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abstract: The aim of the present paper is to introduce a new class of pair of
contraction mappings, called ψ − (α, β,m)-contraction pairs, and obtain common
fixed point theorems for a pair of mappings in this class, satisfying a minimal com-
mutativity condition. Further, we use mappings of this class to analyze the existence
of solutions for a class of nonlinear integral equations on the space of continuous
functions and in some of its subspaces. Concrete examples are also provided in order
to illustrate the applicability of these results.
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1. Introduction and preliminaries

Generalizations of the Banach contraction principle have been extensively used
to study common fixed points for contractive type pair of mappings, as well as in
the existence of solutions of differential and integral equations, (see e.g., [3,4,6,7,10,
11,12,15,17,18,19,20]). In this paper, first, we establish some common fixed point
theorems for a class of contractions of rational type wherein contractive inequality
is controlled by a positive function satisfying a stability condition at 0. Then, we
use the class of mappings in consideration (see, Definition 2.1), to establish the
existence and uniqueness results for solutions of some nonlinear integral equations.
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A pair of self-mappings (S, T ) on a metric space (M,d) is said to be compatible
[8] if and only if limn→∞ d(STxn, TSxn) = 0, whenever (xn)n ⊂M is such that

lim
n→∞

Sxn = lim
n→∞

Txn = t

for some t ∈ M . A pair of self-mappings (S, T ) is said to be noncompatible
[16] if there exists at least one sequence (xn)n ⊂ M such that limn→∞ Sxn =
limn→∞ Txn = t for some t ∈M , but limn→∞ d(STxn, TSxn) is either nonzero or
non-existent. A pair of self-mappings (S, T ) is said to satisfy the property (E. A.)
[1] if there exists a sequence (xn)n ⊂M such that

lim
n→∞

Sxn = lim
n→∞

Txn = t,

for some t ∈ M , and (S, T ) is said to satisfy the common limit in the range of T
property (CLRT ) [21] if there exists a sequence (xn)n ⊂M such that

lim
n→∞

Sxn = lim
n→∞

Txn = T t,

for some t ∈ M . Notice that the CLRT property circumvents the requirement of
the condition of the closedness of the ranges of the involved mappings.

A point x ∈M is called a coincidence point (CP) of S and T if Sx = Tx. The
set of coincidence points of S and T will be denoted by C(S, T ). If x ∈ C(S, T ),
then w = Sx = Tx is called a point of coincidence (POC) of S and T .

Finally, a pair of mappings (S, T ) is said to satisfy non-trivially weakly com-
patible (WC), condition [9], if they commute at their coincidence points, whenever
the set of coincidences is nonempty.

Remark 1.1. It may be observed that non-trivial weak compatibility is a neces-
sary, hence minimal condition for the existence of common fixed points of con-
tractive type mapping pairs. Commutativity at coincidence points is equivalent to
the condition that Sx is a coincidence point of S and T whenever x is a coinci-
dence point. Therefore, non-trivially weakly compatible mappings may equivalently
be called as coincidence preserving mappings. Compatible mappings are necessar-
ily coincidence preserving since compatible mappings commute at each coincidence
points. However, the converse need not be true.

To prove our results we will use the following lemma [2].

Lemma 1.2. Let (M,d) be a metric space. Let (xn) be a sequence in M such that

lim
n→∞

d(xn, xn+1) = 0.

If (xn) is not a Cauchy sequence in M , then there exist an ε0 > 0 and sequences
of integers positive (m(k)) and (n(k)) with

m(k) > n(k) > k

such that,
d(xm(k), xn(k)) ≥ ε0, d(xm(k)−1, xn(k)) < ε0

and
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(i) limk→∞ d(xm(k)−1, xn(k)+1) = ε0,

(ii) limk→∞ d(xm(k), xn(k)) = ε0,

(iii) limk→∞ d(xm(k)−1, xn(k)) = ε0.

2. ψ − (α, β,m)-contraction pairs and their point of coincidence

As in [11], we will use functions α, β : R+ −→ [0, 1) satisfying that α(t)+β(t) <
1, for all t ∈ R+ := [0,∞), and

lim sup
s→0+

β(s) <1

lim sup
s→t+

α(s)

1− β(s)
<1, ∀t > 0. (2.1)

Now, we introduce the following class of pair of contraction mappings.

Definition 2.1. Let (M,d) be a metric space and let S, T : M −→M be mappings.
The pair (S, T ) is called a ψ − (α, β,m)-contraction pair if for all x, y ∈M

ψ (d(Sx, Sy)) ≤ α(d(Tx, T y))ψ(d(Tx, T y)) + β(d(Tx, T y))ψ(m(x, y))

where ψ : R+ −→ R+ is a continuous function satisfying that

ψ(tn) → 0 implies tn → 0, (2.2)

α, β : R+ −→ [0, 1) are functions satisfying (2.1) and

m(x, y) := max

{

d(Sy, T y)
1 + d(Sx, Tx)

1 + d(Tx, T y)
, d(Tx, T y)

}

. (2.3)

Remark 2.2. Due to the symmetry of the distance, the ψ − (α, β,m)-contraction
pair implicitly includes the following dual one

ψ (d(Sx, Sy)) ≤ α(d(Tx, T y))ψ(d(Tx, T y)) +

β(d(Tx, T y))ψ(max
{

d(Sx, Tx) 1+d(Sy,Ty)
1+d(Tx,Ty) , d(Tx, T y)

}

),

obtained by interchanging x and y.

