

 $\widetilde{\mathrm{SPM}}$: www.spm.uem.br/bspm

(3s.) **v. 38** 2 (2020): 51–60. ISSN-00378712 IN PRESS doi:10.5269/bspm.v38i2.34684

On Fully-Convex Harmonic Functions and their Extension

Shahpour Nosrati and Ahmad Zireh

ABSTRACT: Uniformly convex univalent functions that introduced by Goodman, maps every circular arc contained in the open unit disk with center in it into a convex curve. On the other hand, a fully-convex harmonic function, maps each subdisk |z|=r<1 onto a convex curve. Here we synthesis these two ideas and introduce a family of univalent harmonic functions which are fully-convex and uniformly convex also. In the following we will mention some examples of this subclass and obtain a necessary and sufficient conditions and finally a coefficient condition is given as an aplication of some convolution results.

Key Words: Uniformly convex function, Fully-Convex function, Harmonic function, Convolution.

Contents

1	Introduction and Preliminaries	51
2	Definition and Examples	54
3	Convolution and a sufficient condition	57

1. Introduction and Preliminaries

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in complex plane. Let \mathcal{A} be the familier class of all analytic functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

in the open unit disk \mathbb{D} . Let S denotes the family of all functions f(z) of the form (1.1) that are univalent in \mathbb{D} and normalized with f(0) = 0 and f'(0) = 1.

A conformal function f(z) is said to be starlike if every point of its range can be connected to the origin by a radial line that lies entirely in that region. The class of all starlike functions in S is shown by S^* [9] and $f(z) \in S^*$ if and only if $\mathbf{Re}\left\{z\frac{f'(z)}{f(z)}\right\} > 0$. Starlikeness is a hereditary property for conformal mappings, so if $f(z) \in S$, and if f maps $\mathbb D$ onto a domain that is starlike with respect to the origin, then the image of every subdisk |z| < r < 1 is also starlike with respect to the origin.

2010 Mathematics Subject Classification: Primary 30C45; Secondary 31C05, 31A05. Submitted December 29, 2016. Published October 04, 2017

An analytic function f(z) is said to be convex if its range $f(\mathbb{D})$ is a convex set. It has shown that every convex function f in S satisfy following analytic property

$$\operatorname{Re}\left\{1 + z \frac{f''(z)}{f'(z)}\right\} > 0$$

The class of all convex functions in S is denoted by \mathcal{K} [9].

The subclass of uniformly starlike functions, UST introduced by Goodman [6] and studied in analytic and geometric view.

Definition 1.1. [6] A function $f(z) \in S^*$ is said to be uniformly starlike in \mathbb{D} if it has the property that for every circular arc γ contained in \mathbb{D} , with center $\zeta \in \mathbb{D}$, the arc $f(\gamma)$ be starlike with respect to $f(\zeta)$. We denote the family of all uniformly starlike functions by UST and we have,

$$UST = \left\{ f(z) \in S : \mathbf{Re} \, \frac{(z - \zeta)f'(z)}{f(z) - f(\zeta)} > 0 , \ (z, \zeta) \in \mathbb{D}^2 \right\}$$
 (1.2)

It's clear that $\mathcal{UST} \subset \mathbb{S}^*$ and every function in \mathcal{UST} maps each subdisk $\{|z-\zeta| < \rho\} \subset \mathbb{D}$ onto a domain starlike with respect to $f(\zeta)$. Goodman [5] also defined the subclass of convex functions with this property that map each disk $\{|z-\zeta| < \rho\} \subset \mathbb{D}$ onto a convex domain and called it uniformly convex function and denoted the set of all these functions by \mathcal{UCV} :

Definition 1.2. [5] A function $f(z) \in \mathcal{K}$ is said to be uniformly convex in \mathbb{D} if it has the property that for every circular arc γ contained in \mathbb{D} , with center $\zeta \in \mathbb{D}$, the arc $f(\gamma)$ be a convex arc. We have,

$$\operatorname{UCV} = \left\{ f(z) \in \mathcal{S} : \mathbf{Re} \left(1 + (z - \zeta) \frac{f''(z)}{f'(z)} \right) \ge 0 \ , \ (z, \zeta) \in \mathbb{D}^2 \right\} \tag{1.3}$$

A summary of early works on uniformly starlike and uniformly convex functions can be found in [10].

