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also be successfully applied to study Ulam–Hyers stability, generalized Ulam–Hyers
stability, Ulam–Hyers–Rassias stability, generalized Ulam–Hyers–Rassias stability,
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1. Introduction

It is well known that many dynamical systems can be described more precisely
by using fractional differential equations. Modeling of several physical phenomena
appearing in science and engineering can suitably done via fractional differential
equations. Hence the study of fractional differential equations have widespread
interest.

Several researchers form mathematics community devoted to study existence,
uniqueness and other qualitative properties for fractional delay differential equa-
tions (FDDEs) by various approaches. At many instances it is very difficult to
obtain exact solution of FDDEs and in this case we are intended to obtain the
approximate solution for such equations. The answer to the question, “ Under
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what condition for every approximate solution to the equation there exists an ex-
act solution near it and what error it gives ? ” can be explained via Ulam–Hyers
stability theory.

The study of Ulam stability and data dependence for fractional differential equa-
tions was initiated by Wang et al. [1]. An overview on the development of theory of
Ulam–Hyers–Rassias stability and the Ulam–Hyers stability for fractional differen-
tial equations can be found in [1,2] and the references given therein. Subsequently
many authors discussed various Ulam–Hyers stability problem for different kinds
of fractional integral and fractional differential equations by using different tech-
niques, for instance, Wang and Li [3] established different kinds of Eα–Ulam type
stability for fractional order ordinary differential equations, Wang and Zhang [4]
proved Ulam–Hyers–Mittag–Leffler stablity for fractional order delay differential
equation on compact interval, Wei et al. [5] established Ulam–Hyers stability and
Ulam–Hyers–Rassias stability results for fractional Volterra type integral equations
with delay by fixed point approach and Brzdek et al. [6] obtained Ulam stability
of delayed fractional differential equations through approximate solution.

In recent years, some researchers extended the concept of Ulam type stabil-
ities by using different techniques to various forms of fractional differential and
fractional integral equations with different types of fractional derivative operators,
for example, Wang and Xu [7] by applying the Laplace transform method have
investigated the Hyers–Ulam stability of fractional linear differential equation with
Riemann-Liouville fractional derivative, Eghbali and coauthers [8] proved that the
fractional order delay integral equation is Mittag–Leffler–Hyers–Ulam stable on
a compact interval with respect to the Chebyshev and Bielecki norms, Yu [9]
studied β-Ulam–Hyers stability for a class of fractional differential equations with
non–instantaneous impulses, Hyers–Ulam stability results for nonlinear fractional
systems with coupled nonlocal initial conditions have been investigated in [10],
Peng and Wang [11] discussed existence of solutions and Ulam–Hyers stability of
Cauchy problem for nonlinear ordinary differential equations involving two Caputo
fractional derivatives, Abbas in [12] dealt with existence, uniqueness and Mittag–
Leffler–Ulam stablity of fractional integrodifferential equations.

Recently, using successive approximation method, Huang et al. [13] established
the Ulam–Hyers stability of integer order delay differential equations, Gachpazan et
al. [14] proved the Ulam–Hyers stability for the nonlinear Volterra integral equation
of second kind.

In this paper we consider the fractional delay differential equations (FDDEs) of
the form:

cDαx(t) = f(t, xt), t ∈ [0, b], m− 1 < α ≤ m ∈ N (1.1)

x(t) = φ(t), t ∈ [−r, 0], (1.2)

where f : [0, b] × C([−r, 0],Rn) → R
n is a continuous function and cDα denotes

the Caputo fractional derivative of order α with lower terminal at 0.
Taking motivation from [3,13,14], we prove existence and uniqueness of solutions

to (1.1)-(1.2) using modified version of contraction principle. Further, by method
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of successive approximation we obtain Ulam–Hyers stability, Ulam–Hyers–Rassias
stability and Eα–Ulam–Hyers stability results for delay differential equation (1.1).
Finally, we provide examples to illustrate our obtained results.

Recently, Kucche et al. [15,16] established existence and various qualitative
properties of solutions to nonlinear implicit fractional differential equations.

We organize the present work as follows. In Section 2, preliminaries and no-
tations are presented. Section 3 deals with existence and uniqueness of solutions
for (1.1)-(1.2). In section 4, we establish Ulam–Hyers, generalized Ulam–Hyers
and Ulam–Hyers–Rassias stability results for delay differential equation (1.1). Sec-
tion 5 deals with Eα–Ulam–Hyers stability of (1.1). In Section 6, we provide few
illustrative examples.

2. Preliminaries

In this section we present some basic definitions, notations and preliminaries.
Basics of delay differential equations are considered from the monographs by Hale
et al. [17] and Naito et al. [18].

Let Rn is an n- dimensional linear vector space over the reals with the norm

‖x‖ =

(
n∑

k=1

x2k

) 1
2

, x = (x1, x2, ..., xn) ∈ R
n.

Let 0 ≤ r < ∞ be given real number, C = C([−r, 0],Rn) is the Banach space of
continuous functions from [−r, 0] into R

n with the norm

‖ψ‖C = sup
−r≤θ≤0

‖ψ(θ)‖.

Let us denote by B = Cm([−r, b],Rn), b > 0 the Banach space of functions from
[−r, b] into R

n having mth order continuous derivatives, equipped with the supre-
mum norm ‖ · ‖B. For any x ∈ B and any t ∈ [0, b], we denote by xt the element
of C defined by xt(θ) = x(t+ θ), θ ∈ [−r, 0].