Example 2.1. Let (M,d) be a metric space. If we consider S ≡ a, a constant map,
and T any selfmapping on M , we can check that the pair (S, T ) is a ψ− (α, β,m)-
contraction pair for all functions α, β : R+ −→ [0, 1) such that α(t) + β(t) < 1, for
all t ∈ R+ and satisfying (2.1).

Proposition 2.3. Let (M,d) be a metric space and let S, T : M −→ M be map-
pings with S(M) ⊂ T (M). If the pair (S, T ) is a ψ − (α, β,m)-contraction pair,
then for any x0 ∈M , a sequence (yn) defined by

yn = Sxn = Txn+1, n = 0, 1, . . .

satisfies:
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(1) limn→∞ d(yn, yn+1) = 0.

(2) (yn) ⊂M is a Cauchy sequence in T (M).

Proof: To prove (1), let x0 ∈M be an arbitrary point. Since S(M) ⊂ T (M), then
there exists x1 ∈ M such that Sx0 = Tx1. By continuing this process inductively
we get a sequence (xn) in M such that

yn = Sxn = Txn+1.

Now,

ψ(d(Txn+1, T xn+2)) = ψ(d(Sxn, Sxn+1)) ≤

α(d(Txn, T xn+1))ψ(d(Txn, T xn+1)) + β(d(Txn, T xn+1))ψ(m(xn+1, xn+1)) (2.4)

where

m(xn, xn+1) =max

{

d(Sxn+1, T xn+1)
1 + d(Sxn, T xn)

1 + d(Txn, T xn+1)
, d(Txn, T xn+1)

}

=max

{

d(Txn+2, T xn+1)
1 + d(Txn+1, T xn)

1 + d(Txn, T xn+1)
, d(Txn, T xn+1)

}

=max{d(Txn+1, T xn+2), d(Txn, T xn+1)}.

If m(xn, xn+1) = d(Txn+1, T xn+2), then from (2.4) we obtain

ψ(d(Txn+1, T xn+2)) ≤α(d(Txn, T xn+1))ψ(d(Txn, T xn+1))

+ β(d(Txn, T xn+1))ψ(d(Txn+1, T xn+2)).

Thus, it follows that

ψ(d(Txn+1, T xn+2)) ≤
α(d(Txn, T xn+1))

1− β(d(Txn, T xn+1))
ψ(d(Txn, T xn+1)). (2.5)

On the other hand, if m(xn, xn+1) = d(Txn, T xn+1), then from (2.4) we get

ψ(d(Txn+1, T xn+2)) ≤α(d(Txn, T xn+1))ψ(d(Txn, T xn+1))

+ β(d(Txn, T xn+1))ψ(d(Txn, T xn+1)).

In view of above inequality we get

ψ(d(Txn+1, T xn+2)) ≤ (α(d(Txn, T xn+1)) + β(d(Txn, T xn+1)))

× ψ(d(Txn, T xn+1)). (2.6)

From (2.5) and (2.6), and by using the properties of the functions α and β we
obtain

ψ(d(Txn+1, T xn+2)) < ψ(d(Txn, T xn+1)).
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Thus, (zn) = (ψ(d(Txn, T xn+1))) is a decreasing sequence of positive numbers
bounded below by zero, and so converges to a ≥ 0. Now, if a > 0 then by taking
limsup on both sides of the above inequality we have a contradiction. Thus,

lim
n→∞

zn = lim
n→∞

ψ(d(Txn, T xn+1)) = 0.

Consequently, from the stability condition at zero (2.2) we conclude that

lim
n→∞

d(yn, yn+1) = lim
n→∞

d(Sxn, Sxn+1) = lim
n→∞

d(Txn+1, T xn+2) = 0. (2.7)

To prove (2), we are going to suppose that (yn) ⊂ T (M) is not a Cauchy sequence.
Then, there exists ε0 > 0 and sequences (m(k)) and (n(k)) with m(k) ≥ n(k) > k

such that
d(ym(k), yn(k)) ≥ ε0 and d(ym(k)−1, yn(k)) < ε0.

From Lemma 1.2 and the continuity of ψ we have

ψ(ε0) = lim sup
k→∞

ψ(d(Txm(k)+1, T xn(k)+1)) = lim sup
k→∞

ψ(d(Sxm(k), Sxn(k)))

≤ lim sup
k→∞

α(d(Txm(k), T xn(k)))ψ(d(Txm(k), T xn(k)))

+ lim sup
k→∞

β(d(Txm(k), T xn(k)))ψ(m(xm(k), xn(k))), (2.8)

where

m(xm(k), xn(k)) =

max

{

d(Sxn(k), T xn(k))
1 + d(Sxm(k), T xm(k))

1 + d(Txm(k), T xn(k))
, d(Txm(k), T xn(k))

}

=

max

{

d(Txn(k), T xn(k)+1)
1 + d(Txm(k), T xm(k)+1)

1 + d(Txm(k), T xn(k))
, d(Txm(k), T xn(k))

}

. (2.9)

Letting k → ∞ in (2.9), and by (2.7) we obtain that

lim
k→∞

m(xm(k), xn(k)) = max{0, ε0} = ε0.

