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On a Nonlinear PDE Involving Weighted p-Laplacian

A. El Khalil, M.D. Morchid Alaoui, M. Laghzal and A. Touzani

abstract: In the present paper, we study the nonlinear partial differential equa-
tion with the weighted p-Laplacian operator

− div(w(x)|∇u|p−2∇u) =
f(x)

(1− u)2
,

on a ball Br ⊂ R
N (N ≥ 2). Under some appropriate conditions on the functions

f,w and the nonlinearity 1
(1−u)2

, we prove the existence and the uniqueness of so-

lutions of the above problem. Our analysis mainly combines the variational method
and critical point theory. Such solution is obtained as a minimizer for the energy
functional associated with our problem in the setting of the weighted Sobolev spaces.

Key Words:Weighted p-Laplacian operator, Sobolev spaces, Muckenhoupt
Weighted, Existence, Uniqueness of solutions.
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1. Introduction

Differential equations and variational problems have many applications in math-
ematical physics such as in the Micro-Electro Mechanical Systems(MEMS), in thin
film theory, nonlinear surface diffusion on solids, interface dynamics, flow in Hele-
Shaw cells, phase field models of multi-phase systems and the deformation of an
elastic beam, see for instance ( [10], [11]) or [16] and the references therein.

The most important linear partial differential equations of the second odrer are
governed by the celebrated Laplacian operator ∆. It is less well-known that is also
a nonlinear counterpart, the so called p-Laplacian defined by ∆pu = ∇(|∇u|p−2u).
At the critical points (∇u = 0), this prototype of nonlinear operator for p 6= 2
is degenerate for p > 2 and singular for p < 2. For p = 2, we just get the
usual Laplacian operator. During the last quarter of cycle the Partial differential
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equations governed by p-Laplacian have been much studied and its theory is by
now rather developed. The purpose of this paper is to established the existence
and uniqueness of the solutions for the following nonlinear elliptic equation with
the weighted p-Laplacian operator











− div(w(x)|∇u|p−2∇u) = f(x)
(1−u)2 in Br,

0 < u < 1 in Br,

u ∈ W 1,p
0 (Br, w),

(1.1)

where Br is an open ball in R
N (N ≥ 2), of radius r > 0 and centered at the

origin, 1 < p < ∞, w is a positive weight function locally integrable in R
N , i.e.,

w ∈ L1
loc(R

N )), f is a positive nonzero bounded continuous function. Notice that
the nonlinearity F (u) = 1

(1−u)2 is differentiable, increasing and convex on the

interval [0,1) with F (0) = 1 and lim
uր1

F (u) = +∞.

Our methode is more direct and is mainly based on the critical point theory.
For degenerate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted Sobolev
spaces ( [3], [4], [5], [8], [15]). The type of a weight depends on the equation type.

A class of weights, which is particularly well understood, is the class of Ap-
weights (or Muckenhoupt class) that was introduced by Muckenhoupt [8]. These
classes have found many useful applications in harmonic analysis in the linear case
[13] and [14]. Another reason for studying Ap-weights is the fact that powers of
the distance to submanifolds of RN often belong to Ap [1] and [15]. There are, in
fact, many interesting examples of weights [5].

In the particular case p = 2 with w(x) ≡ 1 and [2] studied the problem:











−∆u = λ f(x)
(1−u)2 in Ω,

0 < u < 1 in Ω,

u = 0 on ∂Ω,

(1.2)

The authors established the existence of a regular as well as a singular solution
to (1.2). This simple model, which lends itself to the vast literature on second order
quasi-linear eigenvalue problems, is already a rich source of interesting mathemat-
ical problems.

In the degenerate case, the weighted p-Laplacian operator has been studied [1]
and references cited there in.

Inspired by the above-mentioned papers, we study the existence and uniqueness
of solutions of problem (1.1) in a neighborhood of the origin. More precisely, under
some appropriate conditions on the functions f, w and the nonlinearity 1

(1−u)2 .

