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Nehari Manifold and Multiplicity Result for Elliptic
Equation Involving p-Laplacian Operator
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abstract: In this paper an elliptic problem involving p-Laplacian operator is
considered. Existence and multiplicity of solutions are investigated. The method is
based on Nehari manifold and variational method.
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1. Introduction and main result

In the last few years, p-Laplacian equations have received increasing attention.
This theory has been developed very quickly and attracted a considerable interest
from researches ( See [1-12] ). Since the p-Laplacian operator and fractional calculus
arises from many applied fields, such as turbulent filtration in porous media, blood
flow problems, rheology, modeling of viscoplasticity, material science, it is worth
studying the fractional p-Laplacian equations.
Let Ω be a bounded domain of Rn (n ≥ 3) with smooth boundary ∂Ω and 1 < q <

p < n. In this paper, we consider the p-Laplacian problem of the following form

(Pλ)

{
−∆pu = 1

p∗

∂F (x,u)
∂u

+ λa(x)|u|q−2u in Ω,

u = 0 on ∂Ω,

where λ ∈ R, p∗ = np

n−p
and the sign changing weight function a satisfies the fol-

lowing condition

(A) a ∈ C(Ω) with ‖a‖∞ = 1 and a± := max(±a, 0) 6≡ 0.

The study of p-laplacian equations using the Nehari manifold method has been the
subject of several works. More precisely, Wu [15] considered the following elliptic
equation

(2)

{
−△pu = λf(x)|u|q−2u+ g(x)|u|r−2u, in Ω,
u = 0 on ∂Ω,
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where Ω is a bounded domain of Rn (n ≥ 3), 1 < q < p < r < p∗. The author
has proved that there exists λ0 > 0 such that for 0 < λ < λ0, equation (2) has
at least two positive solutions. In addition, If the weight functions f ≡ g ≡ 1,
Ambrosetti et al. [1] have investigated equation (2), they prove that there exists
λ0 > 0 such that equation (2) admits two positive solutions for λ ∈ (0, λ0), one
positive solution for λ = λ0 and no positive solution for λ > λ0.
The starting point on the study of the system (Pλ) is its scalar version

(3)

{
−△pu = |u|p

∗−2u+ λ|u|q−2u in Ω,
u = 0 on ∂Ω,

with 2 ≤ p ≤ q < p∗. Note that many excellent results have been worked out on
the existence of solutions for problem (3) ( See [7], [13]).
In this work, motivated by the above works, we give a very simple variational
method to prove the existence of at least two nontrivial solutions of problem (Pλ).
Before stating our main result, we need the following assumptions:

(H1) F : Ω× R −→ R is a C1 function such that

F (x, tu) = tp
∗

F (x, u)(t > 0) for all x ∈ Ω, u ∈ R.

(H2) F (x, 0) = ∂F
∂u

(x, 0) = 0 and F±(x, u) = max(±F (x, u), 0) 6≡ 0 for all u 6= 0.

We remark, that Using assumption (H1), we have the so-called Euler identity

u
∂F (x, u)

∂u
= p∗F (x, u), and |F (x, u)| ≤ K|u|p

∗

for some constant K > 0.

(1.1)
Our main result is the following

Theorem 1.1. Under the assumptions (A), (H1) and (H2), there exists λ0 > 0
such that for all 0 < |λ| < λ0, problem (Pλ) has at least two positive solutions.

2. Notations and preliminaries

Throughout this paper, for 1 < l ≤ p∗, we note by Sl the best Sobolev embed-
ding for the operator W 1,p

0 (Ω) →֒ Ll(Ω) which is given by

Sl = inf
u∈W

1,p
0

(Ω)\{0}

∫
Ω |∇u|p

(∫
Ω
|u|l

) p

l

.

In particular, we have
∫

Ω

|u|l ≤ S
− l

p

l ‖u‖l for all u ∈ W
1,p
0 (Ω), (2.1)

where ‖.‖ is the standard norm defined as

‖u‖ =

(∫

Ω

|∇u|pdx

) 1
p

.
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Problem (Pλ) is posed in the framework of the Sobolev space E = W
1,p
0 (Ω). More-

over, a function u in E is said to be a weak solution of problem (Pλ) if
∫

Ω

|∇u|p−2∇u∇ϕdx−
1

p∗

∫

Ω

∂F (x, u)

∂u
ϕdx−λ

∫

Ω

a|u|q−2uϕdx = 0, for all ϕ ∈ E.

