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Oscillation Criteria for Generalized Liénard Type System

Tohid Kasbi, Vahid Roomi and Aliasghar Jodayree Akbarfam

abstract: In this work we use qualitative theory of differential equations to
study the qualitative behavior of the solutions of a generalized Liénard system.
Under quite general assumptions we present some sharp conditions under which the
solutions of the system are oscillatory. Some examples are presented to illustrate
our results.
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1. Introduction

It is well known that the Liénard system

ẋ = y − F (x), ẏ = −g(x), (1.1)

is of grate importance in various applications. Hence, asymptotic and qualitative
behavior of this system and some of its extensions have been widely studied by
many authors. Various questions on the stability, boundedness, oscillation and
periodicity of solutions of (1.1) and its generalizations have received a considerable
amount of attention in the last four decades [see 1-19]. We consider the system of
two differential equations

ẋ = h(k(y)− F (x)), ẏ = −g(x), (1.2)

which is a generalized Liénard system, where F , g , k and h are continuous func-
tions which ensure the existence of a unique solution to the initial value problem.
Moreover, the following assumptions hold.

(C1) F (x) and g(x) are continuous on R with F (0) = 0, xg(x) > 0 for x 6= 0 ,
h(u) is continuously differentiable and strictly increasing with h(0) = 0
and h(±∞) = ±∞ and k(u) is continuously differentiable and strictly
increasing with k(0) = 0 and k(±∞) = ±∞.
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Under these assumptions, the origin is the unique critical point for system (1.2).
In order to study the global asymptotic stability of the zero solution, oscillation

problem and existence of periodic solutions of system (1.2) the significant point is
to find conditions for deciding whether all trajectories intersect the vertical isocline
k(y) = F (x).

In [19], the authors proved a proposition about the existence of a unique solution
for initial value problem corresponding to system (1.1). In the following, we prove
the same result for system (1.2).

Proposition 1.1. If (C1) is satisfied, then for any initial point p(x0, y0), system
(1.2) has a unique orbit passing through p.

Proof. By Peano’s Theorem (see [13] p. 10]), (1.2) has at least one solution
(x(t), y(t)) satisfying x(0) = x0 and y(0) = y0. Along such a solution, we have

dy

dx
= − g(x)

h(k(y)− F (x))

y(x0) = y0.

(1.3)

In order to prove this proposition, we only have to prove that if p 6= O = (0, 0),
then the initial value problem (1.3) has a unique solution.
(i) Suppose p 6∈ Γ = {(x, y) ∈ R

2 : y = k−1(F (x))}, that is, y0 6= k−1(F (x0)).
Then there exists a rectangle E : |x − x0| ≤ a and |y − y0| ≤ b such that E does

not intersect Γ. Therefore, (C1) implies that ∂
∂y (

g(x)
h(k(y)−F (x)) ) is continuous on E.

Applying the Picard-Lindelöf Theorem, we know that the initial value problem
(1.3) has a unique solution on E.
(ii) Suppose p ∈ Γ, that is y0 = k−1(F (x0)), for example, x0 > 0. If the conclusion
is not true in this case, then (1.3) has two solutions y = yi(x) with yi(x0) = y0, for
i = 1, 2 and y1(x) 6≡ y2(x) for x1 ≤ x < x0. We may assume y = yi(x) ([x1, x0]) is
under the characteristic curve Γ for i = 1, 2. Thus, there is an x∗ ∈ [x1, x0) with
y1(x

∗) > y2(x
∗). Set

x̄ = Sup {x : x ∈ [x∗, x0) such that y1(s) > y2(s) for any s ∈ [x∗, x]}.

Then, y1(x) > y2(x) for x ∈ [x∗, x̄] and y1(x̄) = y2(x̄). This shows that (1.3) has
two solutions passing through the point (x̄, y1(x̄)).The first step (i) implies that
(x̄, y1(x̄)) ∈ Γ. Hence, x̄ = x0. Using (1.3), we obtain that

d(y1(x)− y2(x))

dx
=

g(x)(h(k(y1(x) − F (x)) − h(k(y2(x)− F (x)))

h(k(y1(x)− F (x))h(k(y2(x)− F (x))
. (1.4)

It follows from (C1) that h(u) is strictly increasing with uh(u) > 0 for u 6= 0.
Therefore, from yi(x) − F (x) < 0 for x ∈ [x∗, x0) and y1(x) > y2(x) and (1.4), we
can conclude that

d(y1(x)− y2(x))

dx
> 0 for x ∈ [x∗, x0).
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This implies that y1(x) − y2(x) is strictly increasing on [x∗, x0]. Thus, y1(x) −
y2(x) < y1(x0)−y2(x0) = 0, that is, y1(x) < y2(x) for x ∈ [x∗, x0), a contradiction.
This completes the proof.

Definition 1.2. System (1.2) has property (X+) in the right half-plane (resp., in
the left half-plane) if for every point (x0, y0) with k(y0) > F (x0) and x0 ≥ 0 (resp.,
k(y0) < F (x0) and x0 ≤ 0), the positive semi-orbit of (1.2) passing through (x0, y0)
crosses the vertical isocline k(y) = F (x).