We use following results in our analysis.

Lemma 2.1 ( [13,18]). If x ∈ C([−r, b],Rn) then xt is continuous with respect to
t ∈ [0, b].

Lemma 2.2 ( [13,18]). Let x : [−r, b) → R
n be a continuous function with x0 = φ.

If

‖x(t)‖ ≤ ‖φ(0)‖+m(t), t ∈ [0, b)

where m(t) is a nondecreasing function, then

‖xt‖C ≤ ‖φ‖C +m(t), t ∈ [0, b)

For fundamentals of fractional calculus we refer the research monographs [19,
20,21].
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Definition 2.1. Let g ∈ C[0, b] and α ≥ 0 then the Riemann-Liouville fractional
integral of order α of a function g is defined as

Iαg(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds,

provided the integral exists. Note that I0g(t) = g(t).

Definition 2.2. Let m− 1 < α ≤ m ∈ N then the Caputo fractional derivative of
order α of a function g ∈ Cm[0, b] is defined as

cDαg(t) =

{
Im−αDmg(t) = 1

Γ(m−α)

∫ t
0

g(m)(s)
(t−s)α−m+1 ds if m− 1 < α < m,

g(m)(t) if α = m.

The one parameter Mittag-Leffler function is defined as

Eγ(z) =

∞∑

k=0

zk

Γ(γk + 1)
, γ > 0.

Following lemmas play important role to obtain our main results.

Lemma 2.3 (See [22]). Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function
locally integrable on 0 ≤ t < T , ( some T ≤ ∞), and suppose u(t) is nonnegative
and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0

(t− s)β−1u(s)ds

on this interval; then

u(t) ≤ a(t) + θ

∫ t

0

E′
β(θ(t− s))a(s)ds, 0 ≤ t < T,

where θ = (bΓ(β))
1
β , Eβ(z) =

∑∞
n=0

znβ

Γ(nβ+1) , E
′
β(z) =

d

dz
Eβ(z), E

′
β(z) ≡ zβ−1

Γ(β) as

z → 0+, E′
β(z) ≡

1
β
ez as z → +∞.

Further, if a(t) ≡ a, constant, then u(t) ≤ aEβ(θt).

Lemma 2.4 (See [23]). For all µ > 0 and ν > −1,

∫ t

0

(t− s)µ−1sνds = tµ+ν
Γ(µ)Γ(ν + 1)

Γ(µ+ ν + 1)

3. Existence and Uniqueness Results

To obtain existence and uniqueness of solution to the initial value problem
(1.1)-(1.2), we use the following Lemma.
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Lemma 3.1 ( [24], Modified version of contraction principle). Let X be a Banach
Space and let D be an operator which maps the element of X into itself for which
Dr is a contraction, where r is a positive integer then D has a unique fixed point.

Definition 3.1. A function x ∈ B is said to be a solution of (1.1)-(1.2) if x
satisfies the equations cDαx(t) = f(t, xt) on [0, b] and x(t) = φ(t) on [−r, 0].

The proof of the following Lemma is close to the proof of Lemma 6.2 given in
[21].

Lemma 3.2. If f : [0, b] × C → R
n is continuous then FDDEs (1.1)-(1.2) is

equivalent to the following fractional Volterra integral equation

x(t) =





φ(t), t ∈ [−r, 0],

∑m−1
k=o

φ(k)(0)

Γ(k + 1)
tk + 1

Γ(α)

∫ t
0 (t− s)α−1f(s, xs)ds, t ∈ [0, b].

Next theorem guarantee existence and uniqueness of solution to initial value
problem (1.1)-(1.2).

Theorem 3.1. If f : [0, b] × C → R
n be a continuous function that satisfies

Lipschitz condition with respect to second variable

‖f(t, u)− f(t, v)‖| ≤ L‖u− v‖C , t ∈ [0, b]; u, v ∈ C,

then FDDEs (1.1)-(1.2) has unique solution x : [−r, b] → R
n.

Proof: Consider the operator F : B → B defined by

Fx(t) =





φ(t), t ∈ [−r, 0],

∑m−1
k=o

φ(k)(0)

Γ(k + 1)
tk + 1

Γ(α)

∫ t
0 (t− s)α−1f(s, xs)ds, t ∈ [0, b].

Note that by definition of operator F , for any x, z ∈ B we have

‖F jx(t) − F jz(t)‖ = 0, for all t ∈ [−r, 0] and j ∈ N. (3.1)

By using mathematical induction, for any x, z ∈ B and t ∈ [0, b] we prove that,

‖F jx(t)− F jz(t)‖ ≤
(Ltα)j

Γ(jα+ 1)
‖x− z‖B, ∀j ∈ N. (3.2)

By definition of operator F and using Lipschitz condition, we have for any x, z ∈ B

and t ∈ [0, b],

‖Fx(t)− Fz(t)‖ ≤
1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, xs)− f(s, zs)‖ds

≤
L

Γ(α)

∫ t

0

(t− s)α−1‖xs − zs‖Cds.
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For any t ∈ [0, b] and θ ∈ [−r, 0], we have −r ≤ t+ θ ≤ b and hence

‖xt‖C = sup {xt(θ) : θ ∈ [−r, 0]}

= sup {x(t+ θ) : θ ∈ [−r, 0]}

≤ sup {x(t+ θ) : −r ≤ t+ θ ≤ b}

≤ ‖x‖B. (3.3)

Thus

‖Fx(t)− Fz(t)‖ ≤
L

Γ(α)

(∫ t

0

(t− s)α−1ds

)
‖x− z‖B

which gives,

‖Fx(t)− Fz(t)‖ ≤
Ltα

Γ(α+ 1)
‖x− z‖B, t ∈ [0, b].