Associated with the problem (Pλ) we define the functional Jλ : E → R given by

Jλ(u) =
1

p
‖u‖p −

1

p∗

∫

Ω

F (x, u)dx−
λ

q

∫

Ω

a(x)|u|qdx.

In order to verify that Jλ ∈ C1(E,R), we need the following lemmas.

Lemma 2.1. Assume that F ∈ C1(Ω× R,R) is positively homogenuous of degree
p∗, then ∂F

∂u
∈ C(Ω× R,R) is positively homogenuous of degree p∗ − 1.

Proof. The proof is the same as that in Chu and Tang [8], so we omit it here. ✷

It is easily seen that using Lemma 2.1, there exists a positive constant M such
that for all u ∈ R, we have

|
∂F (x, u)

∂u
| ≤ M |u|p

∗−1. (2.2)

Lemma 2.2. (See Proposition 1 in [12]) Suppose that ∂F (x,u)
∂u

∈ C(Ω × R,R)
verifies condition (2.2). Then, the functional Jλ belongs to C1(E,R), and

〈J ′
λ(u), u〉 = ‖u‖p −

∫

Ω

F (x, u)dx − λ

∫

Ω

a(x)|u|qdx. (2.3)

As the energy functional Jλ is not bounded below on E, it is useful to consider
the functional on the Nehari manifold

Nλ = {u ∈ E\{0} : 〈J ′
λ(u), u〉 = 0},

where 〈., .〉 denotes the usual duality between E and E∗ = W−1,p′

(Ω) (the dual
space of the Sobolev space E).
Thus, u ∈ Nλ if and only if

‖u‖p −

∫

Ω

F (x, u)dx − λ

∫

Ω

a(x)|u|qdx = 0. (2.4)

Moreover, we have the following result.

Lemma 2.3. The energy functional Jλ is coercive and bounded below on Nλ.

Proof. If u ∈ Nλ, then by (2.4) and condition (A) we obtain

Jλ(u) =
p∗ − p

p∗p
‖u‖p − λ

p∗ − q

p∗q

∫

Ω

a(x)|u|qdx

≥
p∗ − p

p∗p
‖u‖p − |λ|

p∗ − q

p∗q

∫

Ω

|u|qdx.
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So, it follows from (2.1) that

Jλ(u) ≥
p∗ − p

p∗p
‖u‖p −

|λ|

S
q

p
q

p∗ − q

p∗q
‖u‖q. (2.5)

Thus, Jλ is coercive and bounded below on Nλ. ✷

Define
φλ(u) = 〈J ′

λ(u), u〉.

Then, by (2.4) it is easy to see that for all u ∈ Nλ, one has

〈φ′
λ(u), u〉 = p‖u‖p − p∗

∫

Ω

F (x, u)dx− λq

∫

Ω

a(x)|u|qdx (2.6)

= λ(p− q)

∫

Ω

a(x)|u|qdx− (p∗ − p)

∫

Ω

F (x, u)dx (2.7)

= λ(p∗ − q)

∫

Ω

a(x)|u|qdx− (p∗ − p)‖u‖p (2.8)

= (p− q)‖u‖p − (p∗ − q)

∫

Ω

F (x, u)dx. (2.9)

Now, we split Nλ into three parts

N+
λ = {u ∈ Nλ : 〈φ′

λ(u), u〉 > 0},

N0
λ = {u ∈ Nλ : 〈φ′

λ(u), u〉 = 0},

N−
λ = {u ∈ Nλ : 〈φ′

λ(u), u〉 < 0}.

Lemma 2.4. Assume that u0 is a local minimizer for Jλ on Nλ such that u0 6∈ N0
λ.

Then, J ′
λ(u0) = 0 in E∗.

Proof. The proof is the same as that in Brown and Zhang [ [6], Theorem 2.3], so
we omit it here. . ✷

Lemma 2.5. We have
(i) If u ∈ N+

λ , then λ
∫
Ω
a(x)|u|qdx > 0.