Definition 1.3. System (1.2) has property (Y +) in the right half-plane (resp., in
the left half-plane) if for every point p(x0, y0) with k(y0) = F (x0) and x0 ≥ 0 (resp.,
k(y0) = F (x0) and x0 ≤ 0), the positive semi-orbit of (1.2) starting at p(x0, y0)
intersects the negative (resp., positive) y-axis.

In this paper we will find conditions for deciding whether system (1.2) has
property (X+) and (Y +) in the right and left half-planes. Our results extend the
results of Villari and Zanolin, and Hara and Sugie for this system with h(x) = x

and k(y) = y and improve the results presented by Sugie et al. and Gyllenberg
and Ping.

Gyllenberg and Yan in [8] proved the following theorem which substantially
extended and improved previous results presented by Aghajani and Moradifam [1]
which already have included the most of previous sufficient conditions for property
(X+) in the right half-plane for system (1.2) with h(x) = x and k(y) = y.

Theorem 1.4. (see [8]) Suppose that G(+∞) = +∞. Then system (1.2) with
h(x) = x and k(y) = y has property (X+) in the right half-plane if

lim sup
x→+∞

(
∫ x

b

(

αF (η)g(η)

(2G(η))
2+α

2

+
2
√
αg(η)

(2G(η))
1+α

2

)

dη +
F (x)

(2G(x))
α

2

)

= +∞ (1.5)

for some b > 0 and α > 0, where G(x) =
∫ x

0
g(η)dη.

Recently, the authors in [4] proved the following theorem which substantially
extend and improve previous results presented in [1,2].

Theorem 1.5. Assume that G(+∞) = +∞, l = h′(0) 6= 0 and h(x) − h(y) ≥
h(x− y) for every y < x < 0. Then, system (1.2) with k(y) = y has property (X+)
in the right half-plane if there exists a(t) with a′(t) > 0 for t ≥ α > 0 and a(β) ≥ 0
for some β ≥ α, such that

lim sup
x→+∞

(
∫ x

b

(h(F (η))a′(
√

2G(η))g(η)

a2(
√

2G(η))
√

2G(η)
+

2
√
l

√

a′(
√

2G(η))g(η)

a3�2(
√

2G(η)) 4
√

2G(η)

)

dη

+
h(F (x))

a(
√

2G(x))

)

= +∞
(1.6)

for some b > 0, where G(x) =
∫ x

0
g(η)dη.
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However, Theorem 1.5 and previous results [1-3] are inapplicable to the system
(1.2) with

F (x) = − ln(|x|+1)sgnx, k(y) = γy+ λ tanh y, h(x) = 2 sinhx, and g(x) = x,

(1.7)
for deciding whether all orbits of (1.7) cross the vertical isocline k(y) = F (x) or
not (see Example 2.2).

In the next section we will extend and improve Theorems 1.4, 1.5 and the
previous results presented in [1-4] and we will derive some new sufficient conditions
for property (X+), which can be applied to system (1.7).

2. Sufficient conditions for property (X+)

Note: Hereafter we assume that the condition (C1) holds.

Let G(x) =
∫ x

0
g(η)dη. First, we introduce a system which is equivalent to

(1.2). Define function φ(x) by φ(x) =
√

2G(x)sgn(x), and map Φ : R2 → R2 by

Φ(x, y) = (φ(x), y) ≡ (u, v). Changing variables u =
√

2G(x)sgn(x), v = y, dτ =
g(x)sgn(x)√

2G(x)
dt and denoting τ by t again, we can transform system (1.2) into the

following system

u̇ = h(k(v)− F ∗(u))

v̇ = −u,
(2.1)

where F ∗ is a continuous function defined by F ∗(u) = F (G−1(12u
2sgn(u))), and

G−1(w) is the inverse function to G(x)sgn(x).

In [10] the authors proved that systems (1.2) and (2.1) with h(x) = x are
equivalent. Consequently, we have only to determine whether system (2.1), instead
of (1.2), has property (X+) or not.

Consider the following two conditions on function h.

(A1) For every y < x < 0, assume that h satisfies the following condition.

h(x)− h(y) ≥ h(x− y). (2.2)

(A2) For every 0 < x < y, assume that h satisfies the following condition.

h(x)− h(y) ≤ h(x− y). (2.3)

Remark 2.1. Suppose that h(x) is an odd function. Then (A1) and (A2) are
equivalent.

Theorem 2.2. Suppose that (A1) holds and h′(x) and k′(x) are increasing for
x < 0. If there exists a(t) with a′(t) > 0 for t ≥ α > 0 and a(β) ≥ 0 for some
β ≥ α, such that
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lim sup
u→+∞

(
∫ u

b

h(F ∗(s))a′(s) + 2
√

a′(s)
√

sa(s)h′(F ∗(s))k′(k−1(F ∗(s)))

a2(s)
ds

+
h(F ∗(u))

a(u)

)

= +∞
(2.4)

for some b > 0. Then, system (2.1) has property (X+) in the right half-plane.