The paper is organized as follow. First, in Section 2, we recall and we prove
some preliminary results which will be used later. In Section 3, we establish the
existence and uniqueness of solutions for problem (1.1). Finally, the last Section,
we give an application illustrating our main results.
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2. Preliminary Results

Before we discuss some results concerning the problem (1.1), let us recall some
various definitions and basic properties of the weighted Sobolev spaces.

For convenience, let both dx and |.| stand for the( N -dimensional) Lebesgue
measure in R

N . As we shall always a positive weight a locally integrable function
on R

N . Every weight w gives rise to a measure on the measurable subsets of
R

N through integration. This measure will be denoted by µ, That is:

µ(E) =

∫

E

w(x)dx,

for a measurable set E ⊂ R
N .

2.1. Muckenhoupt weights.

We briefly recall some fundamentals on Muckenhoupt classes Ap.

Definition 2.1. Let w be a positive, locally integrable function on R
N

(i) Let 1 < p < ∞ ,Then w belongs to the Muckenhoupt class Ap, if there exists
a positive constant C = C(p, w) such that, for all balls B ⊂ R

N ,

( 1

|B|

∫

B

w(x) dx
)( 1

|B|

∫

B

w(x)−1/p−1 dx
)p−1

≤ C,

(ii) The Muckenhoupt class A∞ is given by A∞ =
⋃

p>1

Ap.

Remark 2.2. Since the pioneering works of Muckenhoupt [7] and [9] these classes
of weight functions have been studied in great detail. In present paper, we are only
concerned with the case p > 1.

Definition 2.3. (space of functions of bounded mean oscillation (BMO)).
Suppose that f is integrable over compact sets in R

N and that for any ball B ⊂ R
N ,

with volume denoted by |B|, the mean of f over B will be

fB =
1

|B|

∫

B

f(t)dt.

We say that f belongs to BMO if

||f ||∗ = sup
B

1

|B|

∫

B

|f(t)− fB|dt < ∞,

where the supremum is taken over all balls B. Here, ||f ||∗ is called the BMO-norm
of f , and it becomes a norm on BMO after dividing out the constant functions.

Remark 2.4. (i) Functions of bounded mean oscillation were introduced by F.
John and L. Nirenberg [6] and Simon [12].
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(ii) (the monotonicity) If 1 < p1 ≤ p2, then Ap1
⊂ Ap2

[4,5] and [15] for more
information about Ap-weights).

Example 2.5. (i). One of the most prominent examples of an Ap-weight is
w(x) = |x|α, x ∈ R

N ,−N < α < N(p − 1) given by [14]. An other example is
given by w(x) = eαϕ(x) which belongs in A2, whenever ϕ ∈ BMO(RN ) and the real
α > 0 [12].

Lemma 2.6. Let w ∈ Ap,where 1 < p < ∞,and let E be a measurable subsets of
a ball B. then

( |E|

|B|

)P

≤ C
µ(E)

µ(B)

where C is the Ap constant of w.

Proof: By writing 1 = w1/pw−1/p,Hölder’s inequality implies that

|E| ≤
(

∫

E

wdx
)1/p(

∫

E

w−1/p−1dx
)p−1/p

≤ µ(E)1/p|B|p−1/p
( 1

|B|

∫

E

w−1/p−1dx
)p−1/p

≤ C1/pµ(E)1/p|B|p−1/p
( 1

|B|

∫

E

wdx
)−1/p

= C1/p
(µ(E)

µ(B)

)1/p

|B|

(2.1)

✷

Remark 2.7. If µ(E) = 0, then |E| = 0.

2.2. Weighted Lebesgue and Sobolev spaces.

Definition 2.8. Let w be a positive weight. We shall denote by Lp(Ω, w); (1 ≤ p <
∞) the Banach space of all measurable functions f defined in Ω for which

||f ||p,Ω =
(

∫

Ω

|f(x)|pw(x)dx
)

1

p

< ∞.

Note that the dual space of Lp(Ω, w) is the space [Lp(Ω, w)]∗ = Lp′

(Ω, w∗)
where w∗ = w−1/p−1 and the conjugate index of p will be denoted by p′ in such a
way that (1/p+ 1/p′ = 1) .

