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NEW FORMS OF µ-COMPACTNESS WITH RESPECT TO

HEREDITARY CLASSES

ABDO QAHIS

Abstract. A hereditary class on a set X is a nonempty collection of subsets
closed under heredity. The aim of this paper is to introduce and study strong

forms of µ-compactness in generalized topological spaces with respect to a

hereditary class, called SµH-compactness and S − SµH-compactness. Also
several of their properties are presented. Finally some effects of various kinds

of functions on them are studied.

1. Introduction

This work is developed around the concept of µ-compactness with respect a
hereditary class which was introduced by Carpintero, Rosas, Salas-Brown and
Sanabria in [4]. In this research, we use the notions of generalized topology and
hereditary class introduced by Császár in [1] and [2], respectively, in order to define
and characterize the SµH-compactness and S − SµH-compactness spaces. Also
some properties of these spaces are obtained and the behavior of these spaces un-
der certain kinds of functions also is investigated. The strategy of using generalized
topologies and hereditary classes to extend classical topological concepts have been
used by many authors such as [2], [6], [9], [14], among others.

2. Preliminaries

Let X be a non-empty set and 2X denote the power set of X. We call a class
µ ⊆ 2X a generalized topology [1] (briefly, GT) if φ ∈ µ and arbitrary union of
elements of µ belongs to µ. A set X with a GT is called a generalized topological
space (briefly, GTS) and is denoted by (X,µ). For a GTS (X,µ), the elements of µ
are called µ-open sets and the complement of µ-open sets are called µ-closed sets.
For A ⊆ X, we denote by cµ(A) the intersection of all µ-closed sets containing A,
i.e., the smallest µ-closed set containing A and by iµ(A) the union of all µ-open
sets contained in A, i.e., the largest µ-open set contained in A (see [1], [3]). Let
A ⊂ X. A family C of subsets of X is called a µ-covering of A if C is a covering of A
by µ-open sets [5]. A subset A of X is said to be µ-compact if for every µ-covering
{Vα : α ∈ Λ} of A there exists a finite subfamily {Vα : α ∈ Λ0} that also covers A.
X is said to be µ-compact if X is µ-compact as a subset [5].

A nonempty family H of subsets of X is called a hereditary class [2] if A ∈ H
and B ⊂ A imply that B ∈ H. Given a generalized topological space (X,µ) with
a hereditary class H, for a subset A of X, the generalized local function of A with
respect toH and µ [2] is defined as follows: A∗ = {x ∈ X : U∩A /∈ H for all U ∈
µx}, where µx = {U : x ∈ U and U ∈ µ}. And for A a subset of X, is defined:
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c∗µ(A) = A ∪ A∗. The family µ∗ = {A ⊂ X : X \ A = c?µ(X \ A)} is a GT on
X. The elements of µ∗ are called µ∗-open and the complement of a µ∗-open set is
called µ∗-closed set. It is clear that a subset A is µ∗-closed if and only if A∗ ⊂ A.
If the hereditary class H satisfies the additional condition: if A,B ∈ H implies
A ∪ B ∈ H, then H is called an ideal on X [7]. We call (X,µ,H) a hereditary
generalized topological space and briefly we denote it by HGTS. If (X,µ,H) is a
HGTS, the set B = {V \ H : V ∈ µ and H ∈ H} is a base for a GT µ∗, finer
than µ [2]. If there is no confusion, we simply write A∗ instead of A∗(H, µ).

Definition 2.1. [1] Let (X,µ) and (Y, ν) be two GTSs, then a function f : (X,µ)→
(Y, ν) is said to be (µ, ν)-continuous if U ∈ ν implies f−1(U) ∈ µ.

Definition 2.2. [13] A function f : (X,µ) → (Y, ν) is (µ, ν)-open (or µ-open) if
U ∈ µ implies f(U) ∈ ν.

Definition 2.3. Let (X,µ) be a GTS. Then a subset A of X is called a µ-generalized
closed set (in short, µg-closed set)[10] if cµ(A) ⊆ U whenever A ⊆ U where U is
µ-open in X. The complement of a µg-closed set is called a µg-open set.

