

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 36** 4 (2018): 149–157. ISSN-00378712 IN PRESS doi:10.5269/bspm.v36i4.33608

$(\psi-\alpha)$ -Meir-Keeler-Khan Type Fixed Point Theorem in Partial Metric Spaces

Manoj Kumar and Serkan Araci

ABSTRACT: In this paper, we introduce a new concept of $(\psi-\alpha)$ -Meir-Keeler-Khan type mappings in partial metric spaces. The presented theorems generalize and improve many existing results in the literature. Moreover, an examples is given to illustrate our results.

Key Words: $(\psi - \alpha)$ -Meir-Keeler-Khan mappings, partial metric spaces, fixed point.

Contents

1 Introduction 149

2 Main Results 151

1. Introduction

In 1978, Fisher [1] proved the following revised version of result of Khan[2].

Theorem 1.1: ([1]) Let (X, d) be a metric space and f be a self map on X satisfying the following:

$$d(fx,fy) \leq k \tfrac{d(x,fx)d(x,fy)+d(y,fy)d(y,fx)}{d(x,fy)+d(y,fx)}, k \in [0,1),$$

if

$$d(x, fy) + d(y, fx) \neq 0,$$

and

$$d(fx, fy) = 0 \quad if \quad d(x, fy) + d(y, fx) = 0.$$

Then f has a unique fixed point $t \in X$. Moreover, for every $t_0 \in X$, the sequence $\{f^n t_0\}$ converges to t.

In the sequel, Ψ denotes the family of all (c)-comparison functions. A self map ψ on $[0,\infty)$ is said to be a (c)-comparison function, if $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each t>0, where ψ^n is the nth iterate of ψ . Clearly, $\psi(0)=0$ and $\psi(t)< t$ for all t>0.

2010 Mathematics Subject Classification: 47H10, 54H25. Submitted September 26, 2016. Published December 28, 2016 Recently, Samet et al. [3] introduced the notion of α -admissible mappings as follows:

Definition 1.2:([3]) Let f be a self map on X and $\alpha: X^2 \to [0, \infty)$. If $\alpha(x, y) \ge 1 \Rightarrow \alpha(fx, fy) \ge 1$, for all $x, y \in X$, then f is said to be α -admissible.

One can refer [4-5] for class of α -admissible mappings and more information on subject.

Matthews [6] introduced the notion of partial metric spaces as follows:

Let X be a nonempty set and $p: X^2 \to [0, \infty)$ satisfy the following:

```
\begin{array}{l} (\text{pm1}) \ x = y \Leftrightarrow p(x,x) = p(x,y) = p(y,y); \\ (\text{pm2}) \ p(x,x) \leq p(x,y); \\ (\text{pm3}) \ p(x,y) = p(y,x); \\ (\text{pm4}) \ p(x,y) \leq p(x,z) + p(z,y) - p(z,z), \end{array}
```

for all $x, y, z \in X$. Then p is called a partial metric and the pair (X, p) is called a partial metric space.

We note that the function $d_p: X \times X \to \mathbb{R}^+$ defined by

$$d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y)$$

satisfies the conditions of a metric space X and hence it is a usual metric on X.

Definition 1.3: [6]

- (i) A sequence $\{x_n\}$ in the PMS (X,p) converges to x if and only if $p(x,x) = \lim_{n\to\infty} p(x,x_n)$.
- (ii) A sequence $\{x_n\}$ in the PMS (X,p) is called a Cauchy sequence if $\lim_{n,m\to\infty} p(x_n,x_m)$ exists and is finite.
- (iii) A PMS (X, p) is called complete, if every Cauchy sequence $\{x_n\}$ in X converges.

The following Lemma will be used in the sequel.

Lemma 1.4: [6]

- 1. A sequence $\{x_n\}$ is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy sequence in the metric space (X, d_p) .
- 2. A partial metric space (X, p) is complete if and only if the metric space (X, d_p) is complete. Moreover

$$\lim_{n\to\infty} d_p(x,x_n) = 0 \Leftrightarrow p(x,x) = \lim_{n\to\infty} p(x,x_n) = \lim_{n\to\infty} p(x,x_n).$$

In 1969, Meir and Keeler [7] proved an interesting fixed point theorem on a metric space (X, d). Further, Redjel et al. [8] introduced the concept of $(\alpha - \psi)$ -Meir-

Keeler-Khan mappings in metric spaces.