Lemma 2.9. [15] If w ∈ Ap, 1 < p < ∞, then since w−1/(p−1) is locally integrable,
we have Lp(Ω, w) ⊂ L1

loc(Ω).

Proof: Suppose that f ∈ Lp(Ω, w), and let B ⊂ Ω be a ball. Thus Hölder’s
inequality implies that,

∫

B

|f(x)|dx =

∫

B

|f(x)|w(x)1/pw(x)−1/pdx

≤
(

∫

B

|f(x)|pw(x)dx
)1/p(

∫

B

(w(x)1/(1−p))dx
)1/p′
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It follows that Lp(Ω, w) ⊂ L1
loc(Ω) and that convergence in Lp(Ω, w) implies local

convergence in L1(Ω). ✷

Remark 2.10. (i) if Ω is bounded,one obtains in the same way that Lp(Ω, w)
is continuously embedded in L1(Ω).

(ii) by lemma 2.9, we make sense to talk about weak derivatives of functions in
Lp(Ω, w) .

Definition 2.11. Let Ω ⊂ R
N be a bounded open set, for 1 < p < ∞, w ∈ Ap and

a positive integer k, the weighted Sobolev spaces W k,p(Ω, w) is defined by

W k,p(Ω, w) := {u ∈ Lp(Ω, w) : Dαu ∈ Lp(Ω, w), 1 ≤ |α| ≤ k} (2.2)

endowed by the weighted norm

||u||k,p,Ω =
(

∫

Ω

|u(x)|pw(x)dx +
∑

1≤|α|≤k

∫

Ω

|Dαu(x)|pw(x)dx
)1/p

. (2.3)

We also define the space W k,p
0 (Ω, w) as the closure in W k,p(Ω, w) of C∞

0 (Ω)
with respect to the norm ||.||k,p,Ω.

Proposition 2.12. Let Ω ⊂ R
N be a bounded open set, 1 < p < ∞, k be a nonneg-

ative integer, suppose that w ∈ Ap. Then The spaces W k,p(Ω, w) and W k,p
0 (Ω, w)

are Banach spaces.

Remark 2.13. It is evident that a weight function w which satisfies 0 < C1 ≤
w(x) ≤ C2,for x ∈ Ω, gives nothing new (the space W k,p(Ω, w))is then identical
with the classical Sobolev space W k,p(Ω). Consequently, we shall be interested above
all in such weight functions w which either vanish somewhere in Ω∪∂Ω or increase
to infinity (or both).

In order to avoid too many suffices, at each step, a generic constant is denoted
by CBr

or C. we need the following basic result.

Theorem 2.14. (the weighted Imbedding theorem.)
Given 1 < p < ∞ and w ∈ Ap.There exist constants CBr

and δ positive such that
for all balls Br, all u ∈ C∞

0 (Br) and all numbers k satisfying 1 ≤ k ≤ N/(N−1)+δ,

||u||kp,Br
≤ CBr

‖∇u‖p,Br

Proof: A proof of the above statement can be found in Theorem
[3, Theorem1.2 ]. ✷

For k = 1 in the above inequality, we have

||u||p,Br
≤ CBr

||u||0,1,p. (2.4)
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where

||u||0,1,p = ||∇u||p,Br
:=

(

∫

Br

|∇u|p w dx
)1/p

(2.5)

Throughout this paper,we use the following definition:

Definition 2.15. Let Br ⊂ R
N be an open ball and w ∈ Ap,1 < p < ∞.We denote

by
X := W 1,p

0 (Br, w).

Define a norm ||.||X of X by

||u||X =
(

∫

Br

|∇u|pw(x)dx
)1/p

.

Then, endowed with ||.||X , X is a separable and reflexive Banach space.

3. Main Result

We need the following assumption.

(H)
f

w(1 − u)2
∈ Lp′

(Br, w).

Remark 3.1. (a) Regarding condition (H) and the fact that 0 < u < 1, for a.e.
x ∈ Br, w(x) > 0 and f(x) > 0, we have

f(x)

w(x)
(

1− u(x)
)2 ≥

f(x)

w(x)
(

1− u(x)
)

Then, for w ∈ Ap(with 1 < p < ∞), we have also

f

w(1 − u)
∈ Lp′

(Br, w).