Theorem 2.4. [2] Let (X,µ) be a GTS and H be a hereditary class on X and A
a subset of X, then A∗ ⊂ cµ(A).

Theorem 2.5. [2] Let (X,µ) be a GTS, H a hereditary class on X and A be a
subset of X. If A is µ∗-open, then for each x ∈ A there exist U ∈ µx and H ∈ H
such that x ∈ U \H ⊂ A.

3. SµH-Compactness Spaces

We recall that a subset A of a HGTS (X,µ,H) is said to be µH-compact [4], if for
every µ-open cover {Vα : α ∈ Λ} of A by elements of µ, there exists a finite subset
Λ0 of Λ such that A\

⋃
α∈Λ0

Vα ∈ H. The HGTS (X,µ,H) is said to be µH-compact

if X is µH- compact as a subset.

Definition 3.1. Let (X,µ) be a GTS and H be a hereditary class on X. A subset
A of X is said to be strong µH-compact (briefly SµH-compact) if for every family
{Vα : α ∈ Λ} of µ-open subsets of X with A \

⋃
α∈Λ

Vα ∈ H then there exists a finite

subset Λ0 of Λ such that A\
⋃

α∈Λ0

Vα ∈ H. The HGTS (X,µ,H) is said to be strong

µH-compact (briefly SµH-compact) if X is SµH-compact as a subset.

Remark 3.2. (1) It is clear that (X,µ) is µ-compact if and only if (X,µ, {φ})
is Sµ{φ}-compact.

(2) If (X,µ,H) is SµH-compact then (X,µ,H) is µH-compact. The converse
is not true as shown by the following example.

Example 3.3. Let X = [−5, 5], µ = {φ, X} ∪
{(

1
r − 5, 5

)
: r ∈ Z+

}
and H =

{A : A ⊂ [−5, 5] ∩ Z}, then:

(1) (X,µ,H) is µH-compact, because if {Vα : α ∈ Λ} is an µ-covering of X,
then there exists α0 ∈ Λ with Vα0

= X, and so X \ Vα0
= φ ∈ H.

(2) (X,µ,H) is not SµH-compact, because X \
∞⋃
r=1

(
1
r − 5, 5

)
= {−5, 5} ∈ H,

but if k is a positive integer there exist a finite set n1, ..., nk. If we take
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N = max{n1, ..., nk} then

X \
k⋃
i=1

(
1

ri
− 5, 5

)
= X \

(
1

N
− 5, 5

)
/∈ H.

Definition 3.4. A subset A of a HGTS (X,µ,H) is said to be µHg-closed if for
every U ∈ µ with A \ U ∈ H then cµ(A) ⊆ U .

Remark 3.5. It is clear that A is µ{φ}g-closed if and only if A is µg-closed. We
note that if A is µHg-closed then A is µg-closed. The converse is not true as shown
by the following examples.

Example 3.6. Let X = R and µ = {φ,R} ∪ {(r,+∞) : r ∈ R}. The hereditary
class on R,

H = {B : B ⊆ Q ∩ (0,+∞) or B ⊆ Q ∩ (−∞, 0]}.
If A = Q, then:

(1) A is µg-closed because if U ∈ µ and A ⊆ U , then U = R and so cµ(A) =
R ⊆ U ;

(2) A is not µHg-closed since A \ (0,+∞) ∈ H, but cµ(A) = R 6⊆ (0,+∞).

Example 3.7. If X = {a, b, c, d}, µ = {φ, {a}, {b}, {a, b}, X}, H = {φ, {a}, {b}, {a, b}}
and A = {c}, then A is µHg-closed because if U ∈ µ and A \ U ∈ H, we have that
A ⊆ U , and so U = X and cµ(A) ⊆ U .

Proposition 3.8. Let (X,µ,H) be a HGTS and B be a base for µ. Then the
following are equivalent:

(1) (X,µ,H) is SµH-compact;
(2) for any family {Vα : α ∈ Λ} of µ-open sets in B, if X \

⋃
α∈Λ

Vα ∈ H then

there exists Λ0 ⊆ Λ, finite, with X \
⋃

α∈Λ0

Vα ∈ H.

