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Existence of Solutions For a Class of Strongly Coupled p(x)-laplacian
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E.A. Al Zahrani, M.A. Mourou and K.Saoudi

abstract: The present work is concerned with the study of a strongly coupled
nonlinear elliptic system on the whole space R

N involving the p(x)-laplacien op-
erator. We employ variational methods and the theory of the variable exponent
Sobolev spaces, in order to establish some sufficient conditions for the existence of
non-trivial solutions.
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1. Introduction

In this paper, we study the existence of nontrivial weak solutions for the fol-
lowing (p, q)-gradient elliptic system:































−∆p(x)u(x) + a(x)|u(x)|p(x)−2u = f(x, u, v) in R
N ,

−∆q(x)v(x) + b(x)|v(x)|q(x)−2v = g(x, u, v) in R
N ,

(u, v) ∈ W 1,p(x)(RN ) ×W 1,q(x)
(

R
N
)

.

(1.1)

Here p, q : Ω → R two functions of class C(Ω) such that 1 < p(x), q(x) < N

(N ≥ 2) for all x ∈ R
N and the coefficients a, b, are variables. The real-valued

functions f, g are given functions and ∆p(x)u is the p(x)-Laplacian operator de-

fined by ∆p(x)u := div(|∇u|p(x)−2∇u).
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The operator ∆p(x)u := div(|∇u|p(x)−2∇u) is called p(x)−Laplace where p is a
continuous non-constant function. This differential operator is a natural general-
ization of the p-Laplace operator ∆pu := div(|∇u|p−2∇u), where p > 1 is a real
constant. However, the p(x)−Laplace operator possesses more complicated non-
linearity than p-Laplace operator, due to the fact that ∆p(x) is not homogeneous.
This fact implies some diffculties; for example, we can not use the Lagrange Mul-
tiplier Theorem in many problems involving this operator.

The study of differential and partial differential involving variable exponent
conditions is a new and an interesting topic. The interest in studying such prob-
lems was stimulated by their applications in elastic mechanics, fluid dynamics,
electrorheological fluids, image processing, flow in porous media, calculus of varia-
tions, nonlinear elasticity theory, heterogeneous porous media models (see Acerbi-

Mingione [1] , Diening [5], Ružic̆ka [15], Zhikov [17]) etc.... These physical
problems were facilitated by the development of Lebesgue and Sobolev spaces with
variable exponent.

In literature, elliptic systems with standard and nonstandard growth conditions
have been studied by many authors. Let us briefly recall the literature concern-
ing related elliptic systems. In [3,2] the authors show the existence of nontrivial
solutions for the following p−Laplacian problem:



























−∆pu(x) = a(x)|u(x)|p−2u+ b(x)|u|α|v|βv + f in R
N ,

−∆qv(x) = c(x)|u|α|v|βv + d(x)|u(x)|q−2u+ g) in R
N ,

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0, (u, v) > 0 in R
N .

(1.2)

where the p-Laplace operator ∆pu := div(|∇u|p−2∇u), with p > 1, α, β >

0, p, q > 1, and is a real f, g are given functions. In [3], the author’s obtain nec-
essary and sufficient conditions on the coefficients for having a maximum principle
for system (1.2). Then using the method of sup and super solutions, they prove
the existence of positive solutions under some conditions on the functions f and g.

In [2], the authors apply the theory of monotone operators to obtain the nontrivial
solutions of the system (1.2).

In Khafagy-Serag [10] deal with the following problem:

−∆p,P u = a(x)|u|p−2u+ b(x)|u|α|v|βv + f in Ω,

−∆Q,qv = c(x)|u|α|v|βu+ d(x)|v|q−2v + g in Ω,

u = v = 0 on ∂Ω,

where the degenerate p-Laplacian defined as ∆p,P u = div[P (x)|∇u|p−2∇u]. Using
an approximation method, they apply the Schauder’s Fixed Point Theorem to get
the nontrivial solutions of the system. Moreover, they gives necessary and sufficient
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conditions for having the maximum principle for this system.

