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abstract: In this paper, we introduce the concept of H(i) connected ditopological
texture space. We develop some basic properties of bicontinuity and connectedness
in term of ditopological texture space which will used inH(i) connected ditopological
texture space. We have established some correspondence related to known structure
such as bitopological space, fuzzy lattice and topological space.
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1. Introduction

Ditopological texture space may be regarded as a natural combination of texture
space, topological space and bitopological space [14] but ditopology corresponds in
a natural way to fuzzy topology. The texture is a generalisation of the fuzzy lat-
tice. The notation of texture was introduced by Brown [7] in a point set setting for
the study of a fuzzy set. It has been proved useful as a framework to discuss the
complement-free mathematical concept. The motivation for the study of texture
space is that they allow to represent a classical fuzzy set, L-fuzzy set [12], intuition-
istic fuzzy set [1] and intuitionistic set, as a lattice of a crisp subset of some base
set. Different fuzzy topological spaces have been studied by Tripathy and Deb-
nath [19] , Tripathy and Ray [21,20] . A detailed analysis of the relation between
texture space and the lattice of fuzzy sets of various kind is found in the works
due to [1,4,5,6,3]. The concept of ditopological texture space is introduced by
Brown [15]. This paper is totally devoted to the study on bicontinuity [5], connect-
edness [11] and their applications. In this paper we use the term ω − preserving
[4] [lemma 3.4] point function and difunction [4][def 2.2]. Here we introduce the
concept how to construct bicontinuous ω − preserving point function and explain
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different types of bicontinuity. We introduce the notion of order ditopology, cut
point, H(i)- connected space, etc.

2. Preliminaries

Definition 2.1. Let S be a non-empty set. Then Γ ⊆ P (S) is called a texturing
of S or S is said to be textured by Γ if

1. (Γ,≤) is a complete lattice containing S, ∅ and {Ai ∈ Γ, i ∈ ∆}, the meet∧
i∈∆ Ai and the join

∨
i∈∆ Ai in Γ are related to the intersection and union in

(P (S),⊆) by the equalities
[a]

∧
i∈∆ Ai =

⋂
i∈∆ Ai where {Ai ∈ Γ|i ∈ ∆, the index set}, while

[b]
∨

i∈∆Ai =
⋃

i∈∆ Ai where {Ai ∈ Γ|i ∈ ∆, the finite index set }.
2. Γ is completely distributive.
3. Γ separates the points of S. Given s1 6= s2 in S we have L ∈ Γ with

s1 ∈ L, s2 6∈ L or L ∈ Γ with s2 ∈ L, s1 6∈ L.
If S is textured by Γ, then (S,Γ) is called a texture space or simply a texture.

Hence a texture Γ on S is a set of ordinary crisp subset of S satisfying the above
properties. We regard a texture as a framework.

A surjective mapping σ : Γ → Γ satisfying the condition σ2(A) = A for all
A ∈ Γ and for all A,B ∈ Γ, A ⊆ B ⇒ σ(B) ⊆ σ(A) is called a complementation
on (S,Γ). A texture with a complementation is said to be complemented.

The sets Ps =
∧
{A|s ∈ A ∈ Γ} and Qs =

∨
{A|s 6∈ A ∈ Γ} are called p-sets

and q-sets respectively.
For A ∈ Γ the core A♭ of A is given by A♭ = {s ∈ S|A * Qs}. The set A♭ does

not necessarily belong to Γ .

Example 2.2.

(a) If X is a set and P (X) the power set of X , then (X,P (X)) is the discrete
texture on X . For x ∈ X, Px = {x} and Qx = X − {x}.

(b) Setting I = [0, 1], Γ = {[0, r), [0, r] | r ∈ I} gives the unit interval texture
{I,Γ}. For r ∈ I, Pr = [0, r] and Qr = [0, r).

(c) The texture {L,Γ} is defined by L = (0, 1], Γ = {(0, r] |r ∈ I}. For
r ∈ L, Pr = (0, r] = Qr.