Therefore, (2.8) is now

ψ(ε0) ≤ lim sup
k→∞

α(d(Txm(k)−1, T xn(k)−1))ψ(ε0)

+ lim sup
k→∞

β(d(Txm(k)−1, T xn(k)−1))ψ(ε0) < ψ(ε0).

Which is a contradiction, hence (Txn) ⊂ T (M) is a Cauchy sequence. ✷

Lemma 2.4. Let S and T be two self-mappings on a metric space (M,d). Let us
assume that the pair (S, T ) is a ψ − (α, β,m)-contraction pair. If S and T have a
POC in M then it is unique.
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Proof: Let w ∈M be a POC of the pair (S, T ). Then there exits x ∈M such that
Sx = Tx = w. Suppose that for some y ∈M , Sy = Ty = v with v 6= w. Then,

ψ(d(w, v)) = ψ(d(Sx, Sy))

≤ α(d(Tx, T y))ψ(d(Tx, T y)) + β(d(Tx, T y))ψ(m(x, y)).

It follows that,

ψ(d(w, v)) ≤ α(d(w, v))ψ(d(w, v)) + β(d(w, v))ψ(m(x, y)). (2.10)

Using (2.3) we have

m(x, y) =max

{

d(Sy, T y)
1 + d(Sx, Tx)

1 + d(Tx, T y)
, d(Tx, T y)

}

=max

{

d(v, v)
1 + d(w,w)

1 + d(w, v)
, d(w, v)

}

= d(w, v).

Substituting it into (2.10) we get

ψ(d(w, v)) ≤α(d(w, v))ψ(d(w, v)) + β(d(w, v))ψ(d(w, v))

≤ (α(d(w, v) + β(d(w, v)))) ψ(d(w, v)) < ψ(d(w, v)),

which is a contradiction, therefore w = v. ✷

Theorem 2.5. Let S and T be self-mappings on a metric space (M,d) such that

(i) S(M) ⊂ T (M).

(ii) T (M) ⊂M is a complete subspace of M .

(iii) The pair (S, T ) is a ψ − (α, β,m)-contraction pair.

Then, the pair (S, T ) has a unique POC.

Proof: Let yn = Sxn = Txn+1, n = 0, 1, . . . , be a Cauchy sequence defined in
Proposition 2.3 which, as was proved, satisfies that (yn) = (Txn+1) ⊂ T (M).
Since T (M) ⊂ M is a complete subspace of M , then there exists z ∈ T (M) such
that

lim
n→∞

yn = lim
n→∞

Sxn = lim
n→∞

Txn+1 = z,

thus we can find u ∈ M such that Tu = z. Now, we are going to show that
Tu = Su. Suppose that Tu 6= Su. Then,

ψ(d(Sxn+1, Su)) ≤α(d(Txn+1, T u))ψ(d(Txn+1, T u))

+ β(d(Txn+1, T u))ψ(m(xn+1, u)), (2.11)

where

m(xn+1, u) = max

{

d(Su, Tu)
1 + d(Sxn+1, T u)

1 + d(Txn+1, T u)
, d(Txn+1, T u)

}

. (2.12)



Mappings of Rational Type and Applications to Integral Equations 137

Taking the limits n→ ∞ in (2.11) and (2.12) we obtain

ψ(d(z, Su)) ≤ lim sup
n→∞

α(d(Txn+1, T u))ψ(d(z, Tu))

+ lim sup
n→∞

β(d(Txn+1, T u))ψ(d(Su, Tu)).

From above inequality we get

ψ(d(z, Su)) ≤ lim sup
n→∞

β(d(Txn+1, T u))ψ(d(Su, Tu)) < ψ(d(Su, Tu)),

which is a contradiction. Hence, Su = Tu = z. Therefore, z is a POC of S and T .
From Lemma 2.4 we conclude that z is a unique POC. ✷

3. Common fixed points for ψ − (α, β,m)-contraction pairs

In this section we prove general common fixed point results for a pair of map-
pings belonging to the ψ − (α, β,m)-contraction class, under a minimal commuta-
tivity condition.

Theorem 3.1. Let (M,d) be a metric space and S, T :M −→ M mappings satis-
fying the hypotheses of Theorem 2.5. Moreover, let us suppose that the pair (S, T )
is non-trivially weakly compatible pair, then S and T have a unique common fixed
point.

Proof: Since the pair (S, T ) is non-trivially weakly compatible, then they commute
at their unique coincidence point. Hence, SSu = STu = TSu = TTu, using
uniqueness of the POC, we obtain that Su is a common fixed point of (S, T ).
Uniqueness of the common fixed point can be proved using the same reasoning as
above. ✷

Now, we drop the condition S(M) ⊂ T (M) from the above theorem and obtain
the following result.