Proof. We prove the theorem by contradiction. Suppose that there exists a
solution (u(t), v(t)) of (2.1) whose graph remains in the region Λ = {(u, v) : u ≥
0 and k(v) > F ∗(u)} for all future time. Let (u0, v0) = (u(0), v(0)) ∈ Λ. We claim
that

lim
t→+∞

u(t) = +∞. (2.5)

If (2.5) is not true, then limt→+∞ u(t) = û < +∞. Let P̂ = (û, F ∗(û)) ∈
{(u, F ∗(u)) : u ≥ 0} and ¯

OP̂ be the characteristic curve arc from O to P̂ . Then the
positive semi-orbit of (2.1) starting from P̂ is contained in the bounded domain sur-
rounded by v−axis, v = v0, u = û and arc from O to P̂ . Thus limt→+∞(u(t), v(t))
must exists and from Poincare-Bendixson Theorem we conclude that it must be an
equilibrium of (2.1). But from (C1), the origin is the unique equilibrium of (2.1).
This implies that û = 0. Since system (2.1) has no critical points in this region,
we have

u(t) → +∞ as t → +∞.

So, we may assume that u0 is sufficiently large. We also assume v0 < 0. Because

v(t) ≤ v0 − u0t → −∞ as t → +∞.

Thus, it turns out that u(t) ≥ u0 > 0 and v(t) ≤ v0 < 0. for t ≥ 0. Now let

w(t) =

∫ a(u(t))

γ

h(F ∗(a−1(s)))

s2
ds+

h(k(v(t)))

a(u(t))
,

for some γ ≥ β. Then

ẇ(t) =
u̇(t)a′(u(t))h(F ∗(u(t)))

a2(u(t))

+
v̇(t)k′(v(t))h′(k(v(t))a(u(t)) − u̇(t)a′(u(t))h(k(v(t))

a2(u(t))

=
−u(t)k′(v(t)h′(k(v(t))a(u(t)) − u̇(t)a′(u(t))(h(k(v(t)) − h(F ∗(u(t))))

a2(u(t))
.

Since F ∗(u(t)) < k(v(t)) < 0 for t > 0 and by the assumptions (A1) and h′(x) and
k′(x) are increasing for x < 0, we get h(k(v(t))−h(F ∗(u(t))) ≥ h(k(v(t))−F ∗(u(t)))
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and h′(k(v(t)) ≥ h′(F ∗(u)) and k′(v(t) ≥ k′(k−1(F ∗(u(t)))). Then

ẇ(t)

≤ −u(t)k′(k−1(F ∗(u(t))h′(F ∗(u(t)))a(u(t)) − u̇(t)a′(u(t))h(k(v(t)) − F ∗(u(t)))

a2(u(t))

=
−u(t)k′(k−1(F ∗(u(t))h′(F ∗(u(t)))a(u(t)) − u̇2(t)a′(u(t))

a2(u(t))

≤ −2u̇(t)
√

a′(u(t))
√

u(t)k′(k−1(F ∗(u(t)))h′(F ∗(u(t)))

a
3
2 (u(t))

.

Thus
d

dt

(

w(t) +

∫ u(t)

γ

2
√

a′(s)
√

sk′(k−1(F ∗(s)))h′(F ∗(s))

a
3
2 (s)

ds

)

≤ 0.

Therefore,
∫ a(u(t))

γ

h(F ∗(a−1(s)))

s2
ds+

h(k(v(t)))

a(u(t))

+

∫ u(t)

γ

2
√

a′(s)
√

sk′(k−1(F ∗(s)))h′(F ∗(s))

a
3
2 (s)

ds

≤
∫ a(u0)

γ

h(F ∗(a−1(s)))

s2
ds+

h(k(v0))

a(u0)

+

∫ u0

γ

2
√

a′(s)
√

sk′(k−1(F ∗(s)))h′(F ∗(s))

a
3
2 (s)

ds < +∞.

for t ≥ 0.
Since, k(v(t)) > F ∗(u(t)) and u(t) → +∞ as t → +∞,

∫ a(u(t))

γ

h(F ∗(a−1(s)))

s2
ds+

h(F ∗(u))

a(u(t))

+

∫ u(t)

γ

2
√

k′(s)
√

sk′(k−1(F ∗(s)))h′(F ∗(s))

a
3
2 (s)

ds < +∞.

Now by taking z = a−1(s) and b = max{γ, a−1(γ)} we have

lim sup
u→+∞

(
∫ u

b

h(F ∗(s))a′(s) + 2
√

a′(s)
√

sa(s)h′(F ∗(s))k′(k−1(F ∗(s)))

a2(s)
ds

+
h(F ∗(u))

a(u)

)

< +∞.