We procure the notation of relation, corelation and difunction. P (s,t), Q(s,t)

will denote the p-set, q-set for the product (S×T, P (S)⊗Γ2) of the texture (S,Γ1)
and (T,Γ2). P(s,t), Q(s,t) will denote the p-set, q-set of (S×T,Γ1⊗Γ2). Note that

P (s,t) = {s} × Pt and Q(s,t) = ((S \ s× T ) ∪ (S ×Qt)).

Definition 2.3. [4] Let (S,Γ1) and (T,Γ2) be textures. Then
(1) r ∈ P (S)⊗ Γ2 is called a relation from (S,Γ1) to (T,Γ2) if it satisfies
R1 r * Q(s,t), Ps′ * Qs ⇒ r * Q(s′,t).

R2 r * Q(s,t) ⇒ there exists s′ ∈ S such that Ps * Qs′ and r * Q(s′,t).
(2) R ∈ P (S)⊗ Γ2 is called a corelation from (S,Γ1) to (T,Γ2) if it satisfies
CR1 P (s,t) * R, Ps * Qs′ ⇒ P (s′,t) * R.
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CR2 P (s,t) * R ⇒ there exists s′ ∈ S such that Ps′ * Qs and P (s′,t) * R.
(3) A pair (r, R),where r is a relation and R is a corelation from (S,Γ1) to

(T,Γ2) is called a direlation from (S,Γ1) to (T,Γ2).

Definition 2.4. [4] Let (S,Γ1), (T,Γ2) be textures and (r, R) a direlation from
(S,Γ1) to (T,Γ2). Then the direlation (r, R)← = (R←, r←) from (T,Γ2) to (S,Γ1)
defined by

r← =
⋂
{Q(t,s)|r * Q(s,t)}, R← =

∨
{P (t,s)|P (s,t) * R} is called the inverse

of (r, R). Similarly, r← is called the inverse of r and R← the inverse of R. It is
easy to verify that R← is a relation and r← is a corelation from (T,Γ2) to (S,Γ1).

Definition 2.5. [4] Let (f, F ) be a direlation from (S,Γ1) to (T,Γ2). Then (f, F )
is called a difunction from (S,Γ1) to (T,Γ2) if it satisfies the following two condi-
tion:

DF1. For s, s′ ∈ S, Ps * Qs′ ⇒ there exists t ∈ T with f * Q(s,t) and

P (s′,t) * F.

DF2. For t, t′ ∈ T and s ∈ S, f * Q(s,t) and P (s,t′) * F ⇒ Pt′ * Qt.

Definition 2.6. [8] Let (S,Γ1), (T,Γ2) be textures. Let (f, F ) be a difunction
from (S,Γ1) to (T,Γ2) and A ∈ Γ1.

The image f→A and coimage F→A are defined by,
f→A =

⋂
{Qt|for all s, f * Q(s,t) ⇒ A ⊆ Qs}.

F→A =
∨
{Pt|for all s, P (s,t) * F ⇒ Ps ⊆ A}.

Definition 2.7. [8] Let (S,Γ1), (T,Γ2) be textures. Let (f, F ) be a difunction
from (S,Γ1) to (T,Γ2) and B ∈ Γ2. The inverse image and inverse coimage are
defined by,

f←B =
∨
{Ps| for all t, f * Q(s,t) ⇒ Pt ⊆ B} ∈ Γ1.

F←B =
⋂
{Qs| for all t, P (s,t) * F ⇒ B ⊆ Qt} ∈ Γ1.

Definition 2.8. [7,15] (Γ, τ , k) is called a ditopological texture space on S if
(1) τ ⊆ Γ satisfies
(a) S , ∅ ∈ τ .

(b) G1, G2 ∈ τ ⇒ G1

⋂
G2 ∈ τ .