(b) One of the most prominent examples of f(x), is given by the function

f(x) = β|x|α

where α ≥ 0 and β > 0.

Definition 3.2. A function u ∈ X is a weak solution of problem (1.1) if,and
only if: 0 < u < 1 almost everywhere in Br and

∫

Br

w(x)|∇u|p−2∇u∇v dx =

∫

Br

f(x)

(1 − u)2
v dx for all v ∈ X. (3.1)

Now, we are ready to state our main theorem of this paper.

Theorem 3.3. Assume that (H) holds. If w ∈ Ap(with 1 < p < ∞) Then the
problem (1.1) has a unique solution u ∈ X.
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Let now define the energy functionals : Φ,Ψ, I : X → R by:

Φ(u) =
1

p

∫

Br

|∇u|pw(x) dx,

Ψ(u) =

∫

Br

f(x)u

(1 − u)
dx,

I(u) = Φ(u)−Ψ(u),

In order to prove Theorem 3.3, we need the following auxillary lemma.

Lemma 3.4. We have the following statements

(a) Ψ is weakly lower semi-continuous,Ψ ∈ C1(X,R),and

〈Ψ′(u), v〉 =

∫

Br

f

(1− u)2
v dx

for all u, v ∈ X.

(b) Φ is weakly lower semi-continuous, Φ ∈ C1(X,R),and

〈Φ′(u), v〉 =

∫

Br

|∇u|p−2∇u∇v w(x) dx

for all u, v ∈ X.

Proof: We start first by showing that Ψ ∈ C1(X,R), that is, for all h ∈ X ,

lim
t→0

Ψ(u+ th)−Ψ(u)

t
= 〈dΨ(u), h〉,

and dΨ : X → X∗ is continuous, where we denote by X∗ the dual space of X .
For all h ∈ X ,we have

lim
t→0

Ψ(u+ th)−Ψ(u)

t
=

d

dt

(

Ψ(u+ th)
)

∣

∣t=0

=
( d

dt

∫

Br

f(x)
(u + th)

(1 − u− th)
dx

)

∣

∣t=0

=

∫

Br

d

dt

(

f(x)
(u+ th)

(1− u− th)

)

∣

∣

∣
t=0

dx

=

∫

Br

f(x)
(h[(1− u− th) + (u+ th)]

(1− u− th)2

)

∣

∣

∣
t=0

dx

=

∫

Br

hf(x)

(1− u)2
dx

= 〈dΨ(u), h〉
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Using condition (H) and Hölder’s inequality, we obtain

∫

Br

hf(x)

(1− u)2
dx ≤

(

∫

Br

|
f

w(1 − u)2
|p

′

wdx
)

1

p′
(

∫

Br

|h|pwdx
)

1

p

=
∣

∣

∣

∣

∣

∣

f

w(1− u)2

∣

∣

∣

∣

∣

∣

p′,Br

||h||p,Br

=
∣

∣

∣

∣

∣

∣

f

w(1− u)2

∣

∣

∣

∣

∣

∣

p′,Br

||h||X

< +∞.

Then

|〈dΨ(u), h〉| =
∣

∣

∣

∫

Br

hf(x)

(1− u)2
dx

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

f

w(1 − u)2

∣

∣

∣

∣

∣

∣

p′,Br

||h||p,Br

≤ C||h||p,Br
.

Using the linearity of dΨ(u) and the above inequality, we deduce that dΨ(u) ∈ X∗.
Note that the function u 7→ 1

(1−u)2 is continuous. So, we conclude that Ψ is Fréchet

differentiable. Furthermore,

〈Ψ′(u), v〉 =

∫

Br

f(x)

(1− u)2
v dx,

for all u, v ∈ X .
By the continuity and the convexity of Ψ, we deduce that Ψ is weakly lower semi-
continuous .
(b) Similarly, we can also prove that Φ ∈ C1(X,R). Moreover since 1 < p < ∞
and in view of the weakly lower semi-continuity of the norm , we deduce that Φ is
lower semi-continuous for the weak convergence. Furthermore,

〈Φ′(u), v〉 =

∫

Br

|∇u|p−2∇u∇v w(x) dx

for all u, v ∈ X. Which gives the Fréchet differentiability of Φ. ✷

Proof: of Theorem 3.3
Our aim is to obtain a minimizer as the limit of a minimizing sequence {un} of

the Euler-Lagrange functional Ip, which is a weak solution of problem (1.1).