2. Main Results

In this section, we introduce a new concept of $(\psi - \alpha)$ -Meir-Keeler-Khan mappings in partial metric spaces and we establish a fixed point theorem via α -admissible mappings. In the sequel, we consider that if $T: X \to X$, then

for all
$$x, y \in X, x \neq y \Rightarrow p(x, Ty) + p(y, Tx) \neq 0$$
.

Definition 2.1.: Let (X,p) be a partial metric space, $T:X\to X$ and $\psi\in\Psi$. Then T is called a generalized Meir-Keeler-Khan type ψ -contraction whenever for each $\epsilon>0$, there exists $\delta>0$ such that

$$\epsilon \leq \psi(\tfrac{p(x,Tx)p(x,Ty)+p(y,Ty)p(y,Tx)}{p(x,Ty)+p(y,Tx)}) < \epsilon + \delta(\epsilon) \Rightarrow p(Tx,Ty) < \epsilon.$$

Definition 2.2.: Let (X,p) be a partial metric space, $T: X \to X$, $\psi \in \Psi$ and $\alpha: X^2 \to [0,\infty)$. Then T is called a generalized Meir-Keeler-Khan type $\psi - \alpha$ -contraction if the following conditions are satisfied:

- (i) T is α admissible;
- (ii) for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$\epsilon \leq \psi(\frac{p(x,Tx)p(x,Ty) + p(y,Ty)p(y,Tx)}{p(x,Ty) + p(y,Tx)})
< \epsilon + \delta(\epsilon)
\Rightarrow \alpha(x,x)\alpha(y,y)p(Tx,Ty) < \epsilon.$$
(2.1)

Remark 2.3.: It is clear that if $T: X \to X$ be an $\psi - \alpha$ -Meir-Keeler-Khan type mapping then

$$\alpha(x,x)\alpha(y,y)p(Tx,Ty) \le \psi(\frac{p(x,Tx)p(x,Ty) + p(y,Ty)p(y,Tx)}{p(x,Ty) + p(y,Tx)}), \tag{2.2}$$

for all $x, y \in X$.

Theorem 2.4.: Let (X,p) be a complete partial metric space and $\psi \in \Psi$. If $\alpha: X^2 \to \mathbb{R}^+$ satisfies the following conditions:

- (i) there exists $x_0 \in X$ such that $\alpha(x_0, x_0) \geq 1$;
- (ii) if $\alpha(x_k, x_k) \ge 1$ for all $k \in \mathbb{N}$, then $\lim_{k \to \infty} \alpha(x_k, x_k) \ge 1$;
- (iii) $\alpha: X^2 \to \mathbb{R}^+$ is a continuous function in each coordinate.

Suppose that $T: X \to X$ is a generalized Meir-Keeler-Khan type $\psi - \alpha$ -contraction. Then T has a fixed point in X.

Proof.: Let $x_0 \in X$ and $x_{k+1} = Tx_k = T^kx_0$, for k = 0, 1, 2, 3, ... Since T is α -admissible and $\alpha(x_0, x_0) \ge 1$, we have

$$\alpha(Tx_0, Tx_0) = \alpha(x_1, x_1) \ge 1.$$

Proceeding in the same manner, we get

$$\alpha(x_k, x_k) \ge 1,\tag{2.3}$$

for all $k \in \mathbb{N} \cup \{0\}$.

If $x_{k_0+1} = x_{k_0}$ for some $k_0 \in \mathbb{N}$, then x_{k_0} is the fixed point of T.So, we suppose that $x_{k+1} \neq x_k$ for all $k \in \mathbb{N} \cup \{0\}$. Using the definition of ψ , we have

$$\psi(\frac{p(x_k,Tx_k)p(x_k,Tx_{k+1}) + p(x_{k+1},Tx_{k+1})p(x_{k+1},Tx_k)}{p(x_k,Tx_{k+1}) + p(x_{k+1},Tx_k)}) > 0,$$

for all $k \in \mathbb{N} \cup \{0\}$.

We shall assert that

$$\lim_{k\to\infty} p(x_k, x_{k+1}) = 0, i.e., \lim_{k\to\infty} d_p(x_k, x_{k+1}) = 0.$$