In Djellit-Youbi-Tas [6] show the existence of nontrivial solutions for the
following p(x)-Laplacian system:







−∆p(x)u = ∂F
∂u

(x, u, v) in R
N

−∆q(x)v = ∂F
∂v

(x, u, v) in R
N

(1.3)

Here p, q : Ω → R two functions of class C(Ω) such that 1 < p(x), q(x) < N (N ≥ 2)
for all x ∈ R

N . However, the function F belongs to C(RN ×R
2). Introducing some

natural growth hypotheses on the right-hand side of the system which will ensure
the semi-continuous and coercivity for the corresponding Euler-Lagrange functional
of the system, the authors use critical point theory to obtain the existence of non-
trivial weak solution of the system (1.3). In Ogras-Mashiyev-Avci-Yucedag

[13] using a weak version of the Palais-Smale condition, that is, Cerami condition,
they apply the mountain pass theorem to get the nontrivial solutions of the system
(1.3).

In Xu-An [16] study the following elliptic systems of gradient type with non-
standard growth conditions

−∆p(x)u+ |u|p(x)−2u =
∂F

∂u
(x, u, v) in R

N

−∆p(x)v + |v|q(x)−2v =
∂F

∂v
(x, u, v) in R

N .

The potential function F needs to satisfy Caratheodory conditions. Using critical
point theory, they establish existence and multiplicity of solutions in sub-linear and
super-linear cases.

Inspired by the above-mentioned papers, we deal with the existence of nontriv-
ial solutions for system (1.1). We know that in the study of p(x)-Laplace equations
in R

N , a main difficulty arises from the lack of compactness. In this paper we will
overcome this difficulty by establishing some growth conditions and regularity on
the nonlinearities f and g, which will ensure the mountain pass geometry and Ce-
rami condition for the corresponding Euler-Lagrange functional. By the mountain
pass theorem, the basic results on the existence of solutions of system (1.1) will be
presented.

The outline of this paper is as follows. In section 2, we will recall some basic
facts about the variable exponent Lebesgue and Sobolev spaces which we will use
later. Our main results are stated in Section 3. Proofs of our results will be
presented in section 4.
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2. Preliminary Results

To deal with the p(x)-Laplacian problem, we need introduce some functional

spaces Lp(·)(Ω), W 1,p(·)(Ω), W
1,p(·)
0 (Ω) and properties of the p(x)-Laplacian which

we will use later. Denote by S(Ω) be the set of all measurable real-valued functions
defined in Ω. Note that two measurable functions are considered as the same
element of S(Ω) when they are equal almost everywhere. Set

L∞
+ (Ω) = {h;h ∈ L∞(Ω), ess inf h(x) > 1 for all x ∈ Ω¯}

For any h ∈ L∞
+ (Ω) we define

h+ = ess sup
x∈Ω

h(x) > 1 and h− = ess inf
x∈Ω

h(x) > 1.

Let

Lp(·)(Ω) =
{

u ∈ S(Ω) :

∫

Ω

|u(x)|p(x)dx < ∞
}

,

with the norm

|u|p(·) = |u|Lp(·)(Ω) = inf
{

λ > 0 :

∫

Ω

|
u(x)

λ
|p(x)dx ≤ 1

}

.

The space (Lp(·)(Ω), | · |p(·)) becomes a Banach space. We call it variable exponent
Lebesgue space. Moreover, this space is a separable, reflexive and uniform convex
Banach space; see [9, Theorems 1.6, 1.10, 1.14].

The variable exponent Sobolev space

W 1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

,

can be equipped with the norm

‖u‖ = |u|p(·) + |∇u|p(·), ∀u ∈ W 1,p(·)(Ω).

Note that W
1,p(·)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(·)(Ω) under the norm ‖u‖ =

|∇u|p(·). The spaces W
1,p(·)(Ω) and W

1,p(·)
0 (Ω) are separable, reflexive and uniform

convex Banach spaces (see [9, Theorem 2.1]). The inclusion between Lebesgue
spaces also generalizes naturally: if 0 < |Ω| < ∞ and p1, p2 are variable exponents
so that p1(x) ≤ p2(x) almost everywhere in Ω then there exists the continuous
embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω).

We denote by Lq(x)(Ω) the conjugate space of Lp(x)(Ω), where 1
q(x) +

1
p(x) = 1.

For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), the Hölder type inequality

∣

∣

∣

∫

Ω

u(x)v(x)dx
∣

∣

∣
≤

( 1

p−
+

1

q−

)

|u|p(x)|v|q(x), (2.1)

holds true.
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An important role in manipulating the generalized Lebesgue spaces is played
by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : L

p(x)(Ω) → R

defined by

ρp(x)(u) =

∫

Ω

|u|p(x)dx.

If (un), u ∈ Lp(x)(Ω) and p+ < ∞. Then the following relations hold true.