Theorem 3.2. Let (M,d) be a metric space and S, T :M −→ M mappings satis-
fying the property (E.A.). Let us suppose that the pair (S, T ) is non-trivially weakly
compatible ψ − (α, β,m)-contraction pair. If T (M) ⊂ M is closed, then S and T
have a unique common fixed point.

Proof: Since the pair (S, T ) satisfies the property (E. A.), there exists a sequence
(xn) ⊂M such that

lim
n→∞

Sxn = lim
n→∞

Txn = z

for some z ∈ M . Since T (M) is closed, then z ∈ T (M) and z = Tu for some
u ∈ M . As in the proof of the Theorem 2.5, we can prove that z = Tu = Su and
that z is a unique POC of S and T . The existence of the unique common fixed
point follows as in the proof of Theorem 3.1. ✷
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Remark 3.3. Since noncompatible mappings on a metric space (M,d) satisfy the
property (E. A.) . Therefore, conclusion of Theorem 3.2 remains valid if we con-
sider S and T , noncompatible mappings.

We can replace conditions (i) and (ii) of Theorem 2.5 by a single condition and
obtain the following result. Here S(M) denotes the closure of the range of the
mapping S.

Theorem 3.4. Let S and T be self-mappings on a metric space (M,d) such that

(i) S(M) ⊂M is a complete subspace of M .

(ii) The pair (S, T ) is a ψ − (α, β,m)-contraction pair.

Then the pair (S, T ) has a unique POC. Furthermore, if the pair (S, T ) is non-
trivially weakly compatible, then S and T have a unique common fixed point.

In the next result, we drop the closedness of the range of mapping and replace
the property (E. A.) by CLRT property.

Theorem 3.5. Let (M,d) be a metric space and S, T : M −→ M satisfying the
CLRT property. Let us suppose that the pair (S, T ) is a ψ − (α, β,m)-contraction
pair. If the pair (S, T ) is non-trivially weakly compatible, then S and T have a
unique common fixed point.

Proof: Since the pair (S, T ) satisfies the CLRT property, then there exists a se-
quence (xn) ⊂M such that

lim
n→∞

Sxn = lim
n→∞

Txn = Tz, for some z ∈M.

The rest of the proof runs with similarities to the proof of the previous results. ✷

Remark 3.6. Notice that by considering particular functions, as constants, for
the functions α, β as well as by considering ψ = id (the identity mapping), or by
choosing a particular form for m(x, y) in the class of ψ − (α, β,m)-contraction
pairs, we can obtain several subclasses of mappings, including various important
classes of contraction-type of mappings, as the given by B.K. Das and S. Gupta
[4], G. Jungck [7], M.S. Khan et al [10], J.R. Morales and E.M. Rojas [12,13]
among other authors.

4. On the existence of solutions for a class of nonlinear integral
equations

In this section we will study the existence of solutions for a class of nonlinear
integral equations by using the existence of coincidence and common fixed points
for mappings belonging to the ψ − (α, β,m)-contraction class.
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Let M = C([0, T ],R) denote the space of all continuous functions on [0, T ],
which, as it is well-known, is a complete metric space when it is equipped with the
uniform metric d

d(u, v) = sup
t∈[0,T ]

{|u(t)− v(t)|}, u, v ∈M. (4.1)

Now, following the idea in ( [15], see also [5]) , we discuss an application of fixed
point techniques to the solution of the nonlinear integral equation:

x(t) = g1(t)−g2(t)+µ

∫ t

0

V1(t, s)h1(s, x(s)) ds+Λ

∫ T

0

V2(t, s)h2(s, x(s))ds, (4.2)

where t ∈ [0, T ], µ,Λ are real numbers, g1, g2 ∈ C([0, T ],R) and V1(t, s), V2(t, s),
h1(t, s), h2(t, s) are continuous real-valued functions in [0, T ]× R.

To attain our aim, we will use some functional associated with h-concave and
quasilinear functions [14]. Let C be a convex cone in the linear space X over R and
let L be a real number L 6= 0. A functional ψ : C −→ R is called L-superadditive
on C if

f(x+ y) ≥ L (f(x) + f(y)) , for any x, y ∈ C.

Let K be a real non-negative function, a functional ψ satisfying

ψ(tx) = K(t)ψ(x)

for any t ≥ 0 and x ∈ C, is called K-positive homogeneous. Notice that necessarily
K(1) = 1.

The existence of solutions for the nonlinear integral equation (4.2) will be ana-
lyzed by using some auxiliary operators S and T (see, (4.4)-(4.5) below) belonging
to the ψ − (α, β,m)-contraction class. The conclusion is obtained from the exis-
tence of coincidence points or common fixed points for (S, T ). We would like to
point out that our results remain valid if in equation (4.2) we replace the kernels
hi(s, x(s)) for ones of the form hi(t, x(s)).

To prove our result we will make use of the following lemma.