From (2) and (3), we have

$$p(x_{k+1}, x_{k+2}) = p(Tx_k, Tx_{k+1})$$

$$\leq \alpha(x_k, x_k)\alpha(x_{k+1}, x_{k+1})p(Tx_k, Tx_{k+1})$$

$$< \psi(\frac{p(x_k, Tx_k)p(x_k, Tx_{k+1}) + p(x_{k+1}, Tx_{k+1})p(x_{k+1}, Tx_k)}{p(x_k, Tx_{k+1}) + p(x_{k+1}, Tx_k)})$$

$$= \psi(\frac{p(x_k, x_{k+1})p(x_k, x_{k+2}) + p(x_{k+1}, x_{k+2})p(x_{k+1}, x_{k+1})}{p(x_k, x_{k+2}) + p(x_{k+1}, x_{k+1})})$$

$$(2.4)$$

If $p(x_k, x_{k+1}) \le p(x_{k+1}, x_{k+2})$, then

$$p(x_{k+1}, x_{k+2}) = \psi(\frac{p(x_{k+1}, x_{k+2})p(x_k, x_{k+2}) + p(x_{k+1}, x_{k+2})p(x_{k+1}, x_{k+1})}{p(x_k, x_{k+2}) + p(x_{k+1}, x_{k+1})})$$

$$= \psi(p(x_{k+1}, x_{k+2}))$$

$$< p(x_{k+1}, x_{k+2}),$$

which is a contradiction, and hence $p(x_k, x_{k+1}) < p(x_{k-1}, x_k)$.

Using the same argument as above, we have for each $n \in \mathbb{N}$,

$$p(x_{k+1}, x_{k+2}) = p(Tx_k, Tx_{k+1})$$

$$\leq p(x_k, x_{k+1}).$$
(2.5)

Since the sequence $\{p(x_k, x_{k+1})\}$ is decreasing, it must converge to some $\epsilon \geq 0$, that is,

Meir-Keeler-Khan Type Fixed Point Theorem in Partial Metric Spaces 153

$$\lim_{k \to \infty} p(x_k, x_{k+1}) = \epsilon. \tag{2.6}$$

From (5) and (6), we have

$$\lim_{k \to \infty} \psi(p(x_k, x_{k+1})) = \epsilon. \tag{2.7}$$

Here $\epsilon = \inf\{p(x_k, x_{k+1}) : k \in \mathbb{N}\}$. We assert that $\epsilon = 0$. On the contrary, suppose that, $\epsilon > 0$. Since T is a generalized Meir-Keeler-Khan type $\psi - \alpha$ -contraction, corresponding to ϵ use, and using (7), there exists $\delta > 0$ and a natural number n such that

 $\epsilon \leq \psi(p(x_n, x_{n+1})) < \epsilon + \delta \Rightarrow \alpha(x_n, x_n)\alpha(x_{n+1}, x_{n+1})p(Tx_n, Tx_{n+1}) < \epsilon,$ implies that,

$$p(x_{n+1}, x_{n+2}) = p(Tx_n, Tx_{n+1}) \le \alpha(x_n, x_n)\alpha(x_{n+1}, x_{n+1})p(Tx_n, Tx_{n+1}) < \epsilon,$$

which is a contradiction, since

$$\epsilon = \inf\{p(x_k, x_{k+1}) : k \in \mathbb{N}\}.$$

Thus, we have that

$$\lim_{k \to \infty} p(x_k, x_{k+1}) = 0. \tag{2.8}$$

Also, from (pm2), we have

$$\lim_{k \to \infty} p(x_k, x_k) = 0. \tag{2.9}$$

Since $d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y)$, for all $x,y \in X$, using (8) and (9), we get

$$\lim_{k \to \infty} d_p(x_k, x_{k+1}) = 0. (2.10)$$

Now, we assert that $\{x_k\}$ is a Cauchy sequence in the partial metric space (X, p). To show, it is sufficient to that $\{x_k\}$ is a Cauchy sequence in the metric space

 (X,d_p) . On the contrary, let us suppose $\{x_k\}$ is not a Cauchy sequence. So, there exists $\eta>0$ such that for any $c\in\mathbb{N}$, there are $n_c,m_c\in\mathbb{N}$ with $n_c>m_c\geq c$ satisfying

$$d_p(x_{m_c}, x_{n_c}) \ge \eta. \tag{2.11}$$

Also, for $m_c \ge c$, we can choose a smallest positive integer n_c such that $n_c > m_c \ge c$ and $d(x_{2m_c}, x_{2n_c}) \ge \eta$.