‖u‖Lp(x) > 1 ⇒ ‖u‖p
−

Lp(x) ≤ ρp(x)(u) ≤ ‖u‖p
+

Lp(x), (2.2)

‖u‖Lp(x) < 1 ⇒ ‖u‖p
+

Lp(x) ≤ ρp(x)(u) ≤ ‖u‖p
−

Lp(x), (2.3)

‖un − u‖Lp(x) → 0 if and if ρp(x)(un − u) → 0. (2.4)

The following result generalizes the well-known Sobolev embedding theorem.

Theorem 2.1 ( [8,11]). Let Ω ⊂ R
N be an open bounded domain with Lipschitz

boundary and assume that p ∈ C(Ω̄) with p(x) > 1 for each x ∈ Ω̄. If r ∈
C(Ω̄) and p(x) ≤ r(x) ≤ p∗(x) for all x ∈ Ω, then there exists a continuous
embedding W 1,p(x)(Ω) →֒ Lr(x)(Ω). Also, the embedding is compact r(x) < p∗(x)
almost everywhere in Ω where

p∗(x) =

{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

3. Main Results

Before stating our main results, we make the following assumptions throughout
this paper:

(B1) a(x), b(x) ∈ L∞
loc(Ω) and there exist a0, b0 > 0 such that

a(x) ≥ a0, b(x) ≥ b0 ∀x ∈ R
N and a(x) → ∞, b(x) → ∞ as |x| → ∞.

(F1) f(x,w), g(x,w) ∈ C1(RN × R
2,R), f(x, 0, 0) = 0, g(x, 0, 0) = 0, ∀x ∈ R

N .

Moreover, there exists a function F (x,w) ∈ C1(RN × R
2,R) such that

∂F

∂u
= f(x,w),

∂F

∂v
= g(x,w), ∀x ∈ R

N , w = (u, v) ∈ R
2

(F2) There exist a constant µ > max (p+, q+)such that

0 < µF (x,w) ≤ w.∇F (x,w)

(F3) For p∗ = Np−

N−p− , q∗ = Nq−

N−q−
and p+ < Np−

N−p− , q+ < Nq−

N−q−
, there exist

a1, a2, b1, b2 such that

|∇f(x,w)| ≤ a1(x) |w|
p
1
−2

+ a2(x) |w|
p
2
−1

|∇g(x,w)| ≤ b1(x) |w|
q
1
−2

+ b2(x) |w|
q
2
−1
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ai(x) ∈ Lαi(RN ) ∩ Lβi(RN ), bi(x) ∈ Lγi(RN ) ∩ Lδi(RN ), i = 1, 2

αi =
p∗−

p∗− − (pi − 1)
, γi =

q∗−

q∗− − (qi − 1)
,

βi =
p∗−q∗−

p∗−q∗− − p∗ (pi−2)− q∗
, δi =

p∗−q∗−

p∗−q∗− − q∗− (q1i−2)− p∗

2 < p1, q1 < min(p+ − 1, q+ − 1), max(p+ − 1, q+ − 1) < p2 ,

q
2
< min(p∗+ − 1, q∗+ − 1)

Now we denote by E the product space D1,p(x) ×D1,q(x), defined as the com-
pletion of C∞

0 (RN ) with respect to the norm

‖(u, v)‖ = |∇u|p(x) + |u|(a(x),p(x)) + |∇v|q(x) + |v|(b(x),q(x))

We remark that condition (B1) implies that E ⊂ W 1,p(x)(Ω)×W 1,q(x)(Ω).
Set

J(u, v) =

∫

(

|∇u|
p(x)

+ a(x) |u|
p(x)

)

dx+

∫

(

|∇v|
q(x)

+ b(x) |v|
q(x)

)

dx.

Then, for all w ∈ E, the following relations hold

‖(u, v)‖ > 1 ⇒ ‖(u, v)‖
min(p−,q−)

≤ J(u, v) ≤ ‖(u, v)‖
max(p+,q+)

‖(u, v)‖ < 1 ⇒ ‖(u, v)‖
max(p+,q+) ≤ J(u, v) ≤ ‖(u, v)‖

min(p−,q−)

We say that (u, v) ∈ E is a weak solution of problem (1.1) if

|∇u|
p(x)−2

∇u∇Φ + |∇v|
q(x)−2

∇v∇Ψ

+

∫

a(x) |u|
p(x)−2

uΦ+

∫

b(x) |v|
q(x)−2

vΨ

=

∫

f(x, u, v)Φ +

∫

g(x, u, v)Ψ,

for all (Φ,Ψ) ∈ E.