We will divide the proof into five steps.
Step 1. We shall prove that

inf{I(u)|u ∈ X} > −∞.
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Thanks to hypothesis (H) and Hölder’s inequality, we have

|Ψ(u)| ≤
(

∫

Br

|
f

w(1 − u)
|p

′

wdx
)

1

p′
(

∫

Br

|u|pwdx
)

1

p

=
∣

∣

∣

∣

∣

∣

f

w(1 − u)

∣

∣

∣

∣

∣

∣

p′,Br

||u||p,Br
.

(3.2)

By Theorem 2.14, there exists a constant CBr
> 0 such that

||u||p,Br
≤ CBr

‖∇u‖p,Br
.

Bearing in mind our definition of norm, then (3.2) implies

|Ψ(u)| ≤ CBr

∣

∣

∣

∣

∣

∣

f

w(1 − u)

∣

∣

∣

∣

∣

∣

p′,Br

||u||X .

Young’s inequality yields

|Ψ(u)| ≤
1

p
||u||pX +

1

p′
[CBr

∣

∣

∣

∣

∣

∣

f

w(1 − u)

∣

∣

∣

∣

∣

∣

p′,Br

]p
′

. (3.3)

On the other hand, we have

Φ(u) =
1

p

∫

Br

|∇u|pw(x) dx =
1

p
||u||pX . (3.4)

In view of (3.3) and (3.4), we deduce that

I(u) ≥ Φ(u)− |Ψ(u)|.

≥
1

p
||u||pX −

1

p
||u||pX −

1

p′
[CBr

∣

∣

∣

∣

∣

∣

f

w(1 − u)

∣

∣

∣

∣

∣

∣

p′,Br

]p
′

.
= −

1

p′
[CBr

∣

∣

∣

∣

∣

∣

f

w(1 − u)

∣

∣

∣

∣

∣

∣

p′,Br

]p
′

,

that is, I is bounded from below. This completes step 1.
Step 2. We shall prove that any minimizing sequence is bounded in X
Let {un} be a minimizing sequence, that is, a sequence such that

I(un) → inf
ϕ∈X

I(ϕ)

and satisfies (H).
Then for n large enough, we obtain that

0 ≥ I(un) =
1

p

∫

Br

|∇un|
pw dx−

∫

Br

fun

(1 − un)
dx,
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and we get by applying Theorem 2.14

||un||
p
X ≤ p (

∫

Br

fun

(1− un)
dx)

≤ p
∣

∣

∣

∣

∣

∣

f

w(1 − un)

∣

∣

∣

∣

∣

∣

p′,Br

||un||p,Br

≤ p CBr

∣

∣

∣

∣

∣

∣

f

w(1 − un)

∣

∣

∣

∣

∣

∣

p′,Br

||un||X .

Therefore

||un||X ≤
[

p CBr
||

f

w(1 − un)
||p′,Br

]
1

p−1

.

Hence un is bounded in X . By the reflexivity of the space X , there exists a
function u ∈ X such that un ⇀ u in X (for a subsequence if necessary).
Step 3. We shall prove that I is weakly lower semi-continuous.
By (a) and (b) of Lemma 3.4, I is weakly lower semi-continuous, I ∈ C1(X,R). It
follows that

I(u) ≤ lim
n

inf I(un) = inf
u∈X

I(u),

and thus u is a minimizer of I on X .
Step 4. We shall prove that u is a minimizer of I and it’s equivalently a weak
solution of problem (1.1).
For any ϕ ∈ X , the function

θ 7→
1

p

∫

Br

|∇(u + θv)|p w(x)dx −

∫

Br

(u+ θv)f

(1 − u− θv)
dx.

has a minimum at θ = 0. Hence

d

dθ
I(u + θv)|θ=0 = 0, ∀v ∈ X.