This contradiction completes the proof.
Notice that if h satisfies (A1), then by dividing two sides of (2.2) by x− y and

then y → x we conclude that h′(x) ≥ h′(0) ≥ 0 for x < 0. Now by the same way as
in the proof of the theorem above we can prove the following theorem which does
not need the condition h′(x) be increasing.
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Theorem 2.3. Suppose that (A1) holds and l = h′(0) 6= 0 and k′(x) is increasing
for x < 0. If there exists a(t) with a′(t) > 0 for t ≥ α > 0 and a(β) ≥ 0 for some
β ≥ α, such that

lim sup
u→+∞

(
∫ u

b

h(F ∗(s))a′(s) + 2
√

a′(s)
√

sa(s)k′(k−1(F ∗(s)))l

a2(s)
ds+

h(F ∗(u))

a(u)

)

=+∞
(2.6)

for some b > 0, then system (2.1) has property (X+) in the right half-plane.

The following two corollaries are obtained by straightforward application of the
theorem above.

Corollary 2.4. Assume (A1) holds and l = h′(0) 6= 0 and k′(x) is increasing for
x < 0. If there exists a(t) with a′(t) > 0 for t ≥ α > 0 and a(β) ≥ 0 for some
β ≥ α, such that

lim inf
u→+∞

h(F ∗(u))

a(u)
> −∞ and

lim sup
u→+∞

∫ u

b

h(F ∗(s))a′(s) + 2
√

a′(s)
√

sa(s)k′(k−1(F ∗(s)))l

a2(s)
ds = +∞,

for some b > 0. Then, system (2.1) has property (X+) in the right half-plane.

Corollary 2.5. Suppose that (A1) holds and l = h′(0) 6= 0 and k′(x) is increasing
for x < 0. If there exists a(t) with a′(t) > 0 for t ≥ α > 0, a(β) ≥ 0 for some
β ≥ α and

∫∞

b
1

a(s)ds = +∞ for some b > 0, such that

lim inf
u→+∞

h(F ∗(u))

a(u)
> −∞ and

lim inf
u→+∞

h(F ∗(u))
√

a′(u)
√

a(u)
√

uk′(k−1F ∗(u))
> −2

√
l,

then, system (2.1) has property (X+) in the right half-plane.

Recall the definition of function F ∗(u) under the assumption G(+∞) = +∞ as
follows:

F ∗(u) = F

(

G−1

(

1

2
u2

))

for u ≥ 0.

Put x = G−1(12u
2). Then we have the following result for the system (1.2) which

is equivalent to Theorem 2.3.

Theorem 2.6. Assume that G(+∞) = +∞, l = h′(0) 6= 0 and (A1) holds and
k′(x) is increasing for x < 0. Then, system (1.2) has property (X+) in the right
half-plane if there exists a(t) with a′(t) > 0 for t ≥ α > 0 and a(β) ≥ 0 for some
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β ≥ α, such that

lim sup
x→+∞

(
∫ x

b

(

h(F (η))a′(
√

2G(η))g(η)

a2(
√

2G(η))
√

2G(η)
+

2
√
l

√

a′(
√

2G(η))
√

k′(k−1(F (η)))g(η)

a3�2(
√

2G(η)) 4
√

2G(η)

)

dη +
h(F (x))

a(
√

2G(x))

)

= +∞,

(2.7)

for some b > 0.

Corollaries 2.4 and 2.5 can be formulated for system (1.2) in the same manner.
The following theorem is useful in applications.

Theorem 2.7. Suppose that h1(x) ≤ h2(x) for x > 0. If system (1.2) with h2(x)
as h(x) has property (X+) in the right half-plane, then it has property (X+) in the
right half-plane with h1(x) as h(x) too.

Proof. We prove the theorem by contradiction. Suppose that system (1.2)
with h1(x) fails to have property (X+) in the right half-plane. Then there exists a
positive semi-orbit O+

1 (p) of (1.2) starting at a point p(x0, y0) with h1(y0) > F (x0),
which does not meet the characteristic curve h1(y) = F (x). Suppose that O+

2 (p)
is a positive semi-orbit of (1.2) with h2(x) as h(x). From h1(x) ≤ h2(x) we have:

(
ẏ

ẋ
)h1

=
−g(x)

h1(k(y)− F (x))
≤ −g(x)

h2(k(y)− F (x))
= (

ẏ

ẋ
)h2

≤ 0.

The last relation shows that the slope of O+
1 (p) is less than the slope of O+

2 (p).
Therefore, system (1.2) corresponding to h2(x) fails to have property (X+) in the
right half-plane. This contradiction completes the proof.

The same results can be proven for functions k, F and g.
Now, we show that how our results are related to those listed in the introduction.

Also, we give some examples which the previous results are inapplicable.

Example 2.1. Consider system (1.2) with

F (x) = 6x− 5x sin2 x, k(y) = y, h(x) = g(x) = x,

Note that for every b > 0,

lim inf
x→+∞

1

F (x)

∫ x

b

g(η)

F (η)
dη ≤ lim

n→+∞

∫ 2nπ

b
1

6−5 sin2 η
dη

12nπ

≤ lim
n→+∞

1

12nπ

∫ 2nπ

b

dη =
1

6
<

1

4
.