The main result of this paper is given by the following theorem:

Theorem 3.1. Assume conditions (B1) and (F1)-(F3) are fulfilled. Then prob-
lem (1.1) has a non trivial weak solution.

We point out the fact that the result of Theorem 3.1 extends the results from
[12] , [14] where similar equations are studied in the case of p−laplacian operator.
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4. Proof of Theorem 3.1

The energy functional corresponding to problem (1.1) is defined as I : E → R,

I(u, v) =

∫

1

p(x)
|∇u|

p(x)
+ a(x) |u|

p(x)
+

∫

1

q(x)
|∇v(x)|

q(x)
+ b(x) |v(x)|

q(x)

−

∫

F (x, u, v)

Similar arguments as those used in [7] assure that I ∈ C1(E,R) with

I 8(u, v) (Φ,Ψ) =

∫

|∇u|
p(x)−2

∇u∇Φ+

∫

|∇v|
q(x)−2

∇v∇Ψ

+

∫

a(x) |u|
p(x)−2

u(x)Φ(x) +

∫

b(x) |v|
q(x)−2

vΨ

−

∫

f(x, u, v)Φ−

∫

g(x, u, v)Ψ,

for all (Φ,Ψ) ∈ E.

Thus, we observe that any critical points of the functional I are a weak solu-
tions for problem (1.1).

Our idea is to prove Theorem 3.1 by applying the Mountain pass theorem (see
[4]). With that end in view, we prove some auxiliary results which show that the
functional I(u, v) has a mountain pass geometry.

Lemma 4.1. If (B1) and (F1)-(F3) holds, then there exist τ > 0 and δ > 0 such
that for all (u, v) ∈ E with ‖(u, v)‖ = τ

I(u, v) ≥ δ > 0

Proof: From (F2), it is easy to see that

F (x,w) ≥ min
|s|=1

F (x, s). |w|
µ
, ∀x ∈ R

N and |w| ≥ 1, w ∈ R
2 (4.1)

and
0 < F (x,w) < max

|s|=1

F (x, s). |w|µ , ∀x ∈ R
N and 0 < |w| ≤ 1 (4.2)

Using (F3),we have

F (x, u, v) =

u
∫

0

∂F

∂s
(x, s, v) ds+ F (x, 0, v)

=

u
∫

0

∂F

∂s
(x, s, v) ds+

v
∫

0

∂F

∂s
(x, 0, s) ds+ F (x, 0, 0)
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and

F (x, u, v) ≤ c1[a1(x)
(

|u|
p1 + |v|

p1−1
|u|

)

+ a2(x)
(

|u|
p2 + |v|

p2−1
|u|

)

+ b1(x) |v|
q1 + b2(x) |v|

q2 ]

So max
|w|=1

F (x,w) ≤ C in view of (F3) and since

max(p+ − 1, q+ − 1) < p2, q2 < min(p∗+ − 1, q∗+ − 1),

we have

lim
|w|→∞

F (x,w)

|w|
Np−−

N−p−

= 0, (4.3)

lim
|w|→∞

F (x,w)

|w|
Nq−

N−q−

= 0,

It follows, that

lim
|w|→0

F (x,w)

|w|p+
= 0, uniformly for x ∈ R

N (4.4)

lim
|w|→0

F (x,w)

|w|q+
= 0, uniformly for x ∈ R

N

Thus, we obtain using condition (F2) and (F3), that ∀ε > 0, ∃ Cǫ > 0, such
that

F (x,w) ≤ ǫ |w|
max(p+,q+)

+ Cǫ |w|
max( Np−

N−p−
, Nq−

N−q−
)
, ‖w‖ < 1 (4.5)

Using (4.5), we have

I(w) ≥
1

p+
J1(u) +

1

q+
J2(v)−

∫

F (x,W ) dx

≥
1

p+
J1(u) +

1

q+
J2(v)− ǫ |W |

max(p+,q+)
− Cǫ |W |

max(Np−−

N−p−
,
Nq−−

N−q−
)

≥

(

1

max(p+, q+)
‖W‖ − ǫc1 ‖W‖

max(p+,q+)
− Cǫ ‖W‖

max(Np−−

N−p−
,
Nq−−

N−q−
)
)

≥ δ > 0,

for some fixed ǫ > 0, and δ, ‖W‖ sufficiently small. The proof of the Lemma 4.1 is
now completed. ✷

Lemma 4.2. Assume conditions (B1) and (F1)-(F3) holds. Then there exists
e ∈ E with ‖e‖ > τ (τ is given in Lemma 4.1 such that I(e) < 0).
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Proof: Denote

h(t) =
F (x, tw)

tµ
, ∀ t > 0.