By expanding the terms of the functional d
dθ I(u+ θv)|θ=0 = 0, we get

d

dθ

(

Φ(u+ θv)
)

∣

∣

∣
θ=0

=
( d

dθ

1

p

∫

Br

(|∇(u+ θv)|pw(x)dx
)

∣

∣

∣
θ=0

=
1

p

∫

Br

d

dθ

(

|∇(u+ θv)|pw(x)
)

∣

∣θ=0
dx

=
1

p

∫

Br

p
(

|∇(u+ θv)|p−2(∇u+ θ∇v)∇v w(x)
)

∣

∣

∣
θ=0

dx

=

∫

Br

|∇u|p−2∇u∇v w(x)dx

(3.5)
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and

d

dθ

(

Ψ(u+ θv)
)

∣

∣

∣
θ=0

=
( d

dθ

∫

Br

f(x)
(u+ θv)

(1 − u− θv)
dx

)

∣

∣

∣
θ=0

=

∫

Br

d

dθ
f(x)

(u + θv)

(1 − u− θv)

)

∣

∣

∣
θ=0

dx

=

∫

Br

f(x)
(v[(1 − u− θv) + (u+ θv)]

(1− u− θv)2

)

|θ=0dx

=

∫

Br

vf(x)

(1− u)2
dx.

(3.6)

Combining (3.5) and (3.6), we obtain that

0 =
d

dθ
I(u+ θv)|θ=0

=

∫

Br

|∇u|p−2∇u∇vw(x)dx −

∫

Br

vf(x)

(1− u)2
dx

Therefore
∫

Br

|∇u|p−2∇u∇vw(x)dx =

∫

Br

vf(x)

(1− u)2
dx, ∀ v ∈ X.

In other words u is a weak solution of problem (1.1).
Step 5. We claim that the limit function u is unique.

It is clear that u is a weak solution of problem (1.1) if and only if u is a critical
point of I, thus Φ′(u) = Ψ′(u). The operator Φ′ : X −→ X∗ defined as :

〈Φ′, ϕ〉 =

∫

Br

|∇u|p−2∇u∇ϕw(x) dx, for any u, ϕ ∈ X.

We shall prove that Φ′ is strictly monotone. Let u, v ∈ X are two weak solutions
of problem (1.1), with u 6= v in X .

We recall the following well-known inequalities [12], which hold for every a, b ∈
R

N

(

a|a|p−2 − b|b|p−2
)

(a− b) ≥ c(p)







|a− b|p, if p ≥ 2
|a− b|2

(|a|+ |b|)
2−p , if 1 < p < 2,

(3.7)

where the constant c(p) = min(22−p, p− 1).
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We can easily obtain that

〈Φ′(u)− Φ′(v), u − v〉 = 〈Φ′(u), u− v〉 − 〈Φ′(v), u − v〉

=

∫

Br

|∇u|p−2∇u
(

∇u−∇v
)

w(x)dx

−

∫

Br

|∇v|p−2∇v
(

∇u−∇v
)

w(x)dx

=

∫

Br

(

|∇u|p−2∇u− |∇v|p−2∇v
)(

∇u−∇v
)

w(x)dx

≥ c(p)















∫

Br

|∇u−∇v|pw(x)dx, if p ≥ 2
∫

Br

|∇u−∇v|2

(|∇u|+ |∇v|)2−pw(x)dx, if 1 < p < 2,

≥ 0
(3.8)

Which means that Φ′ is monotone. In fact,Φ′ is strictly monotone.
Indeed,if 〈Φ′(u) − Φ′(v), u − v〉 = 0, then we have ∇u = ∇v µ − a.e., Thus, we
obtain

〈Φ′(u)− Φ′(v), u− v〉 = 〈Φ′(u), u− v〉 − 〈Φ′(v), u− v〉

=

∫

Br

|∇u|p−2
(

(∇u)2 −∇u∇v
)

w(x)dx

−

∫

Br

|∇v|p−2
(

∇u∇v − (∇v)2
)

w(x)dx

=

∫

Br

|∇u|p−2
(

(∇u)2 + (∇v)2 − 2∇u∇v
)

w(x)dx

=

∫

Br

|∇u|p−2
(

∇u−∇v
)2

w(x)dx

= 0

Now we distinguish two cases with respect to the values of the exponent p which
related to the singularity of the p-Laplacian at the points where the divergence
vanishes.