(ii) If u ∈ N0
λ, then λ

∫
Ω a(x)|u|qdx > 0 and

∫
Ω F (x, u)dx > 0.

(iii) If u ∈ N−
λ , then

∫
Ω
F (x, u)dx > 0.

Proof. The proofs are immediate from (2.7), (2.8) and (2.9). ✷

Let

λ0 =
q(p∗ − p)

p(p∗ − q)
S

q

p
q

(
p− q

K(p∗ − q)
S

p∗

p

p∗

) p−q

p∗−p

, (2.10)

then we have the following lemma.
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Lemma 2.6. If 0 < |λ| < λ0, then N0
λ = ∅.

Proof. Suppose otherwise, that 0 < |λ| < λ0 such that N0
λ 6= ∅. Then for u ∈ N0

λ

with u 6≡ 0, we have

0 = 〈φ′
λ(u), u〉 = λ(p∗ − q)

∫

Ω

a(x)|u|qdx− (p∗ − p)‖u‖p (2.11)

= (p− q)‖u‖p − (p∗ − q)

∫

Ω

F (x, u)dx. (2.12)

From the Hölder inequality, (1.1) and (2.1), it follows that

∫

Ω

F (x, u)dx ≤

∫

Ω

|F (x, u)|dx ≤ K

∫

Ω

|u|p
∗

dx ≤ KS
−p∗

p

p∗ ‖u‖p
∗

.

Hence, from (2.12), we obtain

‖u‖p =
p∗ − q

p− q

∫

Ω

F (x, u)dx

≤
p∗ − q

p− q
KS

−p∗

p

p∗ ‖u‖p
∗

.

Which yields to

‖u‖ ≥

(
p− q

K(p∗ − q)
S

p∗

p

p∗

) 1
p∗−p

. (2.13)

On the other hand, from condition (A) ,(2.1) and (2.11) we have

‖u‖p = λ
p∗ − q

p∗ − p

∫

Ω

a(x)|u|qdx

≤ |λ|
p∗ − q

p∗ − p
KS

− q

p

q ‖u‖q,

so,

‖u‖ ≤

(
|λ|

p∗ − q

p∗ − p
S
− q

p

q

) 1
p−q

. (2.14)

Combining (2.13) and (2.14), we obtain λ0 ≤ |λ|, which is a contradiction. ✷

By lemma 2.6, for 0 < |λ| < λ0, we have Nλ = N+
λ ∪N−

λ .
Let

θλ = inf
u∈Nλ

Jλ(u), θ
+
λ = inf

u∈N
+

λ

Jλ(u), θ
−
λ = inf

u∈N
−

λ

Jλ(u).

Then, we have the following.
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Lemma 2.7. If 0 < |λ| < λ0, then

θλ ≤ θ+λ < 0 and θ−λ > d0

for some d0 > 0 depending on p, q, p∗, K, λ, Sq and Sp∗ .

Proof. Let u ∈ N+
λ . Then, from (2.9) we have

p− q

p∗ − q
‖u‖p >

∫

Ω

F (x, u)dx.

So

Jλ(u) =
q − p

pq
‖u‖p +

p∗ − q

p∗q

∫

Ω

F (x, u)dx

<

(
q − p

pq
+

p∗ − q

p∗q

p− q

p∗ − q

)
‖u‖p

= −
(p− q)(p∗ − p)

pqp∗
‖u‖p < 0.

Thus, from the definition of θλ and θ+λ , we can deduce that θλ ≤ θ+λ < 0.
Now, let u ∈ N−

λ . Then, using (1.1) and (2.1) we obtain

p− q

p∗ − q
‖u‖p <

∫

Ω

F (x, u)dx ≤ KS
−p∗

p

p∗ ‖u‖p
∗

.