Then, using (F3), we get

h′(t) =
1

tµ+1
[tu(f(x,w) + tvg(x, tw)− µF (x, tw)] ≥ 0, ∀ t > 0

Thus, we deduce that for any t ≥ 1, F (x, tw) ≥ tµF (x,w)
Choosing w ∈ E, with ‖w‖ > 1 and

∫

F (x,w)dx > 0 fixed and t > 1,we have

I(tw) =

∫

1

p(x)
(|∇tu|

p(x)
+ a(x) |tu|

p(x)
)

+

∫

1

q(x)
(|∇tv(x)|

q(x)
+ b(x) |tv(x)|

q(x)
)−

∫

F (x, tu, tv)dx

=

∫

tp(x)

p(x)
(|∇u|p(x) + a(x) |u|p(x)) +

∫

tq(x)

q(x)
|∇v(x)|q(x)

+ b(x) |v(x)|q(x) − tµ
∫

F (x, u, v)dx

≤ tmax(p+,q+)(
‖u‖

p+

p−
+

‖v‖
q+

q
)− tµ

∫

F (x, u, v)dx

Since µ > max(p+, q+), therefore I(tw) → −∞,when t → ∞, which concludes
our Lemma 4.2. ✷

Proof: [Proof of Theorem 3.1] We set

Γ := {γ ∈ C([0, 1], E); γ(0) = 0, γ(1) = e}

where e ∈ E is determined by Lemma 4.2 and

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

According to Lemma 4.2, we know that ‖e‖ > τ, so every path γ ∈ Γ intersects
the sphere ‖w‖ = τ . Then, Lemma 4.1 implies c ≥ inf‖u‖=t I(u) ≥ δ with constants
δ > 0. Thus c > 0. Hence, using the Mountain-pass theorem (see e.g., [4]) we obtain
a sequence (wn)n ⊂ E such that

I(wn) → c, I 8(wn) → 0 (4.6)

We claim that (wn)n is bounded in E. Arguing by contradiction and passing to
a subsequence, we have ‖wn‖ → ∞. Using (2.2), it follows that for n large enough,
we have

c+ 1 + ‖wn‖ ≥ I(wn)−
1

µ

〈

I 8(wn), wn

〉
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Using the above inequality, we have

c+ 1 + ‖wn‖ ≥

(

1

p+
−

1

µ

)

J1(un) +

(

1

q+
−

1

µ

)

J2(vn)

−

∫

F (x,wn)−
1

µ
[

∫

f(x, un, vn) +

∫

g(x, un, vn)]dx

By (F3) we have

∫

[F (x,wn)−
1

µ
(f(x,wn)un + g(x,wn)vn)] ≤ 0.

The above inequality combined with relations (2.2), (2.3) yields

c+ 1 + ‖wn‖ ≥ (
1

p+
−

1

µ
)J1(un) + (

1

q+
−

1

µ
)J2(un) (4.7)

≥ (
1

p+
−

1

µ
) ‖un‖

p
+ (

1

q+
−

1

µ
) ‖vn‖

q−

≥ min(
1

p+
−

1

µ
,
1

q+
−

1

µ
)(‖un‖

p
+ ‖vn‖

q−
)

Now dividing by ‖un‖ , ‖vn‖ in (4.7) and passing to the limit as n → ∞, we
obtain a contradiction. So, up to a subsequence (un, vn)n converges weakly in
E to some (u, v) ∈ E. If Ω is a bounded domain, then there exists a com-

pact embedding E(Ω) →֒ L
Np

N−p− (Ω) × L
Nq−

N−q− (Ω) . Then (un, vn) → (u, v) in

L
Np

N−p− (Ω)× L
Nq−

N−q− (Ω) , for all Ω bounded domains in R
N .