Proof. (1)⇒ (2): Let {Vα : α ∈ Λ} be a family of non-empty µ-open subsets of X
such that X \

⋃
α∈Λ

Vα ∈ H. For each α ∈ Λ there exists a family {Bαβ : β ∈ Λα} ⊆ B

such that Vα =
⋃

β∈Λα

Bαβ . Given that X \
⋃
α∈Λ

Vα = X \
⋃
α∈Λ

( ⋃
β∈Λα

Bαβ

)
∈ H

and (X,µ,H) is SµH-compact there exist Bα1β1
, Bα2β2

, ..., Bαkβk such that X \
k⋃
i=1

Bαiβi ∈ H. But X \
k⋃
i=1

Vk ⊆ X \
k⋃
i=1

Bαiβi and so X \
k⋃
i=1

Vk ∈ H.

(2)⇒ (1): It is obvious. �

Theorem 3.9. If (X,µ,H) is a HGTS then the following are equivalent:

(1) (X,µ,H) is SµH-compact;
(2) For any family {Fα : α ∈ Λ} of µ-closed subsets of X such that ∩{Fα : α ∈

Λ} ∈ H, there exists a finite subset Λ0 of Λ such that ∩{Fα : α ∈ Λ0} ∈ H.

Proof. (1)⇒ (2): Let {Fα : α ∈ Λ} be a family of µ-closed subsets of X such that
∩{Fα : α ∈ Λ} ∈ H. Then {X \Fα : α ∈ Λ} is a family of µ-open subsets of X. Let
∩{Fα : α ∈ Λ} = H ∈ H. Then X \ ∩{Fα : α ∈ Λ} = ∪{X \ Fα : α ∈ Λ} = X \H.
By (1) since (X,µ,H) is SµH-compact, X \ ∪{X \ Fα : α ∈ Λ} ∈ H and there
exists a finite subset Λ0 of Λ, such that X \ ∪{X \ Fα : α ∈ Λ0} ∈ H. This implies
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that ∩{Fα : α ∈ Λ0} ∈ H.
(2)⇒ (1): Let {Vα : α ∈ Λ} be any family of µ-open subsets of X. Then {X \ Vα :
α ∈ Λ} is a family of µ-closed subsets of X. By (2) we have ∩{X \Vα : α ∈ Λ} ∈ H.
Thus X \ ∪{Vα : α ∈ Λ} ∈ H. Since, ∩{X \ Vα : α ∈ Λ0} ∈ H, then X \ ∪{Vα : α ∈
Λ0} ∈ H. This shows that (X,µ,H) is SµH-compact. �

Proposition 3.10. If (X,µ,H) is a HGTS and H is an ideal, then the following
are equivalent:

(1) (X,µ,H) is SµH-compact;
(2) (X,µ∗,H) is SµH-compact.

Proof. (1) ⇒ (2): The set B = {U \ H : U ∈ µ and H ∈ H} is a base for µ∗.
Let {Vα : α ∈ Λ} be a family of µ∗-open subsets of X. For some x ∈ X, there
exists αx ∈ Λ such that x ∈ Vαx . Then there exist Uαx ∈ µx and Hαx ∈ H such
that x ∈ Uαx \ Hαx ⊂ Vαx . Now {Uαx : αx ∈ Λ} is a family of µ-open subsets
of X. Since X \

⋃
αx∈Λ

Uαx ∈ H then there exists a finite subset Λ0 of Λ such that

X \
⋃

αx∈Λ0

Uαx ∈ H. Hence, H ∪
⋃

αx∈Λ0

Hαx ∈ H.

Observe that X \
⋃

αx∈Λ0

Vαx ⊆ H ∪
⋃

αx∈Λ0

Hαx ∈ H. By the heredity property of the

class H we have X \
⋃

αx∈Λ0

Vαx ∈ H and therefore (X,µ∗,H) is SµH-compact.