Thus the inequality (3.2) holds for j = 1. Let us suppose that the inequality (3.2)
holds for j = r ∈ N, hence

‖F rx(t) − F rz(t)‖ ≤
(Ltα)r

Γ(rα+ 1)
‖x− z‖B, t ∈ [0, b], (3.4)

we prove that (3.2) holds for j = r + 1. Let any x, z ∈ B and denote x∗ = F rx,
z∗ = F rz. Then using definition of operator F and the Lipschitz condition of f ,
for any t ∈ [0, b] we get

‖F r+1x(t)− F r+1z(t)‖ = ‖F (F rx(t))− F (F rz(t))‖

= ‖F (x∗(s)) − F (z∗(s))‖

≤
1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, x∗s)− f(s, z∗s )‖ds

≤
L

Γ(α)

∫ t

0

(t− s)α−1‖x∗s − z∗s‖Cds (3.5)

We write from (3.4),

‖x∗(t)− z∗(t)‖ = ‖F rx(t) − F rz(t)‖ ≤
(Ltα)r

Γ(rα+ 1)
‖x− z‖B.

An application of Lemma 2.2 gives,

‖x∗t − z∗t ‖C ≤
(Ltα)r

Γ(rα + 1)
‖x− z‖B.

By using above inequality in (3.5) and then applying Lemma 2.4, we get

‖F r+1x(t) − F r+1z(t)‖ ≤
L

Γ(α)

∫ t

0

(t− s)α−1 (Lsα)r

Γ(rα+ 1)
‖x− z‖Bds

=
Lr+1

Γ(α)Γ(rα + 1)

(∫ t

0

(t− s)α−1srαds

)
‖x− z‖B

=
Lr+1

Γ(α)Γ(rα + 1)
t(r+1)α Γ(α)Γ(rα + 1)

Γ((r + 1)α+ 1)
‖x− z‖B.
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Thus,

‖F r+1x(t)− F r+1z(t)‖ ≤
(Ltα)r+1

Γ((r + 1)α+ 1)
‖x− z‖B, t ∈ [0, b].

We have proved that the inequality (3.2) holds for j = r + 1. By the principle
of mathematical induction the proof of inequality (3.2) is completed. Combining
(3.1) and (3.2), we obtain

‖F jx(t)− F jz(t)‖ ≤
(Ltα)j

Γ(jα+ 1)
‖x− z‖B, t ∈ [−r, b], j ∈ N. (3.6)

This gives,

‖F jx− F jz‖B = sup
t∈[−r,b]

‖F jx(t) − F jz(t)‖ ≤
(Lbα)j

Γ(jα+ 1)
‖x− z‖B.

By definition of one parameter Mittag-Leffler function, we have

Eα(Lb
α) =

∞∑

j=0

(Lbα)j

Γ(jα+ 1)
.

Note that (Lbα)j

Γ(jα+1) is the jth term of the convergent series of nonnegative real

numbers, hence we must have

lim
j→∞

(Lbα)j

Γ(jα+ 1)
= 0.

Thus we can choose j ∈ N such that (Lbα)j

Γ(jα+1) < 1 so that F j is a contraction.

Therefore by modified version of contraction principle, F has a unique fixed point
x : [−r, b] → R

n in B, which is the unique solution of the FDDEs (1.1)-(1.2). ✷

4. Ulam-Hyers Stability of FDDE

We adopt the definitions of Ulam–Hyers stability, generalized Ulam–Hyers sta-
bility and Ulam–Hyers–Rassias stability given in [2].

Definition 4.1. We say that the equation (1.1) has Ulam–Hyers stability if there
exists a real number Kf > 0 such that for each ǫ > 0, if y : [−r, b] → R

n in B

satisfies
||cDαy(t)− f(t, yt)|| ≤ ǫ, t ∈ [0, b],

then there exists a solution x : [−r, b] → R
n of equation (1.1) in B with

||y(t)− x(t)|| ≤ Kf ǫ, t ∈ [−r, b].

Moreover if x(k)(0) = y(k)(0), k = 0, 1, 2, ...,m− 1, equation (1.1) is Ulam–Hyers
stable with initial conditions.
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Definition 4.2. We say that the equation (1.1) has generalized Ulam–Hyers sta-
bility if there exists ψf ∈ C([0, b],R+), ψf (0) = 0 such that for each ǫ > 0, if
y : [−r, b] → R

n in B satisfies

||cDαy(t)− f(t, yt)|| ≤ ǫ, t ∈ [0, b],

then there exists a solution x : [−r, b] → R
nof equation (1.1) in B with

||y(t)− x(t)|| ≤ ψf (ǫ), t ∈ [−r, b].

Definition 4.3. We say that the equation (1.1) has Ulam–Hyers–Rassias stability
with respect to ψ ∈ C([0, b],R+) if there exists Kf,ψ > 0 such that for each ǫ > 0,
if y : [−r, b] → R

n in B satisfies

||cDαy(t)− f(t, yt)|| ≤ ǫ ψ(t), t ∈ [0, b],

then there exists a solution x : [−r, b] → R
nof equation (1.1) in B with

||y(t)− x(t)|| ≤ Kf,ψ ǫ ψ(t), t ∈ [−r, b].