Thus, all of the results presented by Filippov [5], Hara and Yoneyama [ [10],
Lemma 4.2], Villari and Zanolin [ [17], Theorem 2.6] and Hara and Sugie [ [11],
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Theorem 5.1] are inapplicable to this system. From Corollary 2.4 with a(t) = t we
have

lim inf
u→+∞

h(F ∗(u))

a(u)
= lim inf

u→+∞
(6− 5 sin2 u) = 1 > −∞, and

lim sup
u→+∞

∫ u

b

h(F ∗(s))a′(s) + 2
√

a′(s)
√

sa(s)k′(k−1(F ∗(s))l

a2(s)
ds

= lim sup
u→+∞

∫ u

b

8− 5 sin2 s

s
ds = +∞ for some b > 0,

Hence system (1.2) has property (X+) in the right half-plane.

Example 2.2. Consider system (1.2) with

F (x) = − ln(|x|+ 1)sgn(x), k(y) = λ tanh y + γy with γ >
1

8
and λ > 0,

h(x) = ex − e−x, and g(x) = x,

Obviously, h′(0) = 2 > 0 and if y < x < 0 we have

ey ≤ 1 ⇒ −ey−x ≥ −e−x ⇒ ey−x − 1

ex−y − 1
≥ e−x − 1

ex − 1
.

Since (ex − 1).(ex−y − 1) < 0 we have

(ey−x − 1)(ex − 1) ≤ (e−x − 1)(ex−y − 1) ⇒
ey − ex − e−y + e−x ≤ ey−x − ex−y ⇒
h(x)− h(y) ≥ h(x− y).

Thus, h satisfies (A1). Now, by choosing a(t) = t, we have

lim sup
u→+∞

(
∫ u

b

h(F ∗(s)) + 2s
√

2k′(k−1(F ∗(s))

s2
ds+

h(F ∗(u))

u

)

≥ lim sup
u→+∞

(
∫ u

b

( 1
s+1 − (s+ 1) + 2

√
2γs

s2
ds+

1
u+1 − (u+ 1)

u

)

= lim sup
u→+∞

(
∫ u

b

(

2
√
2γ − 1

s+ 1
+

2
√
2γ − 2

s(s+ 1)

)

ds

)

− 1 = +∞

Therefore, by Theorem 2.3 this system has property (X+) in the right half-plane.

Example 2.3. Consider system (1.2) with

F (x) = −x sin2(x) ln(| x | +1), k(y) = y and h(x) = g(x) = x.

Notice that for any α > 0 and b > 0 we have

lim sup
x→+∞

(
∫ x

b

(

αF (η)g(η)

(2G(η))
2+α

2

+
2
√
αg(η)

(2G(η))
1+α

2

)

dη +
F (x)

(2G(x))
α

2

)

= lim sup
x→+∞

(
∫ x

b

(−α sin2(η) ln(η + 1) + 2
√
α

ηα

)

dη +
− sin2(x) ln(x+ 1)

xα−1

)

6= +∞.
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Therefore, (1.5) does not hold. So, Theorem 1.4 and all previous results are inap-
plicable to this system. However, let a(t) = t

t+1 , then

lim sup
u→+∞

(
∫ u

b

h(F ∗(s))a′(s) + 2
√

a′(s)
√

sa(s)k′(k−1(F ∗(s)))h′(F ∗(s))

a2(s)
ds

+
h(F ∗(u))

a(u)

)

= lim sup
u→+∞

(
∫ u

b

2
√
s+ 1− sin2(s) ln(s+ 1)

s
ds− (1 + u) sin2(u) ln(u+ 1)

)

≥ lim sup
u=kπ→+∞

(
∫ u

b

2
√
s+ 1− sin2(s) ln(s+ 1)

s
ds

)

= +∞ for some b > 0.

Therefore, by Theorem 2.2 system (1.2) has property (X+) in the right half-plane.

The following analogous results are obtained with respect to property (X+) in
the left half-plane.

Theorem 2.8. Suppose that (A2) holds and h′(x) is increasing and k′(x) is de-
creasing for x > 0. If there exists a(t) with a′(t) > 0 for t ≤ α < 0 and a(β) ≤ 0
for some β ≤ α, such that

lim inf
u→−∞

(
∫ b

u

h(F ∗(s))a′(s)− 2
√

a′(s)
√

sa(s)h′(F ∗(s))k′(k−1(F ∗(s))

a2(s)
ds

− h(F ∗(u))

a(u)

)

= −∞,

(2.8)

for some b < 0, then system (2.1) has property (X+) in the left half-plane.

Notice that if h satisfies (A2), then by dividing two sides of (2.3) by x − y

and then y → x, we conclude that h′(x) ≥ h′(0) ≥ 0 for x > 0. Similar to the
Theorem 2.3 we have the following theorem which does not need the condition
h′(x) be increasing.