Case 1. If 1 < p < 2,(3.8) follows that ∇u = ∇v µ−a.e. and since u, v ∈ X ,then
u = v a.e. (by Lemma 2.6),which is a contradiction.

Case 2. If p ≥ 2,(3.8) implies that ∇u = ∇v µ − a.e. which contradicts u 6= v
in X , or |∇u| = 0.

Suppose that |∇u| = 0, in view of ∇u = ∇v µ− a.e.,we get u = v a.e,which is
a contradiction again.
Therefore,〈Φ′(u) − Φ′(v), u − v〉 > 0. It follows that Φ′ is a strictly monotone
operator on X and the problem (1.1) has a unique solution u ∈ X . Then, step 5 is
verified and the proof of Theorem 3.3 is now acheived. ✷
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4. Application

It is instructive to consider an example. We briefly present a typical leading
applications of the our results.











− div(w(z)|∇u(z)|∇u(z)) = f
(1−u(z))2 in Ω,

0 < u < 1 in Ω,

u ∈ W 1,3
0 (Ω, w),

(4.1)

Theorem 4.1. Let Ω denote the unit ball in R
2 and p = 3.Consider the radial

functions w, f and S defined as

w(x, y) = (x2 + y2)−1/4,

f(x, y) = 1/2(x2 + y2)1/4,

and
S(x, y) = 1− (x2 + y2)1/2

for all z = (x, y) ∈ Ω.
Then u is a unique decreasing solution of problem (4.1) in W 1,3

0 (Ω, w).

Proof: To simplity the notation, Let r = |z|.So

w(r) = r−1/2

f(r) = 1/2 r1/2

and
S(r) = 1− r.

Now, we can verify our required conditions: for p = 3 and p′ = 3/2, we have by a
simple calculation w ∈ A3 − weight.
(ii).

∫ 2π

0

∫ 1

0

∣

∣

∣

f(r)

w(r)(1 − S(r))2

∣

∣

∣

3/2

rdrdθ = 2π

∫ 1

0

|
1/2 r1/2

r−1/2r2
|3/2rdr

= 2π
1

23/2

∫ 1

0

1

r1/2
dr

< ∞.

Then f
w(1−S(r))2 ∈ L3/2(Ω, w) and (H) is satisfied.

(iii).

∫ 2π

0

∫ 1

0

∣

∣

∣

f

w(x)(1 − S(r))

∣

∣

∣

3/2

rdrdθ = 2π

∫ 1

0

(

1/2 r1/2
)3/2

r
(

r−1/2 r
)3/2

dr

=
π

23/2
< ∞.
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Then f
w(1−S(r)) ∈ L2(Ω, w) and(H) is verified, Consequently our Theorem 3.3

implies that S is a unique solution for problem (4.1).
Moreover, S′(r) = −1 < 0 then S is a unique radially decreasing solution of problem
(4.1).

On the other hand, the divergence equation for radial function is given by:

div
−→
V =

1

r

d

dr

[

rVr

]

,

where
−→
V = Vr

−→er .

Now, for the particular vector function
−→
V = w(r)|∇u(r)|∇u(r)−→er .Its divergence

is defined as follows

div(w(r)|∇u(r)|∇u(r)) =
1

r

d

dr

[

− r r−1/2
]

=
1

r
(−1/2 r−1/2)

= −
1

2 r3/2
.

(4.2)

On the other hand the second term of the equation is

f

(1 − S(r))2
=

1

2 r3/2
. (4.3)

In view of (4.2) and (4.3),we have

− div(w(r)|∇u(r)|∇u(r)) =
f

(1 − S(r))2
.

Which proves the result of theorem 4.1.
✷
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