Definition 4.4. We say that the equation (1.1) has generalized Ulam–Hyers–
Rassias stability with respect to ψ ∈ C([0, b],R+) if there exists Kf,ψ > 0 such
that, if y : [−r, b] → R

n in B satisfies

||cDαy(t)− f(t, yt)|| ≤ ψ(t), t ∈ [0, b],

then there exists a solution x : [−r, b] → R
nof equation (1.1) in B with

||y(t)− x(t)|| ≤ Kf,ψ ψ(t), t ∈ [−r, b].

Remark 4.1. Note that, Definition 4.1 ⇒ Definition 4.2, Definition 4.3 ⇒ Defi-
nition 4.4 and Definition 4.3 ⇒ Definition 4.1.

In the following theorem by method of successive approximation we prove that
FDDE (1.1) is Ulam–Hyers stable.

Theorem 4.1. Let f : [0, b] × C → R
n be a continuous function that satisfies

Lipschitz condition

‖f(t, u)− f(t, v)‖| ≤ L‖u− v‖C , u, v ∈ C, t ∈ [0, b].

For every ǫ > 0, if y : [−r, b] → R
n in B satisfies,

||cDαy(t)− f(t, yt)|| ≤ ǫ, t ∈ [0, b],

then there exists unique solution x : [−r, b] → R
n of equation (1.1) in B with

x(k)(0) = y(k)(0), k = 0, 1, 2, ...,m− 1, such that

‖y(t)− x(t)‖ ≤

(
Eα(Lb

α)− 1

L

)
ǫ, t ∈ [−r, b].
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Proof: For every ǫ > 0, let y : [−r, b] → R
n in B satisfies,

‖cDαy(t)− f(t, yt)‖ ≤ ǫ, t ∈ [0, b]. (4.1)

Then there exists a function σy ∈ B (depending on y) such that,

‖σy(t)‖ ≤ ǫ, t ∈ [0, b],

and
cDαy(t) = f(t, yt) + σy(t), t ∈ [0, b]. (4.2)

If y(t) satisfies (4.2) then in view of Lemma 3.2 it satisfies equivalent fractional
integral equation

y(t) =

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1σy(s)ds, t ∈ [0, b]. (4.3)

Define ,
x0(t) = y(t), t ∈ [−r, b],

and consider the sequence
{
xj
}
⊆ B defined by,

xj(t) =





y(t), t ∈ [−r, 0],

∑m−1
k=o

y(k)(0)

Γ(k + 1)
tk + 1

Γ(α)

∫ t
0
(t− s)α−1f(s, xj−1

s )ds, t ∈ [0, b].

Using mathematical induction firstly we prove that,

‖xj(t)− xj−1(t)‖ ≤
ǫ

L

(Ltα)j

Γ(jα+ 1)
, t ∈ [0, b], j ∈ N. (4.4)

By definition of successive approximations given above and (4.3) we have,

‖x1(t)− x0(t)‖ =

∥∥∥∥∥

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, x0s)ds− y(t)

∥∥∥∥∥

=

∥∥∥∥∥

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds− y(t)

∥∥∥∥∥

=

∥∥∥∥
∫ t

0

(t− s)α−1σy(s)ds

∥∥∥∥

≤
1

Γ(α)

∫ t

0

(t− s)α−1‖σy(s)‖ds

≤
ǫtα

Γ(α+ 1)
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Therefore,

‖x1(t)− x0(t)‖ ≤
ǫ

L

Ltα

Γ(α+ 1)
, t ∈ [0, b],

which proves the inequality (4.4) for j = 1. Let us suppose that the inequality
(4.4) hold for j = r ∈ N, we prove it also hold for j = r + 1 ∈ N.

By using definition of successive approximations and Lipschitz condition of f ,
for any t ∈ [0, b] we obtain,

‖xr+1(t)− xr(t)‖ ≤
1

Γ(α)

∫ t

0

(t− s)α−1
∥∥f(s, xrs)− f(s, xr−1

s )
∥∥ ds

≤
L

Γ(α)

∫ t

0

(t− s)α−1
∥∥xrs − xr−1

s

∥∥
C
ds. (4.5)

Since (4.4) hold for j = r, we have

‖xr(t)− xr−1(t)‖ ≤
ǫ

L

(Ltα)r

Γ(rα + 1)
, t ∈ [0, b].

Therefore by using Lemma 2.2 we get,

‖xrt − xr−1
t ‖C ≤

ǫ

L

(Ltα)r

Γ(rα+ 1)
, t ∈ [0, b]

Thus the inequality (4.5) reduces to

‖xr+1(t)− xr(t)‖ ≤
L

Γ(α)

∫ t

0

(t− s)α−1 ǫ

L

(Lsα)r

Γ(rα + 1)
ds

=
ǫLr

Γ(α)Γ(rα + 1)

∫ t

0

(t− s)α−1srαds

Using Lemma 2.4, in the above inequality, we get,

‖xr+1(t)− xr(t)‖ ≤
ǫ

Γ(α)

Lr

Γ(rα + 1)
t(r+1)α Γ(α)Γ(rα + 1)

Γ((r + 1)α+ 1)
.

Therefore,

‖xr+1(t)− xr(t)‖ ≤
ǫ

L

(Ltα)r+1

Γ((r + 1)α+ 1)
, t ∈ [0, b].

which is the inequality (4.4) for j = r+1. Using principle of mathematical induction
the proof of the inequality (4.4) is completed.