Theorem 2.9. Suppose that (A2) holds and l = h′(0) 6= 0 and k′(x) is decreasing
for x > 0. If there exists a(t) with a′(t) > 0 for t ≤ α < 0 and a(β) ≤ 0 for some
β ≤ α, such that

lim inf
u→−∞

(
∫ b

u

h(F ∗(s))a′(s)− 2
√

a′(s)
√

sa(s)k′(k−1(F ∗(s))l

a2(s)
ds−h(F ∗(u))

a(u)

)

= −∞
(2.9)

for some b < 0, then system (2.1) has property (X+) in the left half-plane.

Corollary 2.10. Assume (A2) holds and l = h′(0) 6= 0 and k′(x) is decreasing
for x > 0. If there exists a(t) with a′(t) > 0 for t ≤ α < 0 and a(β) ≤ 0 for some
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β ≤ α, such that

lim inf
u→−∞

h(F ∗(u))

a(u)
> −∞ and

lim inf
u→−∞

∫ b

u

h(F ∗(s))a′(s)− 2
√

a′(s)
√

sa(s)k′(k−1(F ∗(s)))l

a2(s)
ds = −∞,

for some b < 0. Then system (2.1) has property (X+) in the left half-plane.

Corollary 2.11. Suppose that (A2) holds and l = h′(0) 6= 0 and k′(x) is decreasing
for x > 0. If there exists a(t) with a′(t) > 0 for t ≤ α < 0, a(β) ≤ 0 for some

β ≤ α and
∫ b

−∞
1

a(s)ds = −∞ for some b < 0, such that

lim inf
u→−∞

h(F ∗(u))

a(u)
> −∞ and

lim sup
u→−∞

h(F ∗(u))
√

a′(u)
√

a(u)
√

uk′(k−1(F ∗(u)))
< 2

√
l,

then system (2.1) has property (X+) in the left half-plane.

Now recall defining the function F ∗(u) under the assumption G(−∞) = +∞
as follows:

F ∗(u) = F

(

G−1

(

− 1

2
u2

))

for u < 0

and put x = G−1(− 1
2u

2). Then we have the following result for the system (1.2)
which is equivalent to Theorem 2.9.

Theorem 2.12. Assume that G(−∞) = +∞, l = h′(0) 6= 0 and (A2) holds and
k′(x) is decreasing for x > 0. Then, system (1.2) has property (X+) in the left
half-plane if there exists a(t) with a′(t) > 0 for t ≤ α < 0 and a(β) ≤ 0 for some
β ≤ α, such that

lim inf
x→−∞

(
∫ b

x

(

− h(F (η))a′(−
√

2G(η))g(η)

a2(−
√

2G(η))
√

2G(η)

+
2
√
l

√

a′(−
√

2G(η))
√

k′(k−1(F (η))g(η)

(−a(−
√

2G(η)))3/2 4
√

2G(η)

)

dη − h(F (x))

a(−
√

2G(x))

)

= −∞,

(2.10)

for some b < 0.

Corollaries 2.10 and 2.11 can be formulated for system (1.2) in the same maner.

Example 2.4. Consider system (1.2) with functions given in Example 2.2. In
Example 2.2 it is proved that, function h satisfies (A1). Since h is an odd function,
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by Remark 2.1, h satisfies (A2). Now, by choosing a(t) = t, we have

lim inf
u→−∞

h(F (u))

a(u)
=

(1− u)− 1
1−u

u
= −1 > −∞ and

lim inf
u→−∞

∫ b

u

h(F (s))a′(s)− 2
√

a′(s)
√

sa(s)k′(k−1(F (s))l

a2(s)
ds

≤ lim inf
u→−∞

∫ b

u

(1− s)− 1
1−s − 2 | s | √2γ

s2
ds

≤ lim inf
u→−∞

(
∫ b

u

(

1− 2
√
2γ

1− s
+

2
√
2γ − 2

s(1− s)

)

ds

)

= −∞ for some b < 0,

Therefore, by Corollary 2.10 this system has property (X+) in the left half-plane.

3. Sufficient conditions for property (Y +)

In this section we present some sufficient conditions for system (1.2) to have
property (Y +) in the right and left half-planes. Many authors have also investigated
property (Y +) and several interesting sufficient conditions have been given. Hara
and Yoneyama in [10] proved that if there exists an a > 0 such that F (x) > 0 for
0 < x ≤ a and some α > 1

4 such that

1

F (x)

∫ x

0

g(η)

F (η)
d(η) ≥ α,

then system (1.2) with k(y) = y and h(u) = u has property (Y +) (see also [5,9,16]).
In this section we will extend the above result and will obtain some sufficient

conditions which can be applied when none of the sufficient conditions presented in
the pervious literatures are applicable. First, we have a lemma about asymptotic
behavior of solution of (1.2) and then we will give some results about the property
of (Y +) in the right half-plane for system (1.2).

Lemma 3.1. For each point P (p, k−1(F (p)) with p > 0, the positive semi-orbit of
(1.2) starting at P crosses the negative y-axis if the following condition hold.
(A3) There exists a δ > 0 such that F (x) < 0 for 0 < x < δ or F (x) has an
infinite number of positive zeroes clustering at x = 0.