(c)Gα ∈ τ, α ∈ ∆ ⇒
∨

α∈∆Gα ∈ τ .
and
(2) k ⊆ Γ satisfies
(a) S, ∅ ∈ k

(b) F1, F2 ∈ k ⇒ F1

⋃
F2 ∈ k

(c) Fα ∈ k, α ∈ ∆ ⇒
∧

α∈∆ Gα ∈ k.
The elements of τ are called open set and element of k are called closed set.

In the case of complemented texture space, τ and k are connected by the relation
k = {K(G)|G ∈ τ}, where K(G) denote the complementation of G. (Γ, τ , k,K) is
called the complemented ditopological texture space on a non empty set S.
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Definition 2.9. [8] Let the difunction (f, F ) from (S,Γ1, τ1, k1) to (S,Γ2, τ2, k2)
of ditopological texture spaces. Then

(1) (f, F ) is open (co-open) if G ∈ τ1 ⇒ f→G ∈ τ2(F
→G ∈ τ2).

(2) (f, F ) is closed (co-closed) if K ∈ k1 ⇒ f→K ∈ k2(F
→K ∈ k2).

Definition 2.10. [11] Let Z ⊆ S. Define

int(Z) =
∨
{G|G ∈ τ and G ⊂ Z} (interior)

ext(Z) =
∨
{G|G ∈ τ and G ∩ Z = ∅} (exterior)

[Z] =
⋂
{F |Z ⊆ F , F ∈ k} (closure)

Definition 2.11. [6] Let (S,Γ, τ , k) be a ditopological texture space.

(1) If s ∈ S♭, a neighbourhood of s is a set N ∈ Γ for which there exists G ∈ τ
satisfying Ps ⊆ G ⊆ N * Qs.

(2) If s ∈ S, a coneighbourhood of s is a set M ∈ Γ for which there exists K ∈ k
satisfying Ps * M ⊆ K ⊆ Qs.

Definition 2.12. [5] Let (S1,Γ1, τ1, k1) and (S2,Γ2, τ2, k2) be a ditopological tex-
ture spaces and (f, F ) be a difunction from (S1,Γ1) to (S2,Γ2). Then

(1) (f, F ) is continuous if G ∈ τ2 ⇒ F←G ∈ τ1.

(2) (f, F ) is cocontinuous if K ∈ k2 ⇒ f←K ∈ k1.

(3) (f, F ) is bicontinuous if continuous and cocontinuous.

or, (another definition) [22] A difunction or an ω−preserving point function
between the ditopological texture spaces is called bicontinuous if the inverse image
of every open set is open and the inverse image of every closed set is closed.

Definition 2.13. [11] Let (S,Γ) be a texture space and ∅ 6= Z ⊆ S. {A,B} ⊆ P (S)
is said to be a partition of Z if A ∩ Z 6= ∅, Z * B and A ∩ Z = B ∩ Z.

It can be noted that the roles of A and B may interchanged. If {A,B} is a
partition of Z, then let B∩Z 6= ∅ and Z * A. Let Γ = P (S), then it can be verified
that {A,S\B} and {S\A,B} are partition of Z in ordinary meaning. For example,
we have Z ⊆ A ∪ (S \B), Z ∩ A 6= ∅, Z ∩ (S \B) 6= ∅ and Z ∩ A ∩ (S \B) = ∅.

Definition 2.14. [11] Let (S,Γ, τ , k) be a ditopological texture space. Z ⊆ S is
said to be connected if there exists no partition {G,F} with G ∈ τ and F ∈ k.

Definition 2.15. [11] Z ⊆ S is a component if Z is a maximal connected set.

3. Bicontinuitity

In this section, we establish some result on bicontinuity.