This implies that

‖u‖ >


 p− q

p∗ − q

S
p∗

p

p∗

K




1
p∗−p

, ∀u ∈ N−
λ . (2.15)

In addition, by (2.5) and (2.15)

Jλ(u) ≥
p∗ − p

pp∗
‖u‖p − |λ|S

− q

p
q

p∗ − p

p∗q
‖u‖q

≥ ‖u‖q
[
p∗ − p

pp∗
‖u‖p−q − |λ|S

− q
p

q

p∗ − q

p∗q

]

>



 p− q

p∗ − q

S
p∗

p

p∗

K





q

p∗−p



p∗ − p

pp∗



 p− q

p∗ − q

S
p∗

p

p∗

K





p−q

p∗−p

− |λ|S
− q

p

q

p∗ − q

p∗q


 .

Thus, since 0 < |λ| < λ0, we conclude that Jλ > d0 for some d0 > 0. This
completes the proof of lemma 2.7. ✷
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For u ∈ E with
∫
Ω F (x, u)dx > 0, let

T =

(
(p− q)‖u‖p

(p∗ − q)
∫
Ω
F (x, u)dx

) 1

p∗−p

> 0.

Then, the following lemma hold.

Lemma 2.8. For each u ∈ E with
∫
Ω F (x, u)dx > 0, we have

(i) If λ
∫
Ω
a(x)|u|qdx ≤ 0, then there exists unique t− > T such that t−u ∈ N−

λ

and

Jλ(t
−u) = sup

t≥0
Jλ(tu).

(ii) If λ
∫
Ω a(x)|u|qdx > 0, then there are unique 0 < t+ < T < t− such that

(t−u, t+u) ∈ N−
λ ×N+

λ and

Jλ(t
−u) = sup

t≥0
Jλ(tu); Jλ(t

+u) = inf
0≤t≤T

Jλ(tu).

Proof. We fix u ∈ E with
∫
Ω F (x, u)dx > 0 and we define the map m on [0,∞) as

follows:

m(t) = tp−q‖u‖p − tp
∗−q

∫

Ω

F (x, u)dx for t ≥ 0.

Then, it is easy to check that m(t) achieves its maximum at T . Moreover,

m(T ) = ‖u‖q
[
(
p− q

p∗ − q
)

p−q

p∗−q − (
p− q

p∗ − q
)

p∗−q

p∗−p

](
‖u‖p

∗

∫
Ω
F (x, u)dx

) p−q

p∗−p

≥ ‖u‖q(
p∗ − p

p∗ − q
)


 (p∗ − q)S

p∗

p

p∗

K(p− q)




p−q

p∗−p

.

(i) We suppose that λ
∫
Ω
a(x)|u|qdx ≤ 0. Since m(0) = 0, m(t) → −∞ as t → ∞,

m′(t) > 0 for t < T and m′(t) < 0 for t > T . There is a unique t− > T such that
m(t−) = λ

∫
Ω a(x)|u|qdx ≤ 0.

Now, it follows from (2.3) and (2.12) that

φ′
λ(t

−u)t−u = (t−)1+qm′(t−) < 0

and

J ′
λ(t

−u)t−u = (t−)q
(
m(t−)− λ

∫

Ω

a(x)|u|qdx

)
= 0.

Hence, t−u ∈ N−
λ . On the other hand, it is easy to see that

d2

dt2
Jλ(tu) < 0 for t > T and

d

dt
Jλ(tu) = 0 for t = t−.



204 K. Ben Ali and A. Ghanmi

Thus, Jλ(t
−u) = sup

t≥0
Jλ(tu).

(ii) Assume λ
∫
Ω
a(x)|u|qdx > 0. Then, by (A) and (2.1) and the fact that |λ| < λ0

we obtain

m(0) = 0 < λ

∫

Ω

a(x)|u|qdx ≤ |λ|S
− q

p

q ‖u‖q < m(T ).

Then, there are unique t+ and t− such that 0 < t+ < T < t−, m(t+) =
λ
∫
Ω a(x)|u|qdx= m(t−) andm′(t−) < 0 < m′(t+).We have (t−u, t+u) ∈ N−

λ ×N+
λ ,

and {
Jλ(t

+u) ≤ Jλ(tu) ≤ Jλ(t
−u) ∀ t ∈ [t+, t−],

Jλ(t
+u) ≤ Jλ(tu) ∀ 0 ≤ t ≤ t+.

Thus,
Jλ(t

−u) = sup
t≥0

Jλ(tu) and Jλ(t
+u) = inf

0≤t≤T
Jλ(tu).