(2)⇒ (1): It is obvious. �

Next we study the behavior of some types of subspaces of a SµH-compact space
relative to X.

Theorem 3.11. If (X,µ,H) is SµH-compact and A ⊆ X is µHg-closed, then A
is SµH-compact.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A \⋃
α∈Λ

Vα ∈ H. Since A is is µHg-closed, cµ(A) ⊆
⋃
α∈Λ

Vα. Then (X \ cµ(A)) ∪⋃
α∈Λ

Vα is a µ-covering of X and so X \
[
X \ cµ(A) ∪ (

⋃
α∈Λ

Vα)

]
= φ ∈ H. Given

that X is SµH-compact, there exists a finite subset Λ0 of Λ, such that X \[
X \ cµ(A) ∪ (

⋃
α∈Λ0

Vα)

]
∈ H. Since,

X \
⋃
α∈Λ0

Vα ⊆ X \

[
X \ cµ(A) ∪ (

⋃
α∈Λ0

Vα)

]
, then X \

⋃
α∈Λ0

Vα ∈ H.

In any case X \

[
X \ cµ(A) ∪ (

⋃
α∈Λ0

Vα)

]
∈ H. But X \

[
X \ cµ(A) ∪ (

⋃
α∈Λ

Vα)

]
=

cµ(A) ∩ (X \
⋃
α∈Λ

Vα) and since A \
⋃

α∈Λ0

Vα ⊆ cµ (A) \
⋃

α∈Λ0

Vα we have that A \⋃
α∈Λ0

Vα ∈ H. Thus A is SµH-compact. �

Theorem 3.12. If A and B are SµH-compact subsets of a HGTS (X,µ,H), and
H is an ideal then A ∪B is SµH-compact.
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Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A ∪ B \⋃
α∈Λ

Vα ∈ H. Since, A \
⋃
α∈Λ

Vα ⊆ A ∪B \
⋃
α∈Λ

Vα and B \
⋃
α∈Λ

Vα ⊆ A ∪B \
⋃
α∈Λ

Vα

then A \
⋃
α∈Λ

Vα ∈ H and B \
⋃
α∈Λ

Vα ∈ H. Since A and B are SµH-compact, then

there exists finite subsets Λ0 and Λ1 of Λ with A \
⋃

α∈Λ0

Vα ∈ H and B \
⋃

α∈Λ1

Vα ∈

H. This implies that A \
⋃

α∈Λ0∪Λ1

Vα ∈ H and B \
⋃

α∈Λ0∪Λ1

Vα ∈ H and since

H is an ideal we have that

(
A \

⋃
α∈Λ0∪Λ1

Vα

)
∪

(
B \

⋃
α∈Λ0∪Λ1

Vα

)
∈ H. Thus

A ∪B \
⋃

α∈Λ0∪Λ1

Vα ∈ H. So A ∪B is SµH-compact. �

The following example shows that the previous theorem does not hold when H
is just a hereditary class, not an ideal.

Example 3.13. Let R be the set of real numbers, µ the usual topology, H = {A ⊂
R : A ⊂ (1, 2) or A ⊂ (2, 3)} and if A = (1, 2) and B = (2, 3), then:
(1) It is clear that A = (1, 2) and B = (2, 3) are SµH-compact subsets.
(2) A ∪ B is not SµH-compact if {(1 + 1

n , 3 −
1
n ) : n ∈ Z+} is a family of µ-open

subsets of X, A ∪ B \
∞⋃
n=1

(
1 + 1

n , 3− 1
n

)
= A ∪ B \ (1, 3) = φ ∈ H, but if we

choose a finite set n1, ..., nk and take N = max{n1, ..., nk}, follows that A ∪ B \
k⋃
i=1

(
1 + 1

ni
, 3− 1

ni

)
= A∪B \

(
1 + 1

N , 3− 1
N

)
=
(
1, 1 + 1

N

]
∪
[
3− 1

N , 3
)
/∈ H.