Therefore, we have

$$d_p(x_{m_c}, x_{n_c-2}) < \eta. (2.12)$$

Now, we have that for all $c \in \mathbb{N}$,

$$\eta \leq d_p(x_{m_c}, x_{n_c})
\leq d_p(x_{m_c}, x_{n_c-2}) + d_p(x_{n_c-2}, x_{n_c-1}) + d_p(x_{n_c-1}, x_{n_c})
< \eta + d_p(x_{n_c-2}, x_{n_c-1}) + d_p(x_{n_c-1}, x_{n_c}).$$
(2.13)

Letting $c \to \infty$, we get

$$\lim_{c \to \infty} d_p(x_{m_c}, x_{n_c}) = \eta. \tag{2.14}$$

On the other hand, we have

$$\begin{array}{lcl} \eta & \leq & d_p(x_{m_c}, x_{n_c}) \\ & \leq & d_p(x_{m_c}, x_{m_c+1}) + d_p(x_{m_c+1}, x_{n_c+1}) + d_p(x_{n_c+1}, x_{n_c}) \\ & \leq & d_p(x_{m_c}, x_{m_c+1}) + d_p(x_{m_c+1}, x_{m_c}) + d_p(x_{m_c}, x_{n_c}) \\ & & + d_p(x_{n_c}, x_{n_c+1}) + d_p(x_{n_c+1}, x_{n_c}). \end{array}$$

Letting $c \to \infty$, we get

$$\lim_{c \to \infty} d_p(x_{m_c+1}, x_{n_c+1}) = \eta. \tag{2.15}$$

Since $d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y)$ and using (14) and (15), we have that

$$\lim_{c \to \infty} d_p(x_{m_c}, x_{n_c}) = \frac{\eta}{2}.$$
 (2.16)

Meir-Keeler-Khan Type Fixed Point Theorem in Partial Metric Spaces 155

and

$$\lim_{c \to \infty} d_p(x_{m_c+1}, x_{n_c+1}) = \frac{\eta}{2}.$$
 (2.17)

From (2), we have

$$\begin{split} p(x_{m_{c}+1},x_{n_{c}+1}) &= p(Tx_{m_{c}},Tx_{n_{c}}) \\ &\leq \alpha(x_{m_{c}},x_{m_{c}})\alpha(x_{n_{c}},x_{n_{c}})p(Tx_{m_{c}},Tx_{n_{c}}) \\ &< \psi(\frac{p(x_{m_{c}},Tx_{m_{c}})p(x_{m_{c}},Tx_{n_{c}}) + p(x_{n_{c}},Tx_{n_{c}})p(x_{n_{c}},Tx_{m_{c}})}{p(x_{m_{c}},Tx_{n_{c}}) + p(x_{n_{c}},Tx_{m_{c}})}) \\ &< \psi(\frac{p(x_{m_{c}},x_{m_{c}+1})p(x_{m_{c}},x_{n_{c}+1}) + p(x_{n_{c}},x_{n_{c}+1})p(x_{n_{c}},x_{m_{c}+1})}{p(x_{m_{c}},x_{n_{c}+1}) + p(x_{n_{c}},x_{m_{c}+1})}) \end{split}$$

Since,

$$p(x_{m_c}, x_{n_c+1}) \le p(x_{m_c}, x_{m_c+1}) + p(x_{m_c+1}, x_{n_c+1}) - p(x_{m_c+1}, x_{m_c+1}), \quad (2.19)$$

and

$$p(x_{n_c}, x_{m_c+1}) \le p(x_{n_c}, x_{n_c+1}) + p(x_{n_c+1}, x_{m_c+1}) - p(x_{n_c+1}, x_{n_c+1}). \tag{2.20}$$

Using (9), (18), (19) and (20) and making $c \to \infty$, we have

$$\frac{\eta}{2} < \psi(\frac{\eta}{2}) \le \frac{\eta}{2},$$

a contradiction.

Hence $\{x_k\}$ is a Cauchy sequence in the metric space (X, d_p) .

Now, we assert that T has a fixed point z.

Since (X, p) is complete, so by Lemma 1.4, (X, d_p) is also complete. Thus, there exists $z \in X$ such that $\lim_{k\to\infty} d_p(x_k, z) = 0$. Moreover, from Lemma 1.4, we have

$$p(z,z) = \lim_{k \to \infty} p(x_k, z) = \lim_{k,l \to \infty} p(x_k, x_l).$$
 (2.21)

Further, since $\{x_k\}$ is a Cauchy sequence in the metric space (X, d_p) , so $\lim_{k\to\infty} d_p(x_k, x_l) = 0$.

