, y2n+2)| ≤ hn|d(y1, y2)|.(2.4)

By using inequality 2.1, we have

λd(y2n+3, y2n+2) = λd(Sx2n+2, Tx2n+1)

- Ad(y2n+2, y2n+1) +Bd(y2n+2, y2n+3) + Cd(y2n+1, y2n+2) +Dd(y2n+2, y2n+2)

+Ed(y2n+3, y2n+1)

= Ad(y2n+2, y2n+1) +Bd(y2n+2, y2n+3) + Cd(y2n+1, y2n+2) + Ed(y2n+3, y2n+1).

Since E ∈ R+, we get,

λd(y2n+3, y2n+2) - Ad(y2n+2, y2n+1) +Bd(y2n+2, y2n+3) + Cd(y2n+1, y2n+2)

+E(d(y2n+3, y2n+2) + d(y2n+2, y2n+1)).

and,

(λ− E −B)d(y2n+3, y2n+2) - (A+ C + E)d(y2n+2, y2n+1),

therefore,

d(y2n+3, y2n+2) ≤ |
A+ C + E

λ− E −B
|d(y2n+2, y2n+1) = h3d(y2n+2, y2n+1),(2.5)

where h3 = |A+C+E
λ−E−B |. Combining 2.4 and 2.5, we have

|d(y2n+2, y2n+3)| ≤ hnh3|d(y1, y2)|.(2.6)

From 2.4 and 2.6, we get

|d(yn, yn+1)| ≤
max{1, h3}

h
(
√
h)n|d(y1, y2)|, for n = 2, 3, · · · .
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Therefore, for any m > n, we have

|d(yn, ym)| ≤ |d(yn, yn+1)|+ |d(yn+1, yn+2)|+ |d(yn+2, yn+3)|+ · · ·+ |d(ym−1, ym)|

≤ max{1, h3}
h

[(
√
h
n

+
√
h
n+1

+
√
h
n+2

+ · · ·+
√
h
m−1

]|d(y1, y2)|

≤ [

√
h
n

h(1−
√
h)

]max{1, h3}|d(y1, y2)|

since 0 < h < 1, so that

|d(yn, ym)| ≤ [

√
h
n

h(1−
√
h)

]max{1, h3}|d(y1, y2)| → 0 as n→∞.

In view of Lemma 1.2, the sequence {yn} is Cauchy sequence in (X, d).Now suppose IX is
complete subspace of X,then the subsequence y2n = Tx2n−1 = Ix2n converges to some u in
IX. That is,

y2n = Ix2n = Tx2n−1 → u as n→∞.(2.7)

As {yn} is a Cauchy sequence which contains a convergent subsequence {y2n}, therefore the
sequence {yn} also converges implying thereby the convergence of the subsequence {y2n−1}
being a subsequence of convergent sequence {yn}. Consequently, we can fined v ∈ X such
that

Iv = u.(2.8)

We calim that Sv = u. Using inequality 2.1 and 2.8, we have

λd(Sv, y2n) = d(Sv, Tx2n−1) - Ad(Iv, Jx2n−1) +Bd(Iv, Sv) + Cd(Jx2n−1, Tx2n−1)

+Dd(Iv, Tx2n−1) + Ed(Sv, Jx2n−1)

= Ad(u, y2n−1) +Bd(u, Sv) + Cd(y2n−1, y2n)

+Dd(u, y2n) + Ed(Sv, y2n−1).

Letting n→∞ in the above inequality, using 2.7, we have

λd(Sv, u) - (B + E)d(Sv, u).

since 0 ≺ B + E ≺ λ, this implies that d(Sv, u) = 0, that is,

Sv = u.(2.9)

Now, combining 2.8 and 2.9, we have

Iv = Sv = u,

that is, u is a point of coincidence of I and S.
Since u = Sv ∈ SX ⊆ JX, there exists w ∈ X such that

u = Jw.(2.10)
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We claim that Tw = u. Using inequality 2.1, we have

λd(u, Tw) = λd(Sv, Tw) - Ad(Iv, Jw) +Bd(Iv, Sv) + Cd(Jw, Tw) +Dd(Iv, Tw) + Ed(Sv, Jw),

or,

λd(u, Tw) - Cd(u, Tw) +Dd(u, Tw),

which by using, 0 ≺ C +D ≺ λ, we have d(u, Tw) = 0, that is

u = Tw.(2.11)

Combining 2.10 and 2.11, we have

u = Jw = Tw,

that is, u is a point of coincidence of J, T.
Now, suppose that u′ is another point of coincidence of I and S, that is,

u′ = Iv′ = Sv′,

for some v′ ∈ X. Using inequality 2.1, we have

λd(u′, u) = λd(Sv′, Tw) - Ad(u′, u) +Bd(u′, u′) + Cd(u, u) +Dd(u′, u) + Ed(u′, u)

= Ad(u′, u) +Dd(u′, u) + Ed(u′, u)
)
,

which implies (by using 0 ≺ A+D + E ≺ λ) that d(u′, u) = 0, that is, u′ = u.
Now, suppose that u is another point of coincidence of J and T, that is ,

u = Jw′ = Tw′,

for some w′ ∈ X. Using inequality 2.1, we get

λd(u, u) = λd(Sv, Tw′) - Ad(u, u) +Dd(u, u) + Ed(u, u)
)
,

which implies (by using 0 ≺ A+D +E ≺ λ) that d(u, u) = 0, that is, u = u. Therefore, we
proved that u is the unique point of coincidence of {I, S} and {J, T}.
Now, we prove S, T, I and J, have a unique common fixed point.
Since {I, S} and {J, T} are weakly compatible, and u = Iv = Sv = Jw = Tw, we can write

Su = S(Iv) = I(Sv) = Iu = w1 (say)

and,

Tu = T (Jw) = J(Tw) = Ju = w2 (say).