Now using the estimation (4.4) for any t ∈ [0, b],

∞∑

j=1

‖xj(t)− xj−1(t)‖ ≤
ǫ

L

∞∑

j=1

(Ltα)j

Γ(jα+ 1)
=

ǫ

L
(Eα(Lt

α)− 1). (4.6)
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Hence the series,

x0(t) +

∞∑

j=1

[xj(t)− xj−1(t)]

converges absolutely and uniformly on [0, b] with respect to the norm ‖ · ‖. Let us
suppose

x̃(t) = x0(t) +

∞∑

j=1

[xj(t)− xj−1(t)], t ∈ [0, b]. (4.7)

Then,

xr(t) = x0(t) +
r∑

j=1

[xj(t)− xj−1(t)] (4.8)

is the rth partial sum of the series (4.7), therefore we can write,

lim
r→∞

‖xr(t)− x̃(t)‖ = 0, t ∈ [0, b].

Further by definition of successive approximations we have,

xr(t) = y(t), t ∈ [−r, 0]

Therefore,

lim
r→∞

xr(t) = y(t), t ∈ [−r, 0].

Define,

x(t) =

{
y(t), t ∈ [−r, 0],

x̃(t), t ∈ [0, b].

Clearly x ∈ B. We prove that this limit function is the solution of fractional
integral equation

x(t) =





y(t), t ∈ [−r, 0],

∑m−1
k=o

y(k)(0)

Γ(k + 1)
tk + 1

Γ(α)

∫ t
0 (t− s)α−1f(s, xs)ds, if t ∈ [0, b].

(4.9)
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Using definition of successive approximations for any t ∈ [0, b], we have
∥∥∥∥∥x(t)−

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk −

1

Γ(α)

∫ t

0

(t− s)α−1f(s, xs)ds

∥∥∥∥∥

=

∥∥∥∥x̃(t)−
(
xr(t)−

1

Γ(α)

∫ t

0

(t− s)α−1f(s, xr−1
s )ds

)

−
1

Γ(α)

∫ t

0

(t− s)α−1f(s, xs)ds

∥∥∥∥

≤ ‖x̃(t)− xr(t)‖+
1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, xr−1
s )− f(s, xs)‖ds

≤ ‖x̃(t)− xr(t)‖+
L

Γ(α)

∫ t

0

(t− s)α−1‖xr−1
s − xs‖Cds (4.10)

Now for any t ∈ [0, b], we write from equations (4.7) and (4.8),

‖x̃(t)− xr(t)‖ =

∥∥∥∥∥∥

∞∑

j=r+1

[xj(t)− xj−1(t)]

∥∥∥∥∥∥
≤

∞∑

j=r+1

∥∥xj(t)− xj−1(t)
∥∥

Using inequality (4.4), we obtain

‖x(t)− xr(t)‖ = ‖x̃(t)− xr(t)‖ ≤

∞∑

j=r+1

ǫ

L

(Ltα)j

Γ(jα+ 1)
, t ∈ [0, b], (4.11)

Applying Lemma 2.2, we get

‖xt − xrt‖ ≤

∞∑

j=r+1

ǫ

L

(Ltα)j

Γ(jα+ 1)
(4.12)

Using (4.11) and (4.12) in (4.10), we obtain
∥∥∥∥∥x(t) −

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk −

1

Γ(α)

∫ t

0

(t− s)α−1f(s, xs)ds

∥∥∥∥∥

≤

∞∑

j=r+1

ǫ

L

(Ltα)j

Γ(jα+ 1)
+

L

Γ(α)

∫ t

0

(t− s)α−1
∞∑

j=r+1

ǫ

L

(Lsα)j

Γ(jα+ 1)
ds

=

∞∑

j=r+1

ǫ

L

(Ltα)j

Γ(jα+ 1)
+

L

Γ(α)

ǫ

L

∞∑

j=r+1

Lj

Γ(jα+ 1)

∫ t

0

(t− s)α−1sαjds

=

∞∑

j=r+1

ǫ

L

(Ltα)j

Γ(jα+ 1)
+

ǫ

Γ(α)

∞∑

j=r+1

Lj

Γ(jα+ 1)
t(α+1)j Γ(α)Γ(jα+ 1)

Γ(j(α+ 1) + 1)

=
ǫ

L

∞∑

j=r+1

(Ltα)j

Γ(jα+ 1)
+
ǫ

L

∞∑

j=r+1

(Ltα+1))j

Γ(j(α + 1) + 1)
.
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Thus
∥∥∥∥∥x(t) −

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk −

1

Γ(α)

∫ t

0

(t− s)α−1f(s, xs)ds

∥∥∥∥∥

≤
ǫ

L

∞∑

j=r+1

(Ltα)j

Γ(jα+ 1)
+
ǫ

L

∞∑

j=r+1

(Ltα+1))j

Γ(j(α + 1) + 1)
, t ∈ [0, b]. (4.13)

Since both the series on the right hand side of above inequality are convergent, by
taking limit as j → ∞, we obtain

∥∥∥∥∥x(t) −
m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk −

1

Γ(α)

∫ t

0

(t− s)α−1f(s, xs)ds

∥∥∥∥∥ ≤ 0, t ∈ [0, b].

This implies

x(t) =

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, xs)ds, t ∈ [0, b]. (4.14)

Therefore x(t) is solution of (1.1) with initial condition x(k)(0) = y(k)(0), k =
0, 1, ...,m− 1. Further, from equations (4.6), (4.7) and (4.9), we have

‖y(t)− x(t)‖ ≤

(
Eα(Lb

α)− 1

L

)
ǫ, t ∈ [−r, b].