The complex-valued function f(x,y) = u(x,y) + iv(x,y) is complex-valued harmonic function in \mathbb{D} if f is continuous and u and v are real harmonic in \mathbb{D} . We denote H the family of continuous complex-valued functions which are harmonic in the open unit disk \mathbb{D} . In simply-connected domain \mathbb{D} , $f \in H$ has a canonical representation $f = h + \overline{g}$, where h and g are analytic in \mathbb{D} [3,4]. Then, g and h

have expansions in Taylor series as $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, so we may represent f by a power series of the form

$$f(z) = h(z) + \overline{g(z)} = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n$$

$$\tag{1.4}$$

The Jacobian of a function f=u+iv is $J_f(z)=\left|\begin{array}{cc} u_x & u_y\\ v_x & v_y \end{array}\right|=|h'(z)|^2-|g'(z)|^2$, and $f(z)=h(z)+\overline{g(z)}$ is sense-preserving if $J_f(z)>0$. In 1984, Clunie and Sheil-Small

[3] investigated the class S_H , consisting of sense-preserving univalent harmonic functions $f(z) = h(z) + \overline{g(z)}$ in simply-connected domain $\mathbb D$ which normalized by f(0) = 0 and $f_z(0) = 1$ with the form,

$$f(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \overline{\sum_{n=1}^{\infty} b_n z^n}$$
 (1.5)

The subclass \mathcal{S}_H^0 of \mathcal{S}_H includes all functions $f \in \mathcal{S}_H$ with $f_{\overline{z}}(0) = 0$, so $\mathcal{S} \subset \mathcal{S}_H^0 \subset \mathcal{S}_H$. Clunie and Sheil-Small also considered convex functions in S_H , denoted by \mathcal{K}_H . The hereditary property of convexity for conformal maps does not generalize to univalent harmonic mappings. If f is a univalent harmonic map of \mathbb{D} onto a convex domain, then the image of the disk |z| < r is convex for each radius $r \leq \sqrt{2} - 1$, but not necessarily for any radius in the interval $\sqrt{2} - 1 < r < 1$. In fact, the function

$$f(z) = \mathbf{Re} \frac{z}{1-z} + i\mathbf{Im} \frac{z}{(1-z)^2}$$

$$= \frac{z - \frac{1}{2}z^2}{(1-z)^2} + \frac{-\frac{1}{2}\overline{z}^2}{(1-\overline{z})^2} \in \mathcal{K}_H$$
(1.6)

is a harmonic mapping of the disk $\mathbb D$ onto the half-plane $\operatorname{\mathbf{Re}} w > -\frac12$, but the image of the disk $|z| \le r$ fails to be convex for every r in the interval $\sqrt{2}-1 < r < 1$ [4]. Thus we need a property to explain convexity of a map in a hereditary form in whole disk. We have following definition.

Definition 1.3. [2] A harmonic mapping f with f(0) = 0 of the unit disk is said to be fully-convex if it maps every circle |z| = r < 1 in a one-to-one manner onto a convex curve.

For $f \in \mathcal{S}_H$, the family of fully-convex harmonic functions denotes by $\mathcal{F}\mathcal{K}_H$. In 1980 Mocanu gave a relation between fully-starlikeness and a differential operator of a non-analytic function [7]. Let

$$Df = zf_z - \overline{z}f_{\overline{z}} \tag{1.7}$$

be the differential operator and

$$D^{2}f = D(Df) = zzf_{zz} + \overline{z}\overline{z}f_{\overline{z}\overline{z}} + zf_{z} + \overline{z}f_{\overline{z}}$$

$$\tag{1.8}$$

Lemma 1.4. [7] Let $f \in C^1(\mathbb{D})$ is a complex-valued function such that f(0) = 0, $f(z) \neq 0$ for all $z \in \mathbb{D} - \{0\}$, and $J_f(z) > 0$ in \mathbb{D} and $\operatorname{Re} \frac{Df(z)}{f(z)} > 0$ then f is univalent and fully-starlike in \mathbb{D} .

Lemma 1.5. Let $f \in C^2(\mathbb{D})$ is a complex-valued function such that f(0) = 0, $f(z) \neq 0$ for all $z \in \mathbb{D} - \{0\}$, and $J_f(z) > 0$ in \mathbb{D} and $\operatorname{Re} \frac{D^2 f(z)}{D f(z)} > 0$ then f is univalent and fully-convex in \mathbb{D} .