Theorem 3.14. Let (X,µ,H) be a HGTS and A ⊆ X. If A \ U ∈ H for every
U ∈ µ then there exists B ⊆ X such that B is SµH-compact, A ⊆ B and B\U ∈ H.
Then A is SµH-compact.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A \
⋃
α∈Λ

Vα ∈

H. There exists B ⊆ X such that B is SµH-compact, A ⊆ B and B \
⋃
α∈Λ

Vα ∈ H.

There exists a finite subset Λ0 of Λ with B \
⋃

α∈Λ0

Vα ∈ H. Since, A \
⋃

α∈Λ0

Vα ⊆

B \
⋃

α∈Λ0

Vα we have that A \
⋃

α∈Λ0

Vα ∈ H. �

Theorem 3.15. If (X,µ,H) is a HGTS, A ⊆ B ⊆ X, B ⊆ cµ(A) and A is
µHg-closed then the following statements equivalent:

(1) A is SµH-compact;
(2) B is SµH-compact.

Proof. (1) ⇒ (2): Suppose that A is SµH-compact and {Vα : α ∈ Λ} be a family
of µ-open subsets of X such that B \

⋃
α∈Λ

Vα ∈ H. By the heredity property,

A \
⋃
α∈Λ

Vα ∈ H and given that A is SµH-compact there exists Λ0 ⊆ Λ, finite, such

that A \
⋃

α∈Λ0

Vα ∈ H. Since A is µHg-closed, cµ(A) ⊆
⋃

α∈Λ0

Vα and so cµ(A) \⋃
α∈Λ0

Vα ∈ H. This implies that B \
⋃

α∈Λ0

Vα ∈ H.

(2)⇒ (1): Suppose that B is SµH-compact and {Vα : α ∈ Λ} be a family of µ-open
subsets of X such A \

⋃
α∈Λ

Vα ∈ H. Given that A is µHg-closed, cµ(A) \
⋃
α∈Λ

Vα =
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φ ∈ H and this implies B \
⋃
α∈Λ

Vα ∈ H. Since B is SµH-compact, there exists

Λ0 ⊆ Λ, finite, with B \
⋃

α∈Λ0

Vα ∈ H. Hence A \
⋃

α∈Λ0

Vα ∈ H. �

A GTS (X,µ) is said to be µ-Hausdroff [11] for each pair of distinct points x and
y in X, there exist µ-open sets Ux and Vy containing x and y, respectively, such
that Ux ∩ Vy = φ.

Theorem 3.16. [8] Every µH-compact subset of a µ-Hausdroff HGTS (X,µ,H) is
µ∗-closed.

The following theorem is consequence of the above theorem

Theorem 3.17. Let (X,µ,H) be a HGTS such that (X,µ) is µ-Hausdroff. If A is
a SµH-compact subset of X, then A is closed in (X,µ∗).

Now we study the behavior of SµHcompactness under certain types of functions.

Theorem 3.18. If (X,µ,H) is SµH-compact, f : (X,µ) → (Y, ν) is a (µ, ν)-
continuous function and if G = {B ⊆ Y : f−1(B) ∈ H} then:

(1) G is a hereditary class on Y .
(2) (Y, ν,G) is SµH-compact.

Proof. (1) Suppose that A ⊆ B ⊆ Y and B ∈ G . Since f−1(A) ⊆ f−1(B) ∈ H,
then f−1(A) ∈ H, and so A ∈ G.
(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of Y such that Y \

⋃
α∈Λ

Vα ∈ G.

Since X \
⋃
α∈Λ

f−1 (Vα) = f−1

(
Y \

⋃
α∈Λ

Vα

)
∈ H and (X,µ,H) is SµH-compact,

there exists a finite subset Λ0 of Λ with f−1

(
Y \

⋃
α∈Λ0

Vα

)
= X \

⋃
α∈Λ0

f−1 (Vα) ∈

H. Thus Y \
⋃

α∈Λ0

Vα ∈ G. �

The following lemma is very useful in studying the preservation of SµH-compact
by certain classes of functions

Lemma 3.19. [4] Let f : (X,µ)→ (Y, ν) be a function. If H is a hereditary class
on X, then f(H) = {f(H) : H ∈ H} is a hereditary class on Y .