Lemma 4.1 ([14]). Let u, v ∈ C and ψ : C −→ R be a non-negative, L-superadditive
and K-positive homogeneous functional on C. If M ≥ m > 0 are such that u−mv

and Mv − u ∈ C, then

LK(m)ψ(v) ≤ ψ(u) ≤
1

L
K(M)ψ(v).

The existence result can be formulated as follows.

Theorem 4.2 (Existence). Suppose the following assumptions are satisfied:

(i)
∫ T

0
supt∈[0,T ] |Vi(t, s)|ds = Li <∞, i ∈ {1, 2},
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(ii) for each s ∈ [0, T ] and for all x, y ∈M , there is Mi ≥ 0 such that

|hi(s, x(s))− hi(s, y(s))| ≤Mi|x(s) − y(s)|, i ∈ {1, 2}.

Then the integral equation (4.2) has at least one solution in M , provided that

|µ|L1M1 + |Λ|M2L2 = 1. (4.3)

Proof: We define the following operators, for each x ∈M ,

Sx(t) = −g2(t) + µ

∫ t

0

V1(t, s)h1(s, x(s))ds (4.4)

and

Tx(t) = x(t) − g1(t)− Λ

∫ T

0

V2(t, s)h2(s, x(s)) ds, (4.5)

where t ∈ [0, T ], µ,Λ are real numbers, g1, g2 ∈ C([0, T ],R) and V1(t, s), V2(t, s),
h1(t, s), h2(t, s) are continuous real-valued functions in [0, T ]×R satisfying assump-
tions (i)–(ii) above.

Clearly, S and T are self-operators on M . Now, for all x, y ∈ M by using
(i)–(ii), we get

|Sx(t)− Sy(t)| ≤ |µ|

∫ t

0

|V1(t, s)||h1(s, x(s)) − h1(s, y(s))|ds

≤ |µ|

∫ t

0

sup
t∈[0,T ]

|V1(t, s)||h1(s, x(s)) − h1(s, y(s))|ds

≤ |µ|

∫ t

0

sup
t∈[0,T ]

|h1(t, s)|M1|x(s) − y(s)|ds

≤ |µ|L1‖x− y‖

∫ t

0

sup
t∈[0,T ]

|h1(t, s)|ds

≤ |µ|M1L1‖x− y‖.

This implies that

‖Sx− Sy‖ = sup
t∈[0,T ]

|Sx(t)− Sy(t)| ≤ |µ|M1L1‖x− y‖. (4.6)
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By a similar reasoning we get

∣

∣

∣

∣

∣

Λ

∫ T

0

V2(t, s)h2(s, x(s)) ds − Λ

∫ T

0

V2(t, s)h2(s, y(s)) ds

∣

∣

∣

∣

∣

≤ |Λ|

∫ T

0

|V2(t, s)||h2(s, x(s)) − h2(s, y(s))|ds

≤ |Λ|

∫ T

0

sup
t∈[0,T ]

|V2(t, s)||h2(s, x(s))− h2(s, y(s))|ds

≤ |Λ|

∫ T

0

sup
t∈[0,T ]

|V2(t, s)|M2|x(s) − y(s)|ds

≤ |Λ|M2L2‖x− y‖,

which implies

sup
t∈[0,T ]

∣

∣

∣

∣

∣

Λ

∫ T

0

V2(t, s)h2(s, x(s)) ds − Λ

∫ T

0

V2(t, s)h2(s, y(s)) ds

∣

∣

∣

∣

∣

≤ |Λ|L2M2‖x− y‖.

Consequently, we note that

‖Tx− Ty‖

≥ ‖x− y‖ − sup
t∈[0,T ]

∣

∣

∣

∣

∣

Λ

∫ T

0

V2(t, s)h2(s, x(s)) ds− Λ

∫ T

0

V2(t, s)h2(s, y(s)) ds

∣

∣

∣

∣

∣

≥ (1− |Λ|L2M2)‖x− y‖, (4.7)

since condition (4.3) implies that |Λ|L2M2 < 1, the above inequality gives

‖x− y‖ ≤
1

1− |Λ|L2M2
‖Tx− Ty‖. (4.8)

Finally, by (4.6), (4.8) and condition (4.3), we get

‖Sx− Sy‖ ≤ ‖Tx− Ty‖.

Moreover, there exists 0 ≤ m < 1 depending of x and y such that

m‖Tx− Ty‖ ≤ ‖Sx− Sy‖ ≤ ‖Tx− Ty‖. (4.9)

Now, let ψ be a non-negative, continuous, 2-superadditive and K-positive homoge-
neous functional on the cone R+ satisfying (2.2). For u = ‖Sx−Sy‖, v = ‖Tx−Ty‖
and the inequality (4.9), the Lemma 4.1 allows us to conclude that,

ψ(‖Sx− Sy‖) ≤
1

2
ψ(‖Tx− Ty‖).
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Let α, β : R+ −→ [0, 1) satisfying (2.1) with 1
2 ≤ α(t) for any t ∈ R+. Hence, we

obtain

ψ(‖Sx− Sy‖) ≤
1

2
ψ(‖Tx− Ty‖)

≤α(‖Tx− Ty‖)ψ(‖Tx− Ty‖) + β(‖Tx− Ty‖)ψ(m(x, y)).