By using inequality 2.1, we get

λd(w1, w2) = λd(Su, Tu) - Ad(Iu, Ju) +Bd(Iu, Su) + Cd(Ju, Tu) +Dd(Iu, Tu)

+Ed(Su, Ju) = Ad(w1, w2) +Dd(w1, w2) + Ed(w1, w2),

which implies(by using 0 ≺ A+D + E ≺ λ) that w1 = w2, that is,

Su = Iu = Tu = Ju,
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which by using inequality 2.1 we have

λd(Sv, Tu) - Ad(Iv, Ju) +Bd(Iv, Sv) + Cd(Ju, Tu) +Dd(Iv, Tu)

+Ed(Sv, Ju) = Ad(Sv, Tu) +Dd(Sv, Tu) + Ed(Sv, Tu),

we deduce (by using 0 ≺ A+D + E ≺ λ) that Sv = Tu, that is, u = Tu. This implies that

u = Su = Iu = Tu = Ju.

Then, u is the unique common fixed point of S, I, J and T. The proofs for the cases in which
SX, JX, or TX is complete are similar, and are omitted. �

3. APPLICATION

As an application of Theorems 2.1, we prove the following theorem for two finite families
of mappings.

Theorem 3.1. If {Ti}m1 ,{Ji}p1 and {Si}l1,{Ii}n1 are two finite pairwise commuting finite fam-
ilies of self-mapping defined on a complex valued metric space (X, d) such that the mappings
S,T ,I and J (with T = T1T2...Tm, J = J1J2...Jp, I = I1I2...In and S = S1S2...Sl) satisfy
TX ⊂ IX and SX ⊂ JX and the inequality 2.1.If one of TX, SX, IX or JX are complete
subspace of X, then the component maps of the two families {Ti}m1 ,{Ji}p1 and {Si}l1,{Ii}n1
have a unique common fixed point.

Proof. Appealing to componentwise commutativity of various pairs, one immediately con-
cludes that SI = IS and TJ = JT and hence, obviously both the pairs (S, I) and (T, J)
are weak compatible. Note that all the conditions of Theorem ?? (for mappings S, T, I
and J) are satisfied ensuring the existence of unique common fixed point u in X, i.e.
Su = Tu = Iu = Ju = u. We are required to show that u is common fixed point of all
the components maps of the families. For this consider

S(Sku) = ((S1S2...Sl)Sk)u = (S1S2...Sl−1)((SlSk)u)

= (S1...Sl−2)(Sl−1Sk(Slu)) = (S1...Sl−2)(SkSl−1(Slu)) = ...

= S1Sk(S2S3S4...Slu) = SkS1(S2S3S4...Slu) = Sk(Su) = Sku

Similarly one can show that

Tku = TkJu = JTku, Tku = TkTu = TTku

Jku = TJku = JJku, Sku = ISku = SSku

Iku = IIku = SIku, Tku = TTku = JTku,

which show that (for every k)Sku, Tku, Iku and Jku are other fixed points of S, T, I and J .
By using the uniqueness of common fixed point for S, T, I and J , we can write Sku = Tku =
Iku = Jku = u (for every k) which shows that u is a common fixed point of the family {Ti}m1 ,
{Si}l1,{Ii}

p
1 and {Ji}n1 (for every k). This completes the proof of the theorem. �
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By setting S1 = S2 = ... = Sl = G, T1 = T2 = ... = Tm = F, I1 = I2 = ... = In = Q and
J1 = J2 = ... = Jp = R in Theorem 3.1, we derive the following common fixed point theorem
involving iterates of mappings.

Corollary 3.1. If F,R and G,Q are two commuting self-mappings defined on a complex
valued metric space (X, d) satisfying FmX ⊆ QnX,GlX ⊆ RpX and

λd(Glx, Fmy) - Ad(Qnx,Rpy) +Bd(Qnx,Glx) + Cd(Rpy, Fmy) +Dd(Qnx, Fmy) + Ed(Glx,Rpy))

for all x, y ∈ X. If one of GlX,FmX,QnX or RpX is a complete subspace of X, then G,F,Q
and R have a unique common fixed point in X.

Remark 3.1. If S = T and I and J are identity mapping, λ = 1, A = B = 0 and C 6= 0,
in the particular case, when (X, d) is a metric space, we obtain Kannan fixed point theorem
(cf. [5]).

Remark 3.2. If S = T and I and J are identity mapping, A = C = 0, B ∈ C+ and B 6= 0,
in the particular case, when (X, d) is a metric space, we obtain Chatterjia theorem (cf. [6]).

Remark 3.3. If S = T and I and J are identity mapping, A,B,C ∈ R+ and λ = 1 in the
particular case, when (X, d) is a metric space, we obtain Hardy and Rogers theorem (cf. [7]).
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