Theorem 3.20. If (X,µ,H) is SµH-compact and f : (X,µ)→ (Y, ν) is a bijective
(µ, ν)-continuous function, then (Y, ν, f(H)) is Sυf(H)-compact.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of Y such that Y \
⋃
α∈Λ

Vα ∈

f(H). There exists H ∈ H with Y \
⋃
α∈Λ

Vα = f(H). Then H = f−1(f(H)) =

X \
⋃
α∈Λ

f−1 (Vα) ∈ H. Given that (X,µ,H) is SµH-compact, there exists a finite

subset Λ0 of Λ, with f−1

(
Y \

⋃
α∈Λ0

Vα

)
= X \

⋃
α∈Λ0

f−1(Vα) ∈ H. Thus Y \⋃
α∈Λ0

Vα = f(f−1(Y \
⋃

α∈Λ0

Vα)) ∈ f(H). �

Corollary 3.21. If f : (X,µ)→ (Y, ν) is a bijective µ-open function and (Y, ν,G)
is SυG- compact, then (X,µ, f−1(G)) is Sµf−1(G)-compact
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Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that X \
⋃
α∈Λ

Vα ∈

f−1(G). There exists G ∈ G with X \
⋃
α∈Λ

Vα = f−1 (G). Then Y \
⋃
α∈Λ

f (Vα) =

f(f−1(G)) = G ∈ G, and given that (Y, ν,G) is SυG-compact then there exists a
finite subset Λ0 of Λ with f(X \

⋃
α∈Λ0

Vα) = Y \
⋃

α∈Λ0

f (Vα) ∈ G. This implies that

X \
⋃

α∈Λ0

Vα ∈ f−1 (G).

�

4. S− SµH-Compactness Spaces

In this section we present a strong form of SµH-compact. Next, we study some
properties of these spaces.

Definition 4.1. If (X,µ,H) is a HGTS and A ⊆ X, A is said to be strong SµH-
compact (briefly S − SµH-compact) if for every family {Vα : α ∈ Λ} of µ-open
subsets of X with A \

⋃
α∈Λ

Vα ∈ H then there exists a finite subset Λ0 of Λ, such

that A ⊆
⋃

α∈Λ0

Vα. The HGTS (X,µ,H) is said to be S − µH-compact if X is

S− SµH-compact.

Clearly, the following diagram follows immediately from the definitions and facts.

↗ SµH− compact ↘
S− SµH− compact µH− compact

↘ µ− compact ↗

Remark 4.2. We note that if (X,µ,H) is a HGTS and (X,µ∗,H) is S − SµH-
compact, then (X,µ,H) is S−SµH-compact, and that (X,µ,H) is S−SµH-compact
if and only if for any family {Fα : α ∈ Λ} of µ-closed subsets of X, if

⋂
α∈Λ

Fα ∈ H

then there exists Λ0 ⊆ Λ, finite, such that
⋂

α∈Λ0

Fα = φ.

Remark 4.3. (1) It is clear that the GT (X,µ) is µ-compact if and only if
(X,µ, {φ}) is S− Sµ{φ}-compact.

(2) If (X,µ,H) is S−SµH-compact then (X,µ,H) is SµH-compact, and (X,µ)
is µ-compact. The converse is not true as shown by the following examples.

Example 4.4. Let N be the set of natural numbers, the GT defined as:

µ = {A ⊂ N : N \A is finite} ∪ {φ},
and the hereditary class on N, H = {N \A : A ∈ µ}. Then:
(1) The HGTS (X,µ,H) is SµH-compact, because if {Vα : α ∈ Λ} is a family of
µ-open subsets of N then N \

⋃
α∈Λ

Vα ∈ H. If Λ0 is any finite subset of Λ we have

that N \
⋃

α∈Λ0

Vα ∈ H.