Since, $d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y)$, we get

$$\lim_{k,l\to\infty} p(x_k, x_l) = 0. \tag{2.22}$$

From (21) and (22), we have

$$p(z,z) = \lim_{k \to \infty} p(x_k, z) = \lim_{k \to \infty} p(x_{k_c}, z) = 0.$$

Again, from (2), we get

$$p(x_{k+1}, Tz) = p(Tx_k, Tz)$$

$$\leq \alpha(x_k, x_k)\alpha(z, z)p(Tx_k, Tz)$$

$$< \psi(\frac{p(x_k, Tx_k)p(x_k, Tz) + p(z, Tz)p(z, Tx_k)}{p(x_k, Tz) + p(z, Tx_k)})$$

$$= \psi(\frac{p(x_k, x_{k+1})p(x_k, Tz) + p(z, Tz)p(z, x_{k+1})}{p(x_k, Tz) + p(z, x_{k+1})}). \quad (2.23)$$

Making $k \to \infty$, we get

$$p(z, Tz) \le \psi(0) = 0$$
, that is, $Tz = z$.

Corollary 2.5.: Let (X,p) be a partial metric space and $\psi \in \Psi$. Suppose that $T: X \to X$ is a generalized Meir-Keeler-Khan type ψ -contraction. Then T has a fixed point in X.

Proof.: By putting $\alpha(x,y) = 1$ in Theorem 2.4, we get the result.

Example 2.6.: Let X=[0,1] and $p(x,y)=\max\{x,y\}$, then (X,p) is a partial metric space. Define $\alpha:[0,1]^2\to\mathbb{R}^+$ by $\alpha(x,y)=1+x+y$, and $T:X\to X$ by $Tx=\frac{x}{8}$. Also, let $\psi:[0,\infty)\to[0,\infty)$ be defined by $\psi(t)=\frac{t}{4}$. Clearly, T is α -admissible. Without loss of generality, assume that $x\geq y$. Then for all $x,y\in[0,1]$, we have $\alpha(x,x)\alpha(y,y)p(Tx,Ty)\geq\frac{x}{8}$. Now, $p(x,x)=x,p(y,Ty)=y,p(x,Ty)=p(x,\frac{y}{8})=x,p(y,Tx)=p(y,\frac{x}{8})$. Case 1. If $p(y,\frac{x}{8})=y$, then

$$\psi(\frac{p(x,Tx)p(x,Ty)+p(y,Ty)p(y,Tx)}{p(x,Ty)+p(y,Tx)}) = \psi(\frac{x.x+y.y}{x+y}) = \psi(\frac{x^2+y^2}{4(x+y)}) \le \frac{x^2+y^2}{4} \le \frac{2x^2}{4} = \frac{x^2}{2}.$$

Case 2. If $p(y, \frac{x}{8}) = \frac{x}{8}$, then

$$\psi(\tfrac{p(x,Tx)p(x,Ty)+p(y,Ty)p(y,Tx)}{p(x,Ty)+p(y,Tx)}) = \psi(\tfrac{x.x+y\cdot\frac{x}{8}}{x+\frac{x}{8}}) = \psi(\tfrac{8x+y}{9}) \leq \tfrac{9x}{36} = \tfrac{x}{4}.$$

Hence all the conditions of Theorem 2.4 are satisfied and 0 is the fixed point of T.

References

- 1. Fisher B., On a theorem of Khan, Riv. Math. Univ. Parma. 4, 135-137, (1978).
- Khan M.S., A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste 8, 69-72,(1976).
- 3. Samet B., Vetro C., Vetro P., Fixed point theorems for $\alpha \psi$ -contractive type mappings, J. Nonlinear Anal. 75, 2154-2165, (2012).

- 4. Latif A., Gordji M.E., Karapinar E., Sintunavarat W., Fixed point results for generalized $(\alpha-\psi)$ -Meir-Keeler contractive mappings and applications, J. Inequal. Appl. 2014,(2014), Article ID 68.
- Khan M.S., Swaleh M., Sessa S., Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30, 1-9, (1984).
- 6. Matthews S.G., Partial metric topology, Research report 212, Dept. of computer science, University of warwick, (1992).
- Meir A., Keeler E., A theorem on contraction mapping, J. Math. Anal. Appl. 28, 326-329, (1969).
- 8. Redjel N., Dehichi A., Karapinar E., Erhan I. M., Fixed point theorems for (α, ψ) -Meir-Keeler-Khan mappings, J. Nonlinear Sci. Appl. 8, 955-964, (2015).

Manoj Kumar(Corresponding Author), Department of Mathematics,

Lovely Professional University, Phagwara, Punjab,

India.

 $E\text{-}mail\ address: \verb|manojantil| 18@gmail.com, manoj. 19564@lpu.co.in|$

and

Serkan Araci,

Faculty of Economics, Administrative and Social Sciences, Department of Economics, Hasan Kalyoncu University, TR-27410 Gaziantep,

Turkey.

 $E\text{-}mail\ address: \verb|mtsrkn@hotmail.com||$