This proves that the equation (1.1) is Ulam–Hyers stable. Moreover as x(k)(0) =
y(k)(0), k = 0, 1, ...,m − 1, the equation (1.1) has Ulam–Hyers stability with the
initial conditions.

It remains to prove the uniqueness of x(t). Assume x̄(t) is another solution of
(1.1) with the initial conditions x̄(k)(0) = y(k)(0), k = 0, 1, · · · ,m− 1. Then

x̄(t) =





y(t) if t ∈ [−r, 0],

∑m−1
k=o

y(k)(0)

Γ(k + 1)
tk + 1

Γ(α)

∫ t
0
(t− s)α−1f(s, x̄s)ds if t ∈ [0, b].

Note that
‖x(t)− x̄(t)‖ = 0, t ∈ [−r, 0].

By using Lipschitz condition we find that

‖x(t)− x̄(t)‖ ≤
L

Γ(α)

∫ t

0

(t− s)α−1‖xs − x̄s‖C ds, for all t ∈ [0, b].

Using Lemma 2.2,

‖xt − x̄t‖C ≤
L

Γ(α)

∫ t

0

(t− s)α−1‖xs − x̄s‖C ds, for all t ∈ [0, b].
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An application of Lemma 2.3 to above inequality with u(t) = ‖xt − x̄t‖C and
a(t) = 0, we obtain

‖xt − x̄t‖C = 0 for all t ∈ [0, b].

Hence ‖x(t)− x̄(t)‖ = 0 for all t ∈ [−r, b]. This completes the proof. ✷

Remark 4.2. If we set ψf (ǫ) =

(
Eα(Lb

α)− 1

L

)
ǫ then ψf (0) = 0. Hence FDDE

(1.1) is generalized Ulam–Hyers stable with initial conditions.

Note 1. An example is given in last section to illustrate without initial condition
x(t) is neither unique nor necessarily the best approximate solution to FDDE (1.1).

Next we obtain Ulam–Hyers–Rassias stability result for the equation (1.1) by
method of successive approximation.

Theorem 4.2. Let f : [0, b] × C → R
n be a continuous function that satisfies

Lipschitz condition

‖f(t, u)− f(t, v)‖| ≤ L‖u− v‖C , u, v ∈ C, t ∈ [0, b].

For every ǫ > 0, if y : [−r, b] → R
n in B satisfies,

||cDαy(t)− f(t, yt)|| ≤ ǫψ(t), t ∈ [0, b],

where ψ ∈ C([0, b],R+) is a nondecreasing function such that,

∣∣∣∣
1

Γ(α)

∫ t

0

(t− s)α−1ψ(s)ds

∣∣∣∣ ≤ λψ(t), t ∈ [0, b],

and λ > 0 is constant satisfying 0 < λL < 1, then there exists unique solution
x : [−r, b] → R

n of equation (1.1) in B with x(k)(0) = y(k)(0), k = 0, 1, 2, ...,m− 1,
that satisfies,

‖y(t)− x(t)‖ ≤
λ

(1− λL)
ǫ ψ(t), t ∈ [−r, b].

Proof: For every ǫ > 0, let y : [−r, b] → R
n in B satisfies

‖cDαy(t)− f(t, yt)‖ ≤ ψ(t), t ∈ [0, b], (4.15)

then there exists a function σy ∈ B (depending on y) such that ,

‖σy(t)‖ ≤ ψ(t), t ∈ [0, b]

and

cDαy(t) = f(t, yt) + σy(t), t ∈ [0, b].
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Then y satisfies the fractional integral equation

y(t) =
∑

m−1
k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1σy(s)ds, t ∈ [0, b]. (4.16)

Define the sequence of approximation
{
xj
}
⊆ B as in proof of Theorem 4.1 starting

with zeroth order approximation x0(t) = y(t), t ∈ [−r, 0]. By using mathematical
induction we prove that,

‖xj(t)− xj−1(t)‖ ≤
ǫ

L
(λL)jψ(t), t ∈ [0, b], j ∈ N. (4.17)

Using definition of successive approximations and (4.16) we have,

‖x1(t)− x0(t)‖ =

∥∥∥∥∥

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, x0(s))ds− y(t)

∥∥∥∥∥

=

∥∥∥∥∥

m−1∑

k=0

y(k)(0)

Γ(k + 1)
tk +

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds− y(t)

∥∥∥∥∥

= ‖

∫ t

0

(t− s)α−1σy(s)ds‖

≤
1

Γ(α)

∫ t

0

(t− s)α−1‖σy(s)‖ds

≤
ǫ

Γ(α)

∫ t

0

(t− s)α−1ψ(s)ds

≤ λ ǫ ψ(t)

Therefore,

‖x1(t)− x0(t)‖ ≤
ǫ

L
(λL)ψ(t), t ∈ [0, b],

which is the inequality (4.17) for j = 1.
Let us suppose that the inequality (4.17) hold for j = r ∈ N. Then by definition

of successive approximations and Lipschitz condition of f , for any t ∈ [0, b] we
obtain,

‖xr+1(t)− xr(t)‖ ≤
1

Γ(α)

∫ t

0

(t− s)α−1
∥∥f(s, xrs)− f(s, xr−1

s )
∥∥ ds

≤
L

Γ(α)