Since for a sense-preserving complex-valued function f(z), $Df \neq 0$, If $f(z) \in \mathcal{S}_H$ and satisfies condition such as $\operatorname{Re} \frac{Df(z)}{f(z)} > 0$ or $\operatorname{Re} \frac{D^2f(z)}{Df(z)} > 0$ for all $z \in \mathbb{D} - \{0\}$, then f maps every circle 0 < |z| = r < 1 onto a simple closed curve [7]. However, a fully-starlike mapping need not be univalent [2], we restrict our discussion to \mathcal{S}_H .

2. Definition and Examples

For a harmonic function $f(z) = h(z) + \overline{g(z)} \in S_H$, and $\zeta \in \mathbb{D}$ we define the operator

$$\mathbf{D}f(z,\zeta) = (z-\zeta)f_z(z) - \overline{(z-\zeta)}f_{\overline{z}}(z)$$

$$= (z-\zeta)h'(z) - \overline{(z-\zeta)}g'(z)$$
(2.1)

is harmonic also. For $\zeta = 0$ the operator $\mathbf{D}f(z,0) = zf_z - \overline{z}f_{\overline{z}} = zh' - \overline{zg'} = Df(z)$ is previous operator (1.7). Differentiating of the operator $\mathbf{D}f(z,\zeta)$ gives us

$$\mathbf{D}^{2}f(z,\zeta) = \mathbf{D}(\mathbf{D}f(z,\zeta))$$

$$= \mathbf{D}((z-\zeta)h'(z) - \overline{(z-\zeta)g'(z)})$$

$$= (z-\zeta)^{2}h''(z) + \overline{(z-\zeta)^{2}g''(z)} + (z-\zeta)h'(z)$$

$$+ \overline{(z-\zeta)g'(z)}$$
(2.2)

For $\zeta = 0$ the operator $\mathbf{D}^2 f(z,0) = z^2 h''(z) + \overline{z^2 g''(z)} + z h'(z) + \overline{z g'(z)} = D^2 f(z)$ has described by Al-Amiri and Mocanu [1]. Similar to definition (1.1) we say that for an arbitrary function:

Definition 2.1. A function $f \in S_H$ is said to be uniformly fully-convex harmonic function in \mathbb{D} if it has the property that for every circular arc γ contained in \mathbb{D} , with center $\zeta \in \mathbb{D}$, the arc $f(\gamma)$ is convex in $f(\mathbb{D})$.

We denote the set of all uniformly fully-convex harmonic functions in \mathbb{D} by \mathfrak{UFK}_H . The following theorem gives analytic equivalency for above definition:

Theorem 2.2. Let $f \in S_H$. $f \in UFK_H$ if and only if

$$\operatorname{Re} \frac{D^2 f(z,\zeta)}{D f(z,\zeta)} > 0 , \ (z,\zeta) \in \mathbb{D}^2$$
 (2.3)

Proof: Let $\gamma: \zeta + re^{i\theta}$ with $\theta_1 \leq \theta \leq \theta_2$ be a circular arc centered at ζ and contained in \mathbb{D} , then the image of γ under f is convex if the argument of the tangent to the image be a non-decreasing function of θ , that is,

$$\frac{\partial}{\partial \theta} \left(\arg \frac{\partial}{\partial \theta} \{ f(z) - f(\zeta) \} \right) \ge 0$$

Hence

$$\operatorname{Im} \frac{\partial}{\partial \theta} \Big(\log \frac{\partial}{\partial \theta} \big\{ f(z) - f(\zeta) \big\} \Big) \ge 0$$

But for a circular $arc \gamma$, set $z=\zeta+re^{i\theta}$, then $\frac{\partial}{\partial \theta}z=i(z-\zeta)$ and a brief computation will give us

$$\frac{\partial}{\partial \theta} \left\{ f(z) - f(\zeta) \right\} = i \left\{ (z - \zeta) f_z(z) - \overline{(z - \zeta)} f_{\overline{z}}(z) \right\} = i \mathbf{D} f(z, \zeta)$$

then

$$\frac{\partial}{\partial \theta} \log i \, \mathbf{D} f(z, \zeta) = \frac{\partial}{\partial \theta} \log i \left\{ (z - \zeta) h'(z) - \overline{(z - \zeta)} g'(z) \right\}
= \frac{i \left[h'(z) + (z - \zeta) h''(z) \right]}{i \, \mathbf{D} f(z, \zeta)} i(z - \zeta)
- \frac{i \left[g'(z) + (z - \zeta) g''(z) \right]}{i \, \mathbf{D} f(z, \zeta)} \overline{i(z - \zeta)}
= i \frac{\mathbf{D}^2 f(z, \zeta)}{\mathbf{D} f(z, \zeta)}$$

Therefore, we must have

$$\operatorname{Im} \frac{\partial}{\partial \theta} \log i \operatorname{D} f(z, \zeta) = \operatorname{Re} \frac{\operatorname{D}^2 f(z, \zeta)}{\operatorname{D} f(z, \zeta)} \ge 0$$

as we want.