(2) The HGTS (X,µ,H) is not S − SµH-compact , because if Fn = N \ (N \
{1, 2, ..., n}) then Fn is a µ-closed subset of X and

∞⋂
n=1

Fn =
∞⋂
n=1

N \ (N \ {1, 2, ..., n}) =

N\(N\{1}) ∈ H but if n1, n2, ..., nr ∈ N then
r⋂

k=1

Fnk =
r⋂

k=1

N \ (N \ {1, 2, ..., nk}) 6=

φ.
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Remark 4.5. SµH-compactness and µ-compactness are independent of each other
as the following examples show.

Example 4.6. Consider X = (0, 1), µ is the usual topology, and H = {A : A ⊆
(0, 1)} then (X,µ) is not µ-compact, but (X,µ,H) is, evidently, SµH-compact.

Example 4.7. Let X = [1, 2], µ = {X ∩ (a, b) : a < b, a, b ∈ R}, and H =
{φ, {1}, {2}}. Observe that (X,µ) is µ-compact but (X,µ,H) is not SµH-compact.
In fact, if Vn =

(
1 + 1

n , 2
]
, for all integer number n ≥ 1, then X\

⋃
n≥1

Vn = {1} ∈ H.

If we take N = max{n1, ..., nk}, k ∈ Z+ and n1, n2, ..., nk are integer numbers then

X \
k⋃
i=1

Vni = X \
(
1 + 1

N , 2
]

=
[
1, 1 + 1

N

]
/∈ H.

Proposition 4.8. Let (X,µ,H) be a HGTS and B is a base for µ. Then the
following are equivalent:

(1) (X,µ,H) is S− SµH-compact;
(2) for any family {Vα : α ∈ Λ} of µ-open sets in B, if X \

⋃
α∈Λ

Vα ∈ H then

there exists Λ0 ⊆ Λ, finite, with X =
⋃

α∈Λ0

Vα.

Proof. (1)⇒ (2): Let {Vα : α ∈ Λ} be a family of non-empty µ-open subsets of X
such that X \

⋃
α∈Λ

Vα ∈ H. For all α ∈ Λ there exists a family {Bαβ : β ∈ Λα} ⊆ B

such that Vα =
⋃

β∈Λα

Bαβ . Given that X \
⋃
α∈Λ

Vα = X \
⋃
α∈Λ

( ⋃
β∈Λα

Bαβ

)
∈ H

and (X,µ,H) is S − SµH-compact there exist Bα1β1
, Bα2β2

, ..., Bαkβk such that

X =
k⋃
i=1

Bαiβi . But X =
k⋃
i=1

Bαiβi ⊆
k⋃
i=1

Vi and so X =
k⋃
i=1

Vi.

(2)⇐ (1): It is obvious. �

Next we study the behavior of some types of subspaces of a S − SµH-compact
space relative to X.

Theorem 4.9. Every µHg-closed subset of a S−SµH-compact space is S−SµH-
compact.

Proof. Let A be any µHg-closed of (X,µ,H) and {Vα : α ∈ Λ} be a family of µ-
open subsets of X such that A\

⋃
α∈Λ

Vα ∈ H. Since A is µHg-closed, cµ(A) ⊆
⋃
α∈Λ

Vα.

Then (X\cµ(A))∪(
⋃
α∈Λ

Vα) is a µ-covering ofX and soX\
[
X \ cµ(A) ∪ (

⋃
α∈Λ

Vα)

]
=

φ ∈ H. Given that X is S−SµH-compact there exists s finite subset Λ0 of Λ such
that X = (X \ cµ(A) ∪

⋃
α∈Λ0

Vα ). Then A = A ∩ [(X \ cµ(A)) ∪
⋃

α∈Λ0

Vα] =

A ∩
⋃

α∈Λ0

Vα ⊆
⋃

α∈Λ0

Vα. �

Theorem 4.10. If A and B are S − SµH-compact subsets of a HGTS (X,µ,H),
then A ∪B is S− SµH-compact.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A ∪ B \⋃
α∈Λ