Proof. We prove the theorem by contradiction. Suppose that there exists a
point P (p, k−1(F (p)) with p > 0, such that the positive semi-orbit of (1.2) starting
at P does not cross the negative y-axis. Let (x(t), y(t)) be a solution of (1.2)
defined on interval [t0,+∞) with (x(t0), y(t0)) = P . Then we have

0 < x(t) < y(t0) for t ≥ t0.

and

y(t) → +∞ as t → −∞.
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Hence, it follows from the first equation of (1.2) that

ẋ(t) → −∞ as t → −∞.

And therefore, there exists t1 > t0 such that

ẋ(t) ≤ −1 for t ≥ t1.

Integrating leads to

−x(t1) < x(t) − x(t1) ≤ t1 − t → −∞ as t → −∞.

This is a contradiction and the proof is complete.

Hereafter we assume that there exists a δ > 0 such that F (x) > 0 for 0 < x < δ.

Theorem 3.2. Suppose that (A2) holds and h′(x) is increasing for x > 0 and
k′(x) is decreasing for x > 0. If there exists a(t) with a′(t) > 0 for t ≥ α > 0 and
a(β) > 0 for β ≥ α such that

lim inf
x→0+

(
∫ b

x

(

h(F (s))g(s)a′(s)

(2G(a(s))3�2
−

√

a′(s)g(s)
√

h′(F (s))k′(k−1(F (s))

G(a(s))

)

ds

)

= −∞
(3.1)

for some b > 0, then system (1.2) has property (Y +) in the right half-plane.

Proof. We prove the theorem by contradiction. Suppose that there exists
a point P = (p, k−1(F (p)) with p > 0 such that the semi-orbit of (1.2) passing
through P = (p, k−1(F (p)) does not intersect the positive y-axis. Now suppose
that there exists a solution (x(t), y(t)) of (1.2) which starts at point (x0, y0) with
k(y0) = F (x0) and whose graph remains in the region {(x, y) : x > 0 and k(y) <
F (x)} for all future time. Taking the vector field of (1.2) into account, we see that
if the positive semi-orbit of this system crosses the x-axis, then it also meets the
negative y-axis. Since ẋ < 0 in this region, we have

lim
t→∞

x(t) = lim
t→∞

y(t) = 0.

So, we may assume that u0 is sufficiently small and

0 < x(t) ≤ u0 for t > 0.

Now let

χ(t) =

∫ a(x(t))

γ

h(F (a−1(s)))g(a−1(s))

(2G(s)3�2)
ds+

h(k(y(t)))
√

2G(a(x(t)))
,
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then

χ̇(t) = ẋ(t)a′(x(t))
h(F (x(t)))g(x(t))

(2G(a(x(t))3�2)

+
ẏ(t)k′(y(t))h′(k(y(t)))

√

G(a(x(t))

2G(a(x(t)))

−
ẋ(t)a′(x(t))g(x(t)) 1√

2G(a(x(t))
h(k(y(t)))

2G(a(x(t)))

= −2g(x(t))k′(y(t))h′(k(y(t))G(a(x(t))

(2G(a(x(t))3�2)

+
a′(x(t))g(x(t))

(

h(k(y(t))− h(F (x(t))
)

ẋ(t)

(2G(a(x(t))3�2)

≤
√

a′(x(t)g(x(t))
√

k′(k−1(F (x(t)))h′(F (x(t)))
√

2G(a(x(t)))
ẋ(t).

Thus,

d

dt

(

χ(t)−
∫ x(t)

γ

√

a′(s)g(s)
√

k′(k−1(F (s)))h′(F (s))
√

2G(a(s))
ds

)

≤ 0.

Therefore,

∫ a(x(t))

γ

h(F (a−1(s)))g(a−1(s))

(2G(s)3�2)
ds+

h(k(y(t)))
√

2G(a(x(t)))

−
∫ x(t)

γ

√

a′(s)g(s)
√

k′(k−1(F (s)))h′(F (s))
√

2G(a(s))
ds

≤
∫ a(u0)

γ

h(F (a−1(s)))g(a−1(s))

(2G(s)3�2)
ds+

h(k(v0))
√

2G(a(u0))

−
∫ u0

γ

√

a′(s)g(s)
√

k′(k−1(F (s)))h′(F (s))
√

2G(a(s))
ds < +∞

for t > 0. Now by taking z = a−1(s) and b = max{γ, a−1(γ)} we have

lim sup
x→0+

(
∫ x(t)

b

(

h(F (s))g(s)a′(s)

(2G(a(s))3�2
−

√

a′(s)g(s)
√

h′(F (s))k′(k−1(F (s))

G(a(s))

)

ds

+
h(k(y(t))

√

(G(a(x(t))

)

< +∞.