∫ t

0

(t− s)α−1
∥∥xrs − xr−1

s

∥∥
C
ds. (4.18)

Since (4.17) hold for j = r, we have

‖xr(t)− xr−1(t)‖ ≤
ǫ

L
(λL)rψ(t), t ∈ [0, b].
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By an application of Lemma 2.2 to the above inequality gives

‖xrt − xr−1
t ‖C ≤

ǫ

L
(λL)rψ(t), t ∈ [0, b]

Thus the inequality (4.18) reduces to

‖xr+1(t)− xr(t)‖ ≤
L

Γ(α)

∫ t

0

(t− s)α−1 ǫ

L
(λL)rψ(t)ds

= ǫ(λL)r
1

Γ(α)

∫ t

0

(t− s)α−1ψ(s)ds

≤ ǫ(λL)rλψ(t)

=
ǫ

L
(λL)r+1 ψ(t)

Therefore,

‖xr+1(t)− xr(t)‖ ≤
ǫ

L

(Ltα)r+1

Γ((r + 1)α+ 1)
, t ∈ [0, b].

which is the inequality (4.17) for j = r + 1. The proof of the inequality (4.17) is
completed by principle of mathematical induction.

Using the inequality (4.17) and the fact 0 < λL < 1, for any t ∈ [0, b],

∞∑

j=1

‖xj(t)− xj−1(t)‖ ≤
ǫ

L

∞∑

j=1

(λL)jψ(t) =
ǫ

L

λL

1− λL
ψ(t). (4.19)

Thus
∞∑

j=1

‖xj(t)− xj−1(t)‖ ≤
λ

(1− λL)
ǫ ψ(t), t ∈ [0, b]. (4.20)

Hence the series

x0(t) +

∞∑

j=1

[xj(t)− xj−1(t)]

converges absolutely and uniformly on [0, b], say to x̂(t) in the norm ‖ · ‖. Define,

x(t) =

{
y(t), t ∈ [−r, 0],

x̂(t), t ∈ [0, b].
(4.21)

Proceeding as in the proof of Theorem 4.1 one can show that x(t) is a solution of
(1.1) with x(k)(0) = y(k)(0), k = 0, 1, 2, ...,m− 1, that satisfies

‖y(t)− x(t)‖ ≤
λ

(1− λL)
ǫ ψ(t), t ∈ [−r, b].

Therefore equation (1.1) is Ulam–Hyers–Rassias stable. ✷
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5. Eα–Ulam–Hyers stability

We consider the following definitions of Eα–Ulam–Hyers stabilities introduced
by Wang and Li [3].

Definition 5.1. We say that equation (1.1) has Eα–Ulam–Hyers stability if there
exists a real number K > 0 such that for each ǫ > 0, if y : [−r, b] → R

n in B

satisfies
||cDαy(t)− f(t, yt)|| ≤ ǫ, t ∈ [0, b],

then there exists a solution x : [−r, b] → R
n of equation (1.1) in B with

||y(t)− x(t)|| ≤ KEα(γf t
α)ǫ, γf ≥ 0, t ∈ [−r, b].

Definition 5.2. We say that equation (1.1) has generalized Eα–Ulam–Hyers sta-
bility if there exists a nonnegative function ψ ∈ C([0, b],R+), ψ(0) = 0 such that
for each ǫ > 0, if y : [−r, b] → R

n in B satisfies

||cDαy(t)− f(t, yt)|| ≤ ǫ, t ∈ [0, b],

there exists a solution x : [−r, b] → R
n of equation (1.1) in B with

||y(t)− x(t)|| ≤ ψ(ǫ)Eα(γf t
α), γf ≥ 0, t ∈ [−r, b].

Remark 5.1. Definition 5.1 ⇒ Definition 5.2.

Theorem 5.1. Let f : [0, b]× C → R
n satisfies Lipschitz condition

‖f(t, u)− f(t, v)‖| ≤ L‖u− v‖C , u, v ∈ C, t ∈ [0, b].

For every ǫ > 0, if y : [−r, b] → R
n in B satisfies,

||cDαy(t)− f(t, yt)|| ≤ ǫ, t ∈ [0, b],

then there exists unique solution x : [−r, b] → R
n of equation (1.1) in B with

xk(0) = yk(0), k = 0, 1, 2, ...,m− 1, that satisfies

‖y(t)− x(t)‖ ≤
1

L
Eα(Lt

α)ǫ, t ∈ [−r, b]

Proof: We define the sequence of approximations as in Theorem 4.1. Noting that
x0(t) = y(t), we write from (4.4) (4.7) and (4.9)

‖y(t)− x(t)‖ ≤

∞∑

j=1

‖xj(t)− xj−1(t)‖ ≤

∞∑

j=0

ǫ

L

(Ltα)j

Γ(jα+ 1)
≤

1

L
Eα(Lt

α)ǫ, t ∈ [0, b]

(5.1)
Showing that the FDDE (1.1) is Eα–Ulam–Hyers stable with initial conditions. ✷

Remark 5.2. If we set ψ(ǫ) =
ǫ

L
in result (5.1) then ψ(0) = 0, showing that

FDDE (1.1) is generalized Eα–Ulam–Hyers stable with initial conditions.
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6. Examples

We remark that the argument “ without initial condition we cannot obtain best
and unique approximate solution ” of Huang et al. [13] about the best and unique
approximate solution for integer order delay differential equations is also hold for
fractional order delay differential equations.

To illustrate this we consider an example in the space R
1.