Claim :

〈I ′(un, vn), (Φ,Ψ)〉 → 〈I ′(u, v), (Φ,Ψ)〉 ∀ (Φ,Ψ) ∈ C∞
0 (RN ) (4.8)

Assuming this Claim, using (4.6), (u, v) is a weak solution of the problem (1.1)
since C∞

0 is dense in E. Finally, let us prove the Claim. To do this, let (Φ,Ψ) ∈
C∞

0 (RN ) be fixed. Firstly, we prove that

lim
n→∞

[

∫

RN

f(x, un, vn)Φ +

∫

g(x, un, vn)Ψ] =

∫

RN

f(x, u, v)Φdx

+

∫

RN

g(x, u, v)Ψdx

A simple calculation implies
∣

∣

∣

∣

∫

(f(x, un, vn)− f(x, u, v))Φdx

∣

∣

∣

∣

≤

∫

|(f(x, un, vn)− f(x, u, v))| . |Φ| dx

≤ ‖Φ‖L∞

∫
∣

∣

∣

∣

(f(x, un, vn)− f(x, u, v))

(un − u)

∣

∣

∣

∣

× |un − u| dx

≤ ‖Φ‖L∞

∫

fu(x, u
∗
n, vn) |un − u| ,
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where u∗
n ∈ [un, u] or [u, un] . Similarly

∣

∣

∣

∣

∫

(g(x, un, vn)− g(x, u, v)) Ψdx

∣

∣

∣

∣

≤ ‖Ψ‖L∞

∫

gv(x, un, v
∗
n) |vn − v|

where v∗n ∈ [vn, v] or [v, vn] . Now using condition (F2), we obtain

∣

∣

∣

∣

∫

(f(x, un, vn)− f(x, u, v))Φdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g(x, un, vn)− g(x, u, v))Ψdx

∣

∣

∣

∣

≤

max (‖Φ‖∞ , ‖Ψ‖∞) [
(

‖a1(x)‖α1
‖u∗

n‖
p
1
−1

p∗− ‖a2(x)‖α2
‖vn‖

p2−1
q∗−

)

‖un − u‖p∗− +

(

‖b1(x)‖β1
‖un‖

q
1
−1

p∗− + ‖b2(x)‖β2
‖v∗n‖

q2−1
q∗−

)

‖vn − v‖q∗− ]

Taking into account that un → u in L
Np

N−p− (Ω) and vn → v in L
Nq−

N−q− (Ω) , and
for all n ≥ 1, there exist λn(x) ∈ [0, 1] such that

u∗
n = λn(x)un(x) + [1− λn(x)] u(x),

we deduce that
∫

|u∗
n − u|

s
dx =

∫

|λn(x)|
s
|un − u|

s
dx → 0

as n → ∞. It results that
∫

|u∗
n|

s
→

∫

|u|
s
dx as n → ∞

Similarly
∫

Ω

|v∗n|
s →

∫

Ω

|v|s dx as n → ∞

From the above considerations, we obtain

∣

∣

∣

∣

∫

(f(x, un, vn)− f(x, u, v))Φdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g(x, un, vn)− g(x, u, v))Ψdx

∣

∣

∣

∣

→ 0,

as n → ∞
Since C∞

0

(

R
N
)

is dense in E, the above relation implies

lim
n→∞

∣

∣

∣

∣

∫

(f(x, un, vn)− f(x, u, v))Φdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g(x, un, vn)− g(x, u, v))Ψdx

∣

∣

∣

∣

= 0,

as n → ∞
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Next, since (un, vn) ⇀ (u, v) in E, it follows that

lim
n→∞

∣

∣

∣

∣

∫

f(x, u, v) (un − u)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

g(x, u, v) (vn − v) dx

∣

∣

∣

∣

= 0

Thus, actually, we find

lim
n→∞

∣

∣

∣

∣

∫

f(x, un, vn) (un − u)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(g(x, un, vn)(vn − v) dx

∣

∣

∣

∣

= 0 (4.9)

On the other hand, we have

lim
n→∞

〈I ′(un, vn), (un − u) (vn − v)〉 = 0 (4.10)

Combining (4.9) with (4.10), to deduce that

lim
n→∞

∫

|∇un|
p(x)−2

∇un∇ (un − u) + |∇vn|
q(x)−2

∇vn∇ (vn − v)

+

∫

a(x) |un|
p(x)−2

un (x) (un (x)− u (x))

+

∫

c(x) |vn|
q(x)−2

vn (x) (vn (x)− v (x)) = 0

Since relation (4.10) holds true and (un, vn) ⇀ (u, v) in E. By [7, Lemma 3.1], we
deduce that (un, vn) → (u, v) in E.

Then since I ∈ C1(E,R),we conclude that

I ′ (un, vn) → I ′ (u, v) , as n → ∞ (4.11)

Relations (4.6) and (4.11) show that I ′ (u, v) = 0 and thus (u, v) is a weak
solution for (Pλ), Moreover, by relation (10), it follows that I (u, v) > 0 and (u, v)
is a nontrivial. ✷
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