Theorem 3.1. Let (X,Γ1, τ1, k1) and (Y,Γ2, τ2, k2) be ditopological texture spaces.
Let φ : X → Y be ω − preserving point function. With the help of point function,
define a difunction (f, F ) : X → Y such that, if (f, F ) is continuous then for each
x ∈ X♭ and each neighbourhood V of f→(x), there is a neighbourhood U of x such
that f→(U) ⊂ V and conversely.
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Proof. Let x ∈ X♭ and f→(x) ∈ Y ♭. Let V ∈ Γ2 be a neighbourhood of f→(x)
then the set U = F←(V ) ∈ Γ1 is a neighbourhood of x such that U = F←(V ) ⇒
f→(U) = f→(F←(V )) ⊂ V ⇒ f→(U) ⊂ V . [4][theorem 2.24 (2,b)]

Conversely, let V be an open subset of Y . Let Px be a subset of F←(V ) then
f→(Px) ⊂ V , so that by hypothesis there exists a neighbourhood of Ux ∈ Γ1 of x
such that f→(Ux) ⊂ V then Ux ⊂ F←(V ). It follows that F←(V ) can be written
as the join of open set Ux, so that it is open. ✷

We have the following result on the inclusion, composition, restriction of the
domain, expanding the range and Local form of the difunctions.

Theorem 3.2. Let (Xi,Γi, τ i, ki) ; i = 1, 2, 3 be ditopological texture spaces. Then

(a) If A is a subspace of X1, the inclusion difunction (j, J) : A → X1 is
bicontinuous.

(b) If the difunction (f, F ) : X1 → X2 and (g,G) : X2 → X3 are bicontinuous,
then the difunction (gof,GoF ) : X1 → X3 is bicontinuous.

(c) If the difunction (f, F ) : X1 → X2 is bicontinuous and A is a subspace of
X1, then the restricted difunction (f |A,F |A) : A → X2 is bicontinuous.

(d) Let the difunction (f, F ) : X1 → X2 be bicontinuous. If X3 is a subspace of
X2 containing the image set f→(X1) and coimage set F→(X1), then the difunction
(g,G) : X1 → X3 obtained by restricting the range of f and corange of F is
bicontinuous. If X3 is a space having X2 as a subspace, then the difunction (h,H) :
X1 → X3 obtained by expanding the range of f and corange of F is bicontinuous.

(e) Let X1 and X2 be ditopological texture space. The difunction (f, F ) : X1 →
X2 is bicontinuous if X1 can be written as join of open set Uα and join of closed
set Vα such that f |Uα and F |Vα is continuous and cocontinuous for each α.

Proof. (a ) If U ∈ τ1 be open in X1 and V ∈ k1 be closed in X1, then J←(U) =
U ∩ A, which is open in A and j←(V ) = V ∩ A, which is closed in A, (by defi-
nition of subspace ditopology texture space, one may refer to [ ]). Hence (j, J) is
bicontinuous.

(b) Let U ∈ τ3 be open in X3 and V ∈ k3 be closed in X3, then G←(U) ∈ τ2
be open in X2 and g←(V ) ∈ k2 be closed in X2. F

←(G←(U)) ∈ τ1 be open in X1

and f←(g←(V )) ∈ k1 be closed in X1.
Then we have f←(g←(x)) = (gof)←(x) (by lattice theory). Hence (GoF )←(U))

∈ τ1 is open in X1 and (gof)←(V )) ∈ k1 is closed in X1. Thus (gof,GoF ) is
bicontinuous.

(c) The difunction (f |A,F |A) equals to composite of the inclusion difunction
(j, J) : A → X1 and the difunction (f, F ) : X1 → X2, both of which are bicontinu-
ous.

(d) Let the difunction (f, F ) : X1 → X2 be bicontinuous. If f
→(X1) ⊂ X3 ⊂ X2

and F→(X1) ⊂ X3 ⊂ X2, we show that the difunction (g,G) : X1 → X3 obtained
from (f, F ) is bicontinuous. Let B ∈ τ3 and C ∈ k3 open and closed set in X3.
Then B = X3 ∩ U and C = X3 ∩ V for some open set U ∈ τ2 and closed set
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V ∈ k2 in X2, since X3 contains the entire image set f→(X1) and and coimage set
F→(X1).