This completes the proof of lemma 2.8. ✷

For each u ∈ E with λ
∫
Ω
a(x)|u|qdx > 0, put

T̃ =

(
λ(p∗ − q)

∫
Ω a(x)|u|qdx

(p∗ − p)‖u‖p

) 1
p−q

> 0.

Then we have the following lemma.

Lemma 2.9. For each u ∈ E with λ
∫
Ω a(x)|u|qdx > 0, we have

(i) If
∫
Ω F (x, u)dx ≤ 0, then there exists a unique 0 < t+ < T̃ such that t+ ∈ N+

λ

and
Jλ(t

+u) = inf
t≥0

Jλ(tu).

(ii) If
∫
Ω F (x, u)dx > 0, then there are unique 0 < t+ < T̃ < t− such that

(t−u, t+u) ∈ N−
λ ×N+

λ and

Jλ(t
−u) = sup

t≥0
Jλ(tu); Jλ(t

+u) = inf
0≤t≤T̃

Jλ(tu).

Proof. For u ∈ E with λ
∫
Ω
a(x)|u|qdx > 0, we can take

m̃(t) = tp−p∗

‖u‖p − λtq−p∗

∫

Ω

a(x)|u|qdx for t > 0,

and similarly to the argument given in lemma 2.8, we can obtain the results of
lemma 2.9. ✷

Proposition 2.10. There exist minimizing sequences {u±
n } in N±

λ such that

Jλ(u
±
n ) = θ±λ + ◦(1) and J ′

λ(u
±
n ) = ◦(1) in E∗.

Proof. The proof is almost the same as that in Wu[ [14], Proposition 9] and is omit
here. ✷
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3. Proof of our main result

Throughout this section, the Ls norm is denoted by ‖.‖s for 1 ≤ s ≤ ∞, →
(respectively ⇀) denotes strong (respectively weak) convergence and we assume
that the parameter λ satisfies 0 < |λ| < λ0. Then we have the following results.

Theorem 3.1. If 0 < |λ| < λ0, then, problem (Pλ) has a positive solution uλ in
N+

λ such that

Jλ(uλ) = θλ = θ+λ .

Proof. By Proposition 2.10, there exists a minimizing sequence {u+
n } for Jλ on N+

λ

such that

Jλ(u
+
n ) = θ+λ + o(1) and J ′

λ(u
+
n ) = o(1) in E∗. (3.1)

Then by Lemma 2.3, there exists a subsequence {un} and uλ in E such that

{
un ⇀ uλ weakly in E,

un → uλ strongly in Lq(Ω) and in Lp∗

(Ω).
(3.2)

This implies that
∫
Ω a(x)|un|qdx →

∫
Ω a(x)|uλ|qdx as n → ∞.

Next, we will show that

∫

Ω

F (x, un)dx →

∫

Ω

F (x, uλ)dx as n → ∞.

By lemma 2.1, we have

∂F (x, un)

∂u
∈ Lp(Ω) and

∂F (x, un)

∂u
→

∂F (x, uλ)

∂u
in Lp(Ω).

On the other hand, it follows from the Hölder inequality, that

∫

Ω

∣∣∣∣un

∂F (x, un)

∂u
− uλ

∂F (x, uλ)

∂u

∣∣∣∣ dx ≤

∫

Ω

|(un − uλ)
∂F (x, un)

∂u
|dx

+

∫

Ω

|uλ|

∣∣∣∣
∂F (x, un)

∂u
−

∂F (x, uλ)

∂u

∣∣∣∣ dx

≤ ‖un − uλ‖p∗‖
∂F (x, un)

∂u
‖p

+‖uλ‖p∗‖
∂F (x, un)

∂u
−

∂F (x, uλ)

∂u
‖p

→ 0 as n → ∞.

Hence,
∫
Ω
F (x, un)dx →

∫
Ω
F (x, uλ)dx as n → ∞.