It should be noted that $\frac{\mathbf{D}^2 f(z,\zeta)}{\mathbf{D} f(z,\zeta)}(0,0) = 1$, and

$$\mathfrak{UFK}_{H} = \left\{ f(z) \in \mathcal{S}_{H} : \mathbf{Re} \, \frac{\mathbf{D}^{2} f(z, \zeta)}{\mathbf{D} f(z, \zeta)} > 0 , \ (z, \zeta) \in \mathbb{D}^{2} \right\}$$
 (2.4)

It's simple that one checks the rotations, $e^{-i\alpha}f(e^{i\alpha}z)$ for some real α , are preserve the class \mathbb{UFX}_H and the transformation $\frac{1}{t}f(tz)$ preserves this class also, where $0 < t \le 1$. On the other hand, the class \mathbb{UFX}_H includes all fully-convex functions and uniformly convex functions. With g=0 in (2.3), the analytic function $f(z) \in \mathbb{UFX}_H$ by (2.1) and (2.2) satisfies condition

$$\operatorname{Re} \frac{\mathbf{D}^2 f(z,\zeta)}{\mathbf{D} f(z,\zeta)} = \operatorname{Re} \frac{(z-\zeta)^2 h''(z) + (z-\zeta)h'(z)}{(z-\zeta)h'(z)} = \operatorname{Re} \left(1 + (z-\zeta)\frac{h''(z)}{h'(z)}\right) \ge 0$$

where $(z,\zeta) \in \mathbb{D}^2$. Then

Corollary 2.3. If $f \in \text{UCV}$ be an analytic function, then $f \in \text{UFK}_H$. So, $\text{UCV} \subset \text{UFK}_H \subset \mathcal{K}_H$. Goodman [5] shows the analytic function $f(z) = \frac{z}{1 - Az} \in \text{UCV}$ if and only if $|A| \leq \frac{1}{3}$, thus the convex function $f(z) = \frac{z}{1 - z} \notin \text{UFK}_H$.

Example 2.1. For $|\beta| < 1$ the affine mappings $f(z) = z + \overline{\beta z} \in \mathcal{UFK}_H$, since

$$\mathbf{Re}\,\frac{(z-\zeta)+\overline{(z-\zeta)\beta}}{(z-\zeta)-\overline{(z-\zeta)\beta}}\geq 0$$

is equivalent to

$$\operatorname{\mathbf{Re}}\left((z-\zeta)+\overline{(z-\zeta)\beta}\right)\left(\overline{(z-\zeta)}-(z-\zeta)\beta\right)\geq 0$$

that is $(1 - |\beta|^2)|z - \zeta|^2 \ge 0$.

Corollary 2.4. For $\zeta = 0$ in (2.3), the harmonic function $f \in UFX_H$ will be univalent and fully-convex in $\mathbb D$ by Lemma 1.5. Thus it's clear any non fully-convex harmonic function is not in UFK_H. The harmonic function $f(z) = \text{Re} \frac{z}{1-z} +$ $i\mathbf{Im}\frac{z}{(1-z)^2}$ isn't fully-convex ([4], p.46), then $f \notin \mathfrak{UFK}_H$.

In the following we will give a necessary and sufficient condition for that $f \in$ \mathfrak{UFK}_H . This condition is a generalization form of a theorem about fully-convex functions mentioned by Chuaqui et al. in [2], p139.

Theorem 2.5. Let $f(z) \in S_H$, $f \in \mathcal{UFK}_H$ if and only if

$$|(z-\zeta)h'(z)|^{2} \mathbf{Re} Q_{h} \ge$$

$$|(z-\zeta)g'(z)|^{2} \mathbf{Re} Q_{g} + \mathbf{Re} \left\{ (z-\zeta)^{3} \left(h''(z)g'(z) - h'(z)g''(z) \right) \right\}$$
(2.5)

where $Q_h = 1 + (z - \zeta) \frac{h''(z)}{h'(z)}$ and $Q_g = 1 + (z - \zeta) \frac{g''(z)}{g'(z)}$ for (z, ζ) in polydisk \mathbb{D}^2 .