F←(U) = G←(B) and f←(V ) = g←(C) (by elementary lattice theory).
Since the difunction F←(U) is open and f←(V ) is closed. So difunction G←(B)

is open and g←(C) is closed.
Let the difunction (h,H) : X1 → X3 be bicontinuous. Let X2 be a subspace

of X3 and h→(x) = (foj)→(x) be the composition of the map f : X1 → X2 and
j : X2 → X3 and H→(x) = (FoJ)→(x) is composition of the map F : X1 → X2

and J : X2 → X3.
(e) By hypothesis we can write X1 as the join of the open set Uα and also

join of closed set Vα such that f |Uα and F |Vα is continuous and cocontinuous for
each α. Let U be open set in X1 and V be closed set in X1.Then

F←(U) ∩ Uα = (f |Uα)
→(U) and f←(V ) ∩ Vα = (F |Vα)

→(V ),
then both the expressions represent the set of those point x lying in Uα for

which f(x) ∈ U and y lying in Vα for which f(y) ∈ V . Since f |Uα is continuous,
so F←(U) ∩ Uα is open in Uα and F |Vα is cocontinuous, so f←(V ) ∩ Vα is closed
in Vα. Hence F←(U) ∩ Uα and f←(V ) ∩ Vα are open and closed in X .

But F←(U) =
∨

α(F
←(U) ∩ Uα) and f←(V ) =

∨
α(f
←(V ) ∩ Vα). So that

F←(U) and f←(V ) are open and closed in X1. Hence (f, F ) is bicontinuous. ✷

Now we establish a result on Maps into product.

Theorem 3.3. Let (f, F ) : A → X1 × X2 be given by the equation f→(a) =
(f→1 (a) , f→2 (a)) and F→(a) = (F→1 (a) , F→2 (a)) Then (f, F ) is bicontinuous if and
only if the maps f→1 : A → X1, f

→
2 : A → X2 are continuous and F→1 : A → X1,

F→2 : A → X2 are cocontinuous.The maps f1, f2 are called the coordinate of image
set f and F1, F2 are called the coordinate of coimage set F .

Proof. Let the difunction (π1,Π1) : X1 × X2 → X1 and (π2,Π2) : X1 × X2 →
X2 be projections onto the first and second factors respectively. These maps are
bicontinuous. For Π←1 (U) = U × X2 and π←1 (V ) = V × X2 are open and closed
according to U and V are open and closed in X1, Π

←
2 (Y ) = X1 × Y and π←2 (Z) =

X1 × Z are open and closed according to Y and Z are open and closed in X2.
Note that for each a ∈ A,
f1(a) = π1(f(a)), F1(a) = Π1(F (a)) and f2(a) = π2(f(a)), F2(a) = Π2(F (a))
If the difunction (f, F ) is bicontinuous, then the coordinate difunctions must be

bicontinuous. Conversely, Suppose (f1, F1) and (f2, F2) are bicontinuous. We show
that for each basis element U ×E and cobasis element V ×F for the ditopological
texture space X1 ×X2, then their inverse images F←(U ×E) and f←(V × F ) are
open and closed. A point a ∈ F←(U×E) = f←(U×E) if and only if f(a) ∈ U×E,
that is if and only if f1(a) ∈ U and f2(a) ∈ E.

Similarly for b ∈ f←(V × F ) = F←(V × F ) if and only if F (b) ∈ V × F , that
is if and only if F1(b) ∈ V and F2(b) ∈ F .

Therefore F←(U × E) = F←1 (U) ∩ F←2 (E)
and
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f←(V × F ) = f←1 (V ) ∩ f←2 (F ),
where (f1, F1) and (f2, F2) are bicontinuous functions. So their intersection is

also bicontinuous, which implies (f, F ) is bicontinuous. ✷

4. Connectedness

Theorem 4.1. Let {S, Γ, τ , k} be a ditopological texture space on S. P be a
connected space and ext(P ) ∩ P̄ = ∅ then P̄ is also connected.