Therefore, (S, T ) is a ψ − (α, β,m)-contraction pair.
Since S is a continuous map and M is complete, S(M) is a complete subspace

of M , therefore from Theorem 3.4, the pair (S, T ) has a unique POC (say y0); i.e.,
y0 = Sx∗(t) = Tx∗(t). Thus,

−g2(t) + µ

∫ t

0

V1(t, s)h1(s, x∗(s))ds = x∗(t)− g1(t)− Λ

∫ T

0

V2(t, s)h2(s, x∗(s))ds

or equivalently,

x∗(t) = g1(t)− g2(t) + µ

∫ t

0

V1(t, s)h1(s, x∗(s))ds+ Λ

∫ T

0

V2(t, s)h2(s, x∗(s))ds.

Therefore, x∗ ∈M is a solution of the nonlinear integral equation (4.2). ✷

Remark 4.3. In the light of above theorem, we note that if the auxiliary pair (S, T )
associated to equation (4.2) and defined by formulae (4.4)-(4.5) has a unique POC,
then all CP related with the POC is a solution of the equation.

Under the notion of non-trivial weak compatibility of the pair (S, T ) given
in (4.4)-(4.5), the next result shows that there exists a (unique) solution of the
equation (4.2) satisfying a certain integral equation.

Proposition 4.4. Under the hypotheses of Theorem 4.2, if the pair of mappings
(S, T ) defined in (4.4)-(4.5) is non-trivially weakly compatible, then there is a
unique solution φ of the equation (4.2) satisfying the integral equation

g1(t) = −Λ

∫ T

0

V2(t, s)h2(s, φ(s))ds.

Proof: Since the pair (S, T ) is non-trivially weakly compatible, from Theorem
3.1 there is a unique solution φ satisfying that Sφ(t) = Tφ(t) = φ(t), moreover
STφ(t) = TSφ(t), where

STφ(t) =− g2(t) + µ

∫ t

0

V1(t, s)h1(s, φ(s))ds

TSφ(t) =− g2(t) + µ

∫ t

0

V1(t, s)h1(s, φ(s))ds − g1(t)− Λ

∫ T

0

V2(t, s)h2(s, φ(s))ds.
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From here we obtain,

−g2(t) + µ

∫ t

0

V1(t, s)h1(s, φ(s))ds =− g2(t) + µ

∫ t

0

V1(t, s)h1(s, φ(s))ds − g1(t)

− Λ

∫ T

0

V2(t, s)h2(s, φ(s))ds

g1(t) =− Λ

∫ T

0

V2(t, s)h2(s, φ(s))ds.

This completes the proof. ✷

Remark 4.5. In view of the proof of Proposition 4.3, one can observe that the

only solution which satisfies the equation g1(t) = −Λ
∫ T

0
V2(t, s)h2(s, φ(s))ds, is a

unique common fixed point of the pair (S, T ) defined in (4.4)-(4.5).

4.1. The equation (4.2) on compact subspaces of (M,d)

In that follows by (K, d) we denote a compact subspace ofM endowed with the
induced uniform metric d defined in (4.1).

In order to establish the existence result in this case, we will use the operator
S given in (4.4) and the next auxiliary mapping:

Rx(t) = κx(t)− g1(t)− Λ

∫ T

0

V2(t, s)h2(s, x(s))ds, 0 ≤ κ < 1. (4.10)

Theorem 4.6. Under assumptions (i)-(ii) of Theorem 4.2, if S,R defined in (4.4)
and (4.10) are non-trivially weakly compatible self-mappings of (K, d), then the
equation

x(t) = g1(t)−g2(t)+µ

∫ t

0

V1(t, s)h1(s, x(s)) ds+Λ

∫ T

0

V2(t, s)h2(s, x(s))ds, x ∈ K.

has a unique solution φ ∈ K satisfying

g1(t) = −Λ

∫ T

0

V2(t, s)h2(s, φ(s))ds,

provided that

|µ|L1M1 + |Λ|M2L2 = κ, (0 ≤ κ < 1), holds. (4.11)

Proof: We claim that (S,R) has the property (E. A.) if it is non-trivially weakly
compatible. In fact, let φn → φ a sequence of functions on K converging to φ,
where the function φ is a unique point of coincidence of the weakly compatible pair
(S,R). From the continuity of the function hi(t, s) we have

lim
n→∞

Sφn(t) =− g2(t) + µ

∫ t

0

V1(t, s)h1(s, lim
n→∞

φn(s))ds = Sφ(t),

lim
n→∞

Rφn(t) =κφn(t)− g1(t)− Λ

∫ T

0

V2(t, s)h2(s, lim
n→∞

φn(t))ds = Rφ(t).
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Then, we conclude that (S, T ) has the property (E. A.).
On the other hand, it is easy to check that the operator R is continuous on

(K, d). Since K is a compact and Hausdorff space, the Closed Map Lemma implies
that R(K) is closed. Thus, from Theorem 3.2, R and S have a unique common
fixed point φ ∈ K. The existence of a unique solution satisfying the above relation
is obtained from the proof of Theorem 4.2, replacing the mapping T by R. The
representation for the solution follows from the proof of Proposition 4.4, upon
replacing T by R. ✷

4.2. The equation (4.2) on non-complete metric space

The existence Theorem 4.2 was proved by applying Theorem 3.4, since S(M) is
a complete subspace. However, if equation (4.2) is posed in a non-complete metric
subspace (X, d) of (M,d), we are not able to apply such theorem. By imposing an
extra condition we obtain the following existence result for this case.