(3.2)

Since, h(k(y(t)))√
(G(a(x(t)))

> 0 and x(t) → 0 as t → +∞, (3.2) contradicts (3.1). This

contradiction completes the proof.
Now by the same way as in the proof of Theorem 3.2 we can prove the following

theorem which does not need the condition h′(x) be increasing.
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Theorem 3.3. Suppose that (A2) holds and l = h′(0) 6= 0 and k′(x) is decreasing
for x > 0. If there exists a(t) with a′(t) > 0 for t ≥ α > 0 and a(β) > 0 for β ≥ α

such that

lim inf
x→0+

(
∫ b

x

(

h(F (s))g(s)a′(s)

(2G(a(s))3�2
−

√

a′(s)g(s)
√

lk′(k−1(F (s)))

G(a(s))

)

ds

)

= −∞(3.3)

for some b > 0, then system (1.2) has property (Y +) in the right half-plane.

By choosing a(t) = t we have following corollary.

Corollary 3.4. Suppose that (A2) holds and h′(x) is increasing for x > 0 suf-
ficiently small and k′(x) is decreasing for x > 0 sufficiently small. Then system
(1.2) has property (Y +) in the right half-plane if there exists an α < 0 such that

h(F (x))

2
√

2G(x)
−
√

h′(F (x))k′(k−1(F (x)) < α,

for x > 0 sufficiently small.

Similarly, turning our attention to the left half-plane, we have the following
results about property of (Y +) in the left half-plane.

Lemma 3.5. For each point P (−p, k−1(F (−p))) with p > 0, the positive semi-
orbit of (1.2) starting at P crosses the positive y-axis if the following condition
holds.
(A4) There exists a δ > 0 such that F (x) > 0 for −δ < x < 0 or F (x) has an
infinite number of negative zeroes clustering at x = 0.

Example 3.1. Consider system (1.2) with functions given in Example 2.2. Since
F (x) < 0 for x > 0 and F (x) > 0 for x < 0, by Lemmas 3.1 and 3.5 this system
has property (Y +) in the both right and left half-planes.

Example 3.2. Consider system (1.2) with

F (x) = x, k(y) = α arctan y + βy, h(x) = x3 + x, and g(x) = x,

with α > 0, β > 0 and β >
1

4
.

By choosing a(t) = t and using Theorem 3.3 we have:

lim inf
x→0+

(
∫ b

x

(

h(F (s))g(s)a′(s)

(2G(a(s)))
3
2

−
√

a′(s)g(s)
√

lk′(k−1(F (s)))

G(a(s))

)

ds

)

≤ lim inf
x→0+

(
∫ b

x

(

(s3 + s)s

s3
− 2s

√
β

s2

)

ds

)

= lim inf
x→0+

(
∫ b

x

(

s+ (1 − 2
√

β)
1

s

)

ds

)

= −∞,

for some b > 0. Therefore, this system has property (Y +) in the right half-plane.
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Hereafter we assume that there exists a δ > 0 such that F (x) < 0 for −δ < x <

0.

Theorem 3.6. Suppose that (A1) holds and h′(x) and k′(x) are increasing for
x < 0. If there exists a(t) with a′(t) > 0 for t ≤ α < 0 and a(β) ≤ 0 for some
β ≤ α such that

lim inf
x→0−

(
∫ x

b

(

h(F (s))g(s)a′(s)

(2G(a(s))3�2
+

√

a′(s)g(s)
√

h′(F (s))k′(k−1(F (s))

G(a(s))

)

ds

)

= −∞
(3.4)

for some b < 0, then system (1.2) has property (Y +) in the left half-plane.

Theorem 3.7. Suppose that (A1) holds and l = h′(0) 6= 0 and k′(x) is increasing
for x < 0. If there exists a(t) with a′(t) > 0 for t ≤ α < 0 and a(β) < 0 for β ≤ α

such that

lim inf
x→0−

(
∫ x

b

(

h(F (s))g(s)a′(s)

(2G(a(s))3�2
+

√

a′(s)g(s)
√

lk′(k−1(F (s)))

G(a(s))

)

ds

)

= −∞(3.5)

for some b < 0, then system (1.2) has property (Y +) in the left half-plane.

By choosing a(t) = t we have following corollary.

Corollary 3.8. Suppose that (A1) holds and h′(x) and k′(x) are increasing for
x > 0 sufficiently small. Then system (1.2) has property (Y +) in the left half-plane
if there exists an α > 0 such that

h(F (x))

2
√

2G(x)
+
√

h′(F (x))k′(k−1(F (x))) < α,

for x < 0 sufficiently small.

4. An Oscillation Theorem

In this section we will present our main result and will give examples to illustrate
our results.

Theorem 4.1. Assume that G(±∞) = +∞, l = h′(0) 6= 0 and (A1), (A2) hold.
Then, all nontrivial solutions of system (1.2) are oscillatory if (2.7),(2.10),(3.3)
and (3.5) hold for some functions satisfying in the conditions of Theorem 2.6,
Theorem 2.12, Theorem 3.3 and Theorem 3.7 respectively.

Notice that the other obtained results in section 2 and section 3 can be formu-
lated for the existence of the oscillatory solutions for systems (1.2) and (2.1) in the
same manner.

Example 4.1. Consider system (1.2) with functions given in Example 2.2. By
Examples 2.2, 2.4 and 3.1 this system has property (X+) and (Y +) in the both
half-planes. Hence, all nontrivial solutions of this system are oscillatory.
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