Proof. Let P̄ be not connected then there exists A ∈ τ , B ∈ k such that A ∩ P̄ =
B∩ P̄ , A∩ P̄ 6= ∅, P̄ * B. Since P is connected . It is obvious that P ∩A = P ∩B.
So either A ∩ P = ∅ or P ⊂ B.

Case (1) Let A ∩ P = ∅, then
A ⊆ ext(P ), since ext(P ) ∩ P̄ = ∅ ⇒ A ∩ P̄ = ∅, which is a contradiction.
Case (2) Let P ⊆ B ⇒ P̄ ⊆ B B is closed set, and we arrive at a contradiction.
Hence P̄ is connected. ✷

Corollary 4.2. Let Z ⊆ S be a connected set, Z ⊆ A ⊆ [Z] and ext(Z) ∩ A = ∅.
Then A is also connected.

Definition 4.3. Let X be an ordered set and (X,Γ, τ , k) be a ditopological texture
space. Assume that X has more then one element. The collection of the sets of the
form (a, b) or [a0, b), where a0 is the smallest element of X if it exists or (a, b0],
where b0 is the largest element of X if it exists. Such type of set act as base element
which belong to τ .

Similarly the set of the form [a, b] or (a0, b], where a0 is the smallest element
of X if such exists or [a, b0), where b0 is the largest element of X if such exist.
Such type of set act as cobase element which belong to k. It generates a ditopology
texture space on X known as order ditopology texture space.

Definition 4.4. In order ditopology texture space having X = R and ordered set
R has binary operation < is referred as euclidean ditopology texture space.

Example 4.5. The order ditopology texture space on set N of natural number is
discrete ditopology texture space where the elements of the base are given by

{n} = (n− ε, n+ ε); n ∈ N and ε is taken howsoever small real number.
Similiarly, cobase are
{n} = [n− ε, n+ ε].

Theorem 4.6. The ditopological texure space (R,Γ, τ , k) with usual order ditopol-
ogy texture space is connected.

Proof. Let {A ∈ τ , B ∈ k} ⊂ Γ be a Partition of R. Take a ∈ A, b ∈ B. Suppose
for convenience that a < b ⇒ pa ⊂ pb. The interval [a, b] is contained in R. Hence
[a, b] is a partition of A0 = A ∩ [a, b], B0 = B ∩ [a, b]. It is obvious that A0 = B0

[by definition of partition]. But according to our assumption [a, b] has partition.
So either [a, b] ∩ A0 6= ∅ or [a, b] * B0.
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Here we consider A0 ∈ τ1 and B0 ∈ k1 in the subspace ditopology texture space
([a, b],Γ1, τ1, k1) which is same as order ditopology texture space.

The set A0 and B0 is non-empty because a ∈ A0 ⊂ B0 .

Remark Let (X,Γ, τ , k), where X is any set. Suppose {A ∈ τ , B ∈ k} ⊂ Γ be
a partition of Z ⊂ X then it must satisfy the condition A ∩ (X − B) = ∅ (where
(X −B) ⊂ X) ⇒ A ⊆ B.

Let c = Sup{A0}.
We show that Pc * A0 ⊂ B0, which contradicts to the fact that {A0, B0} be

the partition of [a, b].
Case 1. Suppose Pc ⊆ B0. Then Pc 6= Pb. So neither Pc = Pa nor Pa ⊂

Pc ⊂ Pb because B0 is closed in [a, b]. Hence the must be some interval of the
form [c, e] contained in B0. If Pc = Pa we have a contradiction according to our
assumption point c = sup{A0}.If Pa ⊂ Pc ⊂ Pb then there exists a point z such
that Pc ⊂ Pz ⊂ Pe which is again a contradiction according to our assumption
point c = sup{A0}.

Case 2. Suppose Pc ⊆ A0 ⇒ Pc ⊆ A0 ⊂ B0. So Pc ⊆ B0 which is Case 1,
which is a contradiction.