Vα ∈ H. Since, A \
⋃
α∈Λ

Vα ⊆ A ∪B \
⋃
α∈Λ

Vα and B \
⋃
α∈Λ

Vα ⊆ A ∪B \
⋃
α∈Λ

Vα
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then A\
⋃
α∈Λ

Vα ∈ H and B\
⋃
α∈Λ

Vα ∈ H and so there exist finite subsets Λ0 and Λ1 of

Λ such that A ⊆
⋃

α∈Λ0

Vα and B ⊆
⋃

α∈Λ1

Vα. This implies that A ⊆
⋃

α∈Λ0∪Λ1

Vα and

B ⊆
⋃

α∈Λ0∪Λ1

Vα and so A∪B ⊆
⋃

α∈Λ0∪Λ1

Vα. Hence A∪B is S−SµH-compact. �

Theorem 4.11. If (X,µ,H) is a HGTS, A ⊆ B ⊆ X and B ⊆ cµ(A) then the
following statements holds.

(1) If A is µg-closed and S− SµH-compact, then B is S− SµH-compact;
(2) If A is µHg-closed and B is S−SµH-compact, then A is S−SµH-compact.

Proof. (1) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that B \⋃
α∈Λ

Vα ∈ H. Since, A\
⋃
α∈Λ

Vα ∈ H and A is S−SµH-compact, there exists a finite

subset Λ0 of Λ such that A ⊆
⋃

α∈Λ0

Vα. Since A is µg-closed, cµ(A) ⊆
⋃

α∈Λ0

Vα and

this implies B ⊆
⋃

α∈Λ0

Vα.

(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A \
⋃
α∈Λ

Vα ∈ H.

Given that A is µHg-closed, cµ(A)\
⋃
α∈Λ

Vα = φ ∈ H and this implies B\
⋃
α∈Λ

Vα ∈ H.

Since B is S − SµH-compact, there exists a finite subset Λ0 ⊆ Λ, finite, with
B ⊆

⋃
α∈Λ0

Vα. Hence A ⊆
⋃

α∈Λ0

Vα. �

Now we study the behavior of S − SµH-compactness under certain types of
functions.

Theorem 4.12. If (X,µ,H) is S− SµH-compact, f : (X,µ)→ (Y, ν) is a (µ, ν)-
continuous surjective function and if G = {B ⊆ Y : f−1(B) ∈ H} then (Y, ν,G) is
S− SµH-compact.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of Y such that Y \
⋃
α∈Λ

Vα ∈ G.

Since X \
⋃
α∈Λ

f−1 (Vα) = f−1

(
Y \

⋃
α∈Λ

Vα

)
∈ H and (X,µ,H) is S−SµH-, there

exists a finite subset Λ0 of Λ, such thatX =
⋃

α∈Λ0

f−1(Vα). Given that f is surjective

we have Y =
⋃

α∈Λ0

Vα. �

Theorem 4.13. If (X,µ,H) is S − SµH-compact and f : (X,µ) → (Y, ν) is a
bijective (µ, ν)-continuous function, then (Y, ν, f(H)) is S− Sµf(H)-compact.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of Y such that Y \
⋃
α∈Λ

Vα ∈

f(H). There exists H ∈ H with Y \
⋃
α∈Λ

Vα = f(H). Then H = f−1(f(H)) =

X\
⋃
α∈Λ

f−1 (Vα) ∈ H. Given that (X,µ,H) is S−SµH-compact, there exists a finite

subset Λ0 of Λ such that X =
⋃

α∈Λ0

f−1(Vα). Since f is surjective, Y =
⋃

α∈Λ0

Vα. �

Corollary 4.14. If f : (X,µ) → (Y, ν) is a bijective and µ-open function and
(Y, ν,G) is S− SυG-compact, then (X,µ, f−1(G)) is S− Sµf−1(G)-compact.
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Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that X \
⋃
α∈Λ

Vα ∈

f−1(G). There exists G ∈ G with X \
⋃
α∈Λ

Vα = f−1 (G). Then Y \
⋃
α∈Λ

f (Vα) =

f(f−1(G)), and given that (Y, ν,G) is S− SυG- compact then there exists a finite
subset Λ0 of Λ with Y =

⋃
α∈Λ0

f (Vα). This implies that X =
⋃

α∈Λ0

Vα. �
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