Example 6.1: Consider the fractional delay differential equation

cD
1
2 x(t) = x(t − 1), t ∈ [0, 1]. (6.1)

Then the function y(t) = 1, t ∈ [−1, 1] satisfies the inequality

|cD
1
2 y(t)− y(t− 1)| ≤ 1, t ∈ [0, 1].

Further note that y(t) is not a solution of equation (6.1) as for any t ∈ [0, 1],

y(t− 1) = 1 and cD
1
2 y(t) = cD

1
2 (1) = 0.

By using successive approximations defined in Theorem 4.1 we obtain first approx-
imate solution to (6.1) as

x1(t) = y(0) +
1

Γ(12 )

∫ t

0

(t− s)
1
2−1f(s, x0s)ds

= 1 +
1

Γ(12 )

∫ t

0

(t− s)
1
2−1f(s, ys)ds

= 1 +
1

Γ(12 )

∫ t

0

(t− s)
1
2−1ds

= 1 +
1

Γ(12 )

Γ(12 )

Γ(32 )
t
1
2 = 1 +

1

Γ(32 )
t
1
2

Define,

ψ(t) =




1(= y(t)), t ∈ [−1, 0],

1 +
1

Γ(32 )
t
1
2 , t ∈ [0, 1].

Then it is easy to verify that the function ψ(t) forms a solution of (6.1). Also we
find

|y(t)− ψ(t)| = |1− (1 +
1

Γ(32 )
t
1
2 )| ≤

1

Γ(32 )
= 1.1283

Next, we see that the function ψ∗(t) defined by

ψ∗(t) =





Γ(32 ), t ∈ [−1, 0],

Γ(32 )

(
1 +

1

Γ(32 )
t
1
2

)
, t ∈ [0, 1].
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is also a solution of equation (6.1) and is such that

|y(t)− ψ∗(t)| =

{
|1− Γ(32 )| ≤ 0.1283, t ∈ [−1, 0],

|1− Γ(32 )− t
1
2 | ≤ |1− Γ(32 )| ≤ 0.1283, t ∈ [0, 1].

Hence,

|y(t)− ψ∗(t)| ≤ 0.1283 for all t ∈ [−1, 1].

This shows that ψ∗(t) is better approximate solution than ψ(t).

Remark 6.1. The substitution r = 0, reduces the equation (1.1)-(1.2) to the ordi-
nary fractional differential equation

cDαx(t) = f(t, x(t)), t ∈ [0, b] (6.2)

x(0) = φ(0). (6.3)

Let f satisfies the Lipschitz condition with the Lipschitz constant L. Then the
initial value problem (6.2)-(6.3) has a unique solution. Further, with the similar
assumptions in the Theorem 4.1 the ordinary fractional differential equation (6.2) is

Ulam-Hyers stable with Ulam-Hyers stability constant (Eα(Lbα)−1)
L

. Other stability
results for (6.2) can be obtained similarly.

To illustrate existence and stability results for fractional delay differential equa-
tion obtained in this paper we give the following example. Since any two norms
on a finite dimensional linear spaces are equivalent here we consider the example
in R

2 with the norm

‖x‖ = |x1|+ |x2|, x = (x1, x2) ∈ R
2.

Example 6.2: Consider the fractional delay differential equation of the form:

cD
1
2x(t) = f(t, xt) =

(
x1(t− 1)

1 + x1(t− 1)
, x2(t− 1)

)
, t ∈ [0, 1], (6.4)

x(t) = (1, t) , t ∈ [−1, 0] (6.5)

where x : [−1, 1] → R
2 and f : [−1, 0]×C([−1, 1],R2) → R

2 is a nonlinear function.
Let

f(t, φ) = f(t, (φ1, φ2)) =

(
φ1

1 + φ1

, φ2

)
.
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Then for any φ, ψ ∈ C([−1, 0],R2), we find

‖f(t, φ)− f(t, ψ)‖ = ‖f(t, (φ1, φ2))− f(t, (ψ1, ψ2))‖

=

∥∥∥∥
(

φ1
1 + φ1

, φ2

)
−

(
ψ1

1 + ψ1

, ψ2

)∥∥∥∥

=

∥∥∥∥
(

φ1
1 + φ1

−
ψ1

1 + ψ1

, φ2 − ψ2

)∥∥∥∥

=

∣∣∣∣
φ1

1 + φ1
−

ψ1

1 + ψ1

∣∣∣∣+ |φ2 − ψ2|

=
|φ1 − ψ1|

|1 + φ1| |1 + ψ1|
+ |φ2 − ψ2|

≤ |φ1 − ψ1|+ |φ2 − ψ2|

= ‖φ− ψ‖

Therefore, ‖f(t, φ) − f(t, ψ)‖ ≤ ‖φ − ψ‖, ∀φ, ψ ∈ C([−1, 0],R2). This implies f
satisfies Lipschitz condition with Lipschitz constant L = 1. Hence by Theorem 3.1
FDDEs (6.4)-(6.5) has unique solution.

Further, if y ∈ B = C([−1, 1],R2) satisfies

‖cD
1
2 y(t)− f(t, yt)‖ ≤ ǫ, t ∈ [0, 1]

then as shown in Theorem 4.1, there exist a solution x ∈ B of (6.4), such that

‖y(t)− x(t)‖ ≤

(
E 1

2
(1)− 1

1

)
ǫ, t ∈ [−1, 1].

Other stability results for the equation (6.4) can discussed similarly.
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