Hence R with usual order ditopology texture space is connected. ✷

Definition 4.7. {S, Γ} be texture space non empty set S ⊂ X and S be connected
space. A point p of S is called cut point of S means point p separates S provided
{A,B} ⊆ Γ is a partition [11] of T = S − p. Otherwise p is a non-cut point of S.

Definition 4.8. let (S,Γ, τ , k) be a ditopological texture space. Let p, q be points of
the connected space S. We denote E(p, q), the subset of S consisting of the points
p and q together with all cut points of S that separates p and q.

The separation order in E(p, q) is defined as follows:
Let x, y be two points in E(p, q), then x precedes y, x < y in E(p, q) if either

x = p or if x separates p and y in S.

Theorem 4.9. Let (S,Γ, τ , k) be a ditopological texture space. If p, q are two points
of connected space S. The separation order in E(p, q) is a simple order.

Proof. For each point x in E(p, q), x 6= p or q then there exist a separation in
S − x = T (say), such that {Ax ∈ τ, Bx ∈ k} ⊆ Γ is a partition of T , where
p ∈ {Ax, Bx}, q 6∈ {Ax, Bx}. It is easy to check that ext(A)∩{Ax ∪{x}} = ∅. So
by Corollary 4.1.1, we have Ax ∪ {x} is connected.

In the above partition, Ar and As do not contain point r and s respectively but
Br and Bs contains the point r and s respectively. Let r and s be two points in
E(p, q) − p − q. If s is not in Br, then As contain Ar ∪ r and Bs contain Br. To
see this note that in first case the connected set Ar ∪ r contain p but not contain s
and so lies entirely in As. The set Bs ∩ {Ar ∪ r} 6= ∅. So Br must lies in Bs. The
second case is similar.

Let r and s be two points of E(p, q)− p− q. If neither s ∈ Ar nor s ∈ Br, then
Pr ⊂ Ps in E(p, q). If neither r ∈ As nor r ∈ Bs, then Ps ⊂ Pr in E(p, q). Hence
any two element in E(p, q) are ordered.
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No element of E(p, q) precedes itself.

If Pr ⊂ Ps, then {Ar ∪ r} ⊂ As. If Ps ⊂ Pt, then {As ∪ s} ⊂ At means
{Ar ∪ r} ⊂ As ⊂ {As ∪ s} ⊂ At.

Which implies {Ar ∪ r} ⊂ At, it follows that Pr ⊂ Pt. Hence any two element
in E(p, q) are simple ordered.

The case E(p, q) = p ∪ q is trivial. ✷

5. H(i) Connected Space

In this section we introduce the notion of H(i) connected sets in ditopological
texure space and study its different properties.

Definition 5.1. A ditopological texture space is H(i), if every open cover of X has
finite subcollection such that closure of the member of that subcollection cocovers
X.

We assume ditopological texture space to be non-degenerate, which means that
the space contains at least two points. ctX will be used to denote the set of all cut
point of a space X. For x ∈ ctX, a separation A and B of X −{x} will be denoted
by Ax and Bx. A∗x will be used to denote Ax ∪ {x}. We denote [A]X means the
closure of A in the space X.

Lemma 5.2. Let X be an H(i) space, {Px, A} ⊆ X.

(i) If A is H(i), then A ∪ {x} is H(i).

(ii) If A , X − [A] = B are open in X and A ∩ [B] = ∅, then [A] is H(i).

Proof. (i) Let Y = A ∪ {x}. Since for an open cover ξ = {Gλ such that λ ∈ ∆ }
of Y in Y , {Hλ = Gλ ∩ A such that λ ∈ ∆} is an open cover of A in A and A is
H(i). Therefore there exists λ1, λ2, λ3, λ4.....λn ∈ ∆ such that A =

⋃
{[Hλi

]A such
that i = 1, 2, 3, ..., n}. For each λ, [Hλ]A ⊂ [Hλ]Y ⊂ [Gλ]Y . So A ⊂

⋃
{[Gλi

]Y such
that i = 1, 2, 3...n}. Now choose Gλ0

∈ ξ containing x, A ∪ {x} =
⋃
{[Gλi

]Y such
that i = 0, 1, 2, 3...n}.