Proof: According to the definition, $f \in \mathcal{UFK}_H$ if and only if $\operatorname{Re} \frac{\mathbf{D}^2 f(z,\zeta)}{\mathbf{D} f(z,\zeta)} > 0$ for $(z,\zeta) \in \mathbb{D}^2$, if and only if $\operatorname{\mathbf{Re}}\left\{\mathbf{D}^2 f(z,\zeta)\overline{\mathbf{D}f(z,\zeta)}\right\} > 0$ for $(z,\zeta) \in \mathbb{D}^2$, then a simple calculation gives us (2.5).

Lemma 2.6. $f = h + \overline{\beta h} \in \mathcal{UFX}_H$ if and only if $h \in \mathcal{UCV}$, where $|\beta| < 1$.

Proof: Let $f = h + \overline{g} \in \mathcal{S}_H$ and $g = \beta h$ with $|\beta| < 1$, then $f \in \mathcal{UFK}_H$ if and only if (2.5) holds. Since in this case, h and g satisfy equality $Q_h = Q_g$ so (2.5) holds if and only if $|(z - \zeta)h'(z)|^2 \operatorname{Re} Q_h (1 - |\beta|^2) \ge 0$, or $\operatorname{Re} Q_h \ge 0$ that shows $h \in \mathcal{UCV}$.

Example 2.2. The analytic function $h = z + Az^2$ is in UCV if and only if $|A| \leq \frac{1}{6}$ [5]. By Lemma 2.6 we get $f(z) = z + Az^2 + \overline{\beta z + \beta Az^2} \in \mathfrak{UFK}_H$ with $|\beta| < 1$ and $|A| \leq \frac{1}{6}$. For example, let $A = \frac{1}{6}$, $\beta = -\frac{i}{2}$ then $f = z + \frac{1}{6}z^2 - \frac{i}{2}z - \frac{i}{12}z^2 \in \mathfrak{UFK}_H$. In Figure 1, the disk |z - 0.7| < 0.3 is mapped under this uniformly fully-convex harmonic function to a convex elliptical shape with center $f(\zeta) = (0.78, 0.39)$.

Figure 1: The image of |z-0.7| < 0.3 under $f = z + \frac{1}{6}z^2 \overline{-\frac{i}{2}z - \frac{i}{12}z^2} \in \mathcal{UFK}_H$.

3. Convolution and a sufficient condition

The convolution or Hadamard product of two harmonic functions f(z) and F(z) with canonical representations

$$f(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \overline{b_n} \overline{z}^n$$
(3.1)

and

$$F(z) = H(z) + \overline{G(z)} = z + \sum_{n=2}^{\infty} A_n z^n + \sum_{n=1}^{\infty} \overline{B_n} \overline{z}^n$$
(3.2)

is defined as

$$(f * F)(z) = (h * H)(z) + \overline{g * G(z)} = z + \sum_{n=2}^{\infty} a_n A_n z^n + \sum_{n=1}^{\infty} \overline{b_n B_n} \overline{z}^n$$
 (3.3)

The right half-plane mapping $\ell(z)=\frac{z}{1-z}$ acts as the convolution identity and the Koebe map $k(z)=\frac{z}{(1-z)^2}$ acts as derivative operation over functions convolution. We have some properties for convolution over analytic functions f and g:

$$\begin{split} f*g &= g*f \quad , \quad \alpha(f*g) = \alpha f*g \\ f*\ell &= f \qquad , \quad zf'(z) = f*k(z) \end{split}$$

where $\alpha \in \mathbb{C}$. For a given subset $\mathcal{V} \subset \mathcal{A}$, its dual set \mathcal{V}^* is defined by

$$\mathcal{V}^* = \left\{ g \in \mathcal{A} : \frac{f * g(z)}{z} \neq 0, \ \forall f \in \mathcal{V}, \ \forall z \in \mathbb{D} \right\}$$
 (3.4)

Nezhmetdinov (1997) proved that class \mathcal{UCV} is dual set for certain family of functions from \mathcal{A} . He proved ([8], Theorem 2, p.43) that the class \mathcal{UCV} is the dual set of a subset of \mathcal{A} consisting of functions $\varphi : \mathbb{D} \to \mathbb{C}$ given by

$$\varphi(z) = \frac{z}{(1-z)^3} \left[1 - z - \frac{4z}{(\alpha+i)^2} \right]$$
 (3.5)

where $\alpha \in \mathbb{R}$. He determined the uniform estimate $|a_n(\varphi)| \leq n(2n-1)$ for the *n*-th Taylor coefficient of $\varphi(z)$:

Lemma 3.1. [8] Let G is all function $\varphi \in A$ of the form (3.5), then $UCV = G^*$ and $|a_n(\varphi)| \leq n(2n-1)$ for all $n \geq 2$.