Theorem 4.7. (Existence: non-complete metric space). Suppose the following
assumptions are satisfied:

(i)
∫ T

0
supt∈[0,T ] |Vi(t, s)|ds = Li <∞, i ∈ {1, 2},

(ii) for each s ∈ [0, T ] and for all x, y ∈M , there is Mi ≥ 0 such that

|hi(s, x(s))− hi(s, y(s))| ≤Mi|x(s) − y(s)|, i ∈ {1, 2},

(iii) Λ
∫ T

0 V2(t, s)h2
(

s, µ
∫ s

0 V1(s, κ)k1(κ, x(κ))dκ+ g1(s)− g2(s)
)

ds = 0.

Then, the integral equation (4.2) has a unique solution, φ ∈ X, satisfying

g1(t) = −Λ

∫ T

0

V2(t, s)h2(s, φ(s))ds

provided that
|µ|L1M1 + |Λ|M2L2 = 1.

Proof: From the proof of Theorem 4.2, it is sufficient to show that the pair (S, T )
defined in (4.4)-(4.5) has a POC in X. To do so we will apply Theorem 2.5, thus
we prove that S(M) ⊆ T (M).

In fact, adopting the same reasoning as in [15], by assumption (iii), for x(t) ∈ X

we have

T (Sx(t) + g1(t))

= Sx(t) + g1(t)− g1(t)− Λ

∫ T

0

V2(t, s)h2(s, Sx(s) + g1(s))ds

= Sx(t)− Λ

∫ T

0

V2(t, s)h2

(

s, µ

∫ s

0

V1(s, κ)h1(κ, x(κ))dκ+ g1(s)− g2(s)

)

ds

= Sx(t).
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Thus, from Theorem 2.5 S and T have a unique POC, so all coincidence point
related with the POC is a solution of the integral equation (4.2) in X. As the proof
of Proposition 4.4, the formula for the solution is a consequence of the non-trivially
weakly compatibility and the existence of a unique common fixed point. ✷

5. Examples

In this section we are going to consider some nonlinear integral equations on
C([0, 1],R) defined in (4.2). The existence of solutions will be established as an
application of the previous results.

Example 5.1. Let us consider the following the nonlinear integral equation:

x(t) =g1(t)− g2(t) +
1

2

∫ t

0

2t
s

2
x(s)ds +

1

2

∫ 1

0

4t3s
−x(s)

4
ds.

=g1(t)− g2(t) +
t

2

∫ t

0

sx(s)ds −
1

2

∫ 1

0

t3sx(s)ds, t ∈ [0, 1]. (5.1)

Taking µ = Λ = 1
2 and the kernel C([0, 1]×R,R)-functions hi(s, x(s)) and Vi(s, x(s)),

i ∈ {1, 2} given by

h1(s, x(s)) =
s

2
x(s), h2(s, x(s)) = −

x(s)

4

and

V1(t, s) = 2t, V2(t, s) = 4t3s.

Notice that the functions hi(s, x(s)), i ∈ {1, 2} satisfy

|hi(s, x(s)) − hi(s, y(s))| ≤
1

2
|x(s) − y(s)|, for all x, y ∈ C([0, 1],R), i ∈ {1, 2}

and the functions Vi(s, x(s)), i ∈ {1, 2} satisfy

∫ 1

0

sup
t∈[0,1]

|Vi(t, s)|ds = 2.

Thus, Theorem 4.2 guarantees that this equation has at least one solution, and from
the proof of the mentioned theorem, the solution is the CP of the mappings S and
T defined by

Sx(t) =− g2(t) +
1

2

∫ t

0

tsx(s)ds,

Tx(t) =x(t) − g1(t) +
1

2

∫ 1

0

t3sx(s)ds.
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Now, let x⋆ be a coincidence point of (S, T ), and we assume that the following
system is satisfied

{

x⋆(t) = g1(t)− g2(t)
1
2

∫ 1

0
t3sx⋆(s)ds = 1

2

∫ t

0
tsx⋆(s)ds

for all t ∈ [0, 1]. (5.2)

Since t = 0 obviously holds, we assume t 6= 0. Notice that the second equality of
the system is equivalent to

t3
∫ 1

0

sx⋆(s)ds = t

∫ t

0

sx⋆(s)ds

t2
∫ 1

0

sx⋆(s)ds =

∫ t

0

sx⋆(s)ds.

Differentiating with respect to t, equality above is equivalent to

2t

∫ 1

0

sx⋆(s)ds = tx⋆(t)

2

∫ 1

0

sx⋆(s)ds = x⋆(t).