(ii) To show that [A] is H(i), let {Gλ such that λ ∈ ∆} be an open cover of [A]
in [A]. Then [A] =

∨
{Gλ such that λ ∈ ∆}. As each Gλ is open in [A], we can write

Gλ = Hλ ∩ [A] for some Hλ open in X . Therefore [A] ⊂
∨
{Hλ such that λ ∈ ∆}.

Given that X− [A] = B is open set in X and X =
∨
{Hλ such that λ ∈ ∆}∪B. Let

Ht = B and ∆
′

= {t} ∪∆. Since X is H(i), X =
⋃
{[Hλi

] such that i = 1, 2...n}
for some λ1, λ2, λ3.....λn ∈ ∆

′

. Therefore A =
⋃
{[Hλi

] ∩ A; i = 1, 2, 3, ..., n}. So
A ⊂

⋃
{[Hλi

∩ A] such that i = 1, 2...n} as A is open in X . This implies that
A ⊂

⋃
{[Hλi

∩ [A]] such that i = 1, 2...n} and therefore A ⊂
⋃
{[Gλi

] such that
i = 1, 2...n}. Given that X − [A] = B, so obvious [A] ∩ B = ∅ ⇒ A ∩B = ∅. Also
we have by hypothesis, A∩ [B] = ∅ and A is open. Therefore we can suppose that
t /∈ {λ1, λ2, λ3....λn}. This implies [A] =

⋃
{[Gλi

] ∩ [A]; i = 1, 2, 3, ..., n} and so
[A] =

⋃
{[Gλi

]A such that i = 1, 2...n}. This establishes, [A] is H(i). ✷



96 A. K. Saw and B. C. Tripathy

Lemma 5.3. For a connected space X, if ξ is a chain of member of the form {A∗x
such that x ∈ ct(X)} covering X, then for each A∗x ∈ ξ, there exists A∗y ∈ ξ such
that Py 6= Px and Px ⊆ A∗y.

Proof. Suppose that there is some A∗x ∈ ξ such that Px * A∗y for all A∗y ∈ ξ, Py 6=
Px. Then A∗x * A∗y for all A∗y ∈ ξ, Py 6= Px. Since ξ is a chain, A∗y ⊂ A∗x for all
A∗y ∈ ξ, Py 6= Px. Thus X = A∗x. This implies that X − {x} = Ax, which is not
possible. Hence the result. ✷

Theorem 5.4. Let X be a connected space and x ∈ ctX. Let y be a non-cut point
of A∗x in A∗x and Py 6= Px. Then y is a non cut point of X.

Proof. Since y is a non-cut point of A∗x in A∗x, A∗x − {y} is connected. Since
B∗x = B ∩{x} is connected because B is connected and x is a cut-point. Therefore
(A∗x − {y}) ∩ B∗x is connected. But X − {y} = (A∗x − {y}) ∩ B∗x, so X − {y} is
connected. Thus y is a non-cut point of X . ✷

Theorem 5.5. Let H be a subset of a connected space X. Let Pa ⊆ H be such
that H − {a} ⊂ ctX. If A∗x(a) ⊂ H for every Px ⊆ H − {a}, then H is connected.

Proof. Let W =
∨
{A∗x(a) such that Px ⊆ H −{a}}. Since W is connected, as join

of connected set whose meet is non-empty. For each Px ⊆ H−{a}, Px ⊆ A∗x ⊂ W .
Thus H ⊂ W . On the other hand, if Px ⊆ W , then Px ⊆ A∗y(a) for some Py ⊆
H − {a} and by assumption A∗y(a) ⊂ H , so Px ⊆ H . Thus H = W and thus is
connected. ✷
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