Since

Jλ(un) =
p∗ − p

pp∗
‖u‖p − λ

p∗ − q

qp∗

∫

Ω

a(x)|un|
qdx ≥ −λ

p∗ − q

qp∗

∫

Ω

a(x)|un|
qdx.
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By (3.1) and lemma 2.7 , Jλ(un) → θλ < 0 as n → ∞.
Letting n → ∞, we see that

λ

∫

Ω

a(x)|uλ|
qdx > 0. (3.3)

Now, we aim to prove that un → uλ strongly in E and Jλ(uλ) = θλ.

using the fact that uλ ∈ Nλ and by Fatou’s lemma, we get

θλ ≤ Jλ(uλ) =
1

p
‖uλ‖

p −
1

p∗

∫

Ω

F (x, uλ)dx−
λ

q

∫

Ω

a(x)|uλ|
qdx

≤ lim inf
n→∞

(
1

p
‖un‖

p −
1

p∗

∫

Ω

F (x, un)dx −
λ

q

∫

Ω

a(x)|un|
qdx

)

≤ lim inf
n→∞

Jλ(un) = θλ

This implies that

Jλ(uλ) = θλ and lim
n→∞

‖un‖
p = ‖uλ‖

p.

Let ũn = un − uλ, then by Brézis-Lieb lemma [5] we obtain

‖ũn‖
p = ‖un‖

p − ‖uλ‖
p.

Therefore, un → uλ strongly in E.
Moreover, we have uλ ∈ N+

λ . In fact, if uλ ∈ N−
λ then, there exist t+0 , t

−
0 such that

t−0 uλ ∈ N−
λ and t+0 uλ ∈ N+

λ . In particular we have t+0 < t−0 = 1. Since

d2

dt2
Jλ(t

+
0 uλ) > 0 and

d

dt
Jλ(t

+
0 uλ) = 0 for t = t−.

there exists t+0 < t̃ < t−0 such that Jλ(t
+
0 uλ) < Jλ(t̃uλ). By Lemma 2.9, we have

Jλ(t
+
0 uλ) < Jλ(t̃uλ) ≤ Jλ(t

−
0 uλ) = Jλ(uλ)

which is a contraduction.
Fin ally, by (3.1) and (3.2) it is easy to see that uλ is a weak solution of (Pλ).
Moreover from (3.3), uλ is nontrivial. ✷

Theorem 3.2. If 0 < |λ| < λ0, then, problem (Pλ) has a nontrivial solution vλ in
N−

λ such that
Jλ(vλ) = θ−λ .

Proof. By Proposition 2.1, there exists a minimizing sequence {un} for Jλ on N−
λ

such that
Jλ(un) = θ−λ + o(1) and J ′

λ(un) = o(1) in E∗ (3.4)

and {
un ⇀ vλ weakly in E,

un → vλ strongly in Lq(Ω) and in Lp∗

(Ω).
(3.5)
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Moreover, by (2.9) we obtain

∫

Ω

F (x, un)dx >
p− q

p∗ − q
‖un‖

p. (3.6)

So, by (2.15) and (3.6) there exists a positive constant C̃ such that

∫

Ω

F (x, un) > C̃.

This implies that ∫

Ω

F (x, vλ) ≥ C̃. (3.7)

Now, we prove that un → vλ strongly in E. Supposing otherwise, then

‖vλ‖ < lim inf
n→∞

‖un‖.

By lemma 2.8, there is a unique t−0 such that t−0 vλ ∈ N−
λ . Since un ∈ N−

λ ,
Jλ(un) ≥ Jλ(tun) for all t ≥ 0, we have

Jλ(t
−
0 vλ) < lim

n→∞
Jλ(t

−
0 un) ≤ lim

n→∞
Jλ(un) = θ−λ .

Which is a contradiction. Hence un → vλ strongly in E.
This imply that

Jλ(un) → Jλ(vλ) = θ−λ as n → ∞.

Finally, from (3.4) and (3.5), we obtain clearly that vλ is a weak solution of (Pλ).
Moreover, from (3.7) vλ is nontrivial.
✷

Now, Let us proof Theorem 1.1: By Theorems 3.1, we obtain a nontrivial
solution of problem (Pλ) which is inN+

λ . And by Theorem 3.1, we have a nontrivial
solution of problem (Pλ) which is in N−

λ . Since N−
λ ∩ N+

λ = ∅, this implies that
vλ and uλ are distinct. The proof is complete
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