That means, the constant functions are the only coincidence point of (T, S) satis-
fying (5.2), provided g1(t)− g2(t) is also constant. Let x⋆(t) ≡ ς ∈ R, we obtain

Sς =− g2(t) +
1

2

∫ t

0

tsςds = −g2(t) +
1

4
t3ς,

T ς =ς − g1(t) +
1

2

∫ 1

0

t3sςds = ς − g1(t) +
1

4
t3ς.

Therefore, equation (5.1) for g1(t)− g2(t) ≡ ς ∈ R has a solution which is nothing
but the constant function x⋆(t) ≡ ς.

On the other hand, notice that the pair (S, T ) is not weakly compatible. In fact,

ST ς =− g2(t) +
1

2

∫ t

0

ts(−g2(s) +
1

4
ςs3)ds

=− g2(t) +
ς

32
t4 −

t

2

∫ t

0

sg2(s)ds

and

TSς =− g2(t)− g1(t) +
1

4
t3ς −

t3

2

∫ 1

0

g2(s)sds+
t3

8
ς

∫ 1

0

s4ds

=ς +
11

40
t3ς −

t3

2

∫ 1

0

g2(s)sds.

Therefore, the solution x(t)⋆ ≡ ς does not satisfy the integral equation given in
Proposition 4.4.
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Example 5.2. Now, we will consider the following integral equation

x(t) =
(cos(1)− cos(e))e−t

e− 1
−

e4t − et

6(e2 − e)
+ et +

1

e− 1

∫ 1

0

es−t sin(x(s))ds

+
1

e2 − e

∫ t

0

et+ses
x(s)

2
ds, t ∈ [0, 1]. (5.3)

Equation (5.3) is of the form (4.2), for

h1(t, x(t)) = et
x(t)

2
, V1(t, s) = et+s, h2(t, x(t)) = sin(x(t)), V2(t, s) = es−t,

g1(t) =
(cos(1)− cos(e))e−t

e− 1
, g2(t) =

e4t − et

6(e2 − e)
− et

and Λ = − 1
e−1 , µ = 1

e2−e
. Notice that L1 = e2 − e, L2 = e − 1, M1 = 1

2 and
M2 = 1. Also note that |Λ|M1L1 + |µ|L2M2 = 1. Let the mappings (S, T ) given in
this case by

Sx(t) =et −
e4t − et

6(e2 − e)
+

1

e2 − e

∫ t

0

es+tes
x(s)

2
ds

Tx(t) =x(t) −
(cos(1)− cos(e))e−t

e− 1
+

1

e− 1

∫ 1

0

es−t sin(x(s))ds.

We are going to find the coincidence points of (S, T ). A point x⋆ ∈ M is a CP of
(S, T ) if

et
[

1−
e3t − 1

6(e2 − e)
+

1

e2 − e

∫ t

0

e2s
x⋆(s)

2
ds

]

= e−t

[

x(t)et −
cos(1)− cos(e)

e − 1
+

1

e− 1

∫ 1

0

es sin(x⋆(s))ds

]

,

equivalently,

e2t
[

1−
e3t − 1

6(e2 − e)
+

1

e2 − e

∫ t

0

e2s
x⋆(s)

2
ds

]

= x(t)et −
cos(1)− cos(e)

e− 1
+

1

e− 1

∫ 1

0

es sin(x⋆(s))ds. (5.4)

Since the term

−
cos(1)− cos(e)

e− 1
+

1

e− 1

∫ 1

0

es sin(x⋆(s))ds

is constant and the left side of equality (5.4) depends of t, necessarily we have that

1

e− 1

∫ 1

0

es sin(x⋆(s))ds =
cos(1)− cos(e)

e− 1
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whose solution is x⋆(t) = et. Notice that equality (5.4) is satisfied for this function.
Therefore, x⋆(t) = et is a unique coincidence point of (T, S), moreover,

Set = Tet = et, ST et = TSet = et.

Thus, the pair (S, T ) is non-trivially weakly compatible, so from Proposition 4.4,
equation (5.3) has a solution satisfying the integral equation

g1(t) =− Λ

∫ 1

0

V2(t, s)h2(s, x(s))ds

(cos(1)− cos(e))e−t

e− 1
=

1

e− 1

∫ 1

0

es−t sin(x(s))ds,

whose solution is x(t) = et.
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Sede Bogotá, Colombia.

E-mail address: emrojass@unal.edu.co

and

R.K. Bisht,

Department of Mathematics,

National Defence Academy,

Khadakwasla, Pune, India.

E-mail address: ravindra.bisht@yahoo.com


	Introduction and preliminaries
	0=x"0120-(0=x"010B,0=x"010C,m)-contraction pairs and their point of coincidence
	Common fixed points for 0=x"0120-(0=x"010B,0=x"010C,m)-contraction pairs
	On the existence of solutions for a class of nonlinear integral equations
	The equation (4.2) on compact subspaces of (M,d)
	The equation (4.2) on non-complete metric space

	Examples