For obtaining a sufficient condition in class \mathbb{UFK}_H , we define the dual set of a harmonic function. Let \mathcal{A}_H be the class of complex-valued harmonic functions $f(z) = h(z) + \overline{g(z)}$ in simply connected domain \mathbb{D} of the form (1.5) which are not necessarily sense-preserving univalent on \mathbb{D} . We define the dual set of a subset of \mathcal{A}_H :

Definition 3.2. For a given subset $\mathcal{V}_H \subset \mathcal{A}_H$, the dual set \mathcal{V}_H^* is

$$\mathcal{V}_{H}^{*} = \left\{ F = H + \overline{G} \in \mathcal{A}_{H} : \frac{h * H}{z} + \frac{\overline{g * G}}{\overline{z}} \neq 0, \ \forall f = h + \overline{g} \in \mathcal{V}_{H}, \ \forall z \in \mathbb{D} \right\}$$
(3.6)

Theorem 3.3. Let $\alpha \in \mathbb{R}$, |w| = 1 and

$$G_{H} = \left\{ \varphi - \sigma \overline{\varphi} : \varphi(z) = \frac{z}{(1-z)^{3}} \left(1 - \frac{w - i\alpha}{2 - w - i\alpha} z \right), \\ \sigma = \frac{\overline{(1-w)(2 - w - i\alpha)}}{(1-w)(2 - w - i\alpha)}, z \in \mathbb{D} \right\}$$

then $\mathbb{UFK}_H = G_H^*$. Furthermore If $\sum_{n=2}^{\infty} n(2n-1)|a_n| + n(2n-1)|b_n| < 1 - |b_1|$ then $f \in \mathbb{UFK}_H$.

It's clear that the analytic function φ is the same (3.5), but σ with $|\sigma| = 1$ isn't an arbitrary number and depend on both w and α in φ .

Proof: Let $f = h + \overline{g} \in \mathcal{UFK}_H$, that is

$$\operatorname{Re}\frac{(z-\zeta)^{2}h''(z)+\overline{(z-\zeta)^{2}g''(z)}+(z-\zeta)h'(z)+\overline{(z-\zeta)g'(z)}}{(z-\zeta)h'(z)-\overline{(z-\zeta)g'(z)}}>0, \quad (3.7)$$

 $(z,\zeta) \in \mathbb{D}^2$. For $\zeta = 0$ and then z = 0 we have $\frac{\mathbf{D}^2 f(z,\zeta)}{\mathbf{D} f(z,\zeta)} = 1$, hence the condition (3.7) may be write as

$$i\alpha\Big((z-\zeta)h'(z) - \overline{(z-\zeta)g'(z)}\Big) \neq (z-\zeta)^2h''(z) + \overline{(z-\zeta)^2g''(z)} + (z-\zeta)h'(z) + \overline{(z-\zeta)g'(z)}$$

where $\alpha \in \mathbb{R}$. By the minimum principle for harmonic functions, it is sufficient to verify this condition for $|z|=|\zeta|$ and so, we may assume that $\zeta=wz$ with |w|=1, then from the definition of the dual set for harmonic functions (3.6), with straightforward calculation we conclude that $\frac{h*\varphi}{z}+\sigma\frac{\overline{g*\varphi}}{\overline{z}}\neq 0$, so the first assertion follows.

For obtaining coefficients condition, let $f(z) = h(z) + \overline{g(z)}$ is of the form (3.1), and $\varphi(z) = z + \sum_{n=2}^{\infty} \phi_n z^n$ be the series expansion of analytic function $\varphi(z)$, then $|\phi_n| \le n(2n-1)$ for all $n \ge 2$, by Lemma 3.1. From previous part we see that

$$\left| \frac{h * \varphi}{z} + \sigma \frac{\overline{g * \varphi}}{\overline{z}} \right| = \left| 1 + \sum_{n=2}^{\infty} a_n \phi_n z^{n-1} + \sigma \left(b_1 + \sum_{n=2}^{\infty} \overline{b_n \phi_n} \overline{z}^{n-1} \right) \right|$$

$$\geq |1 + \sigma b_1| - \sum_{n=2}^{\infty} |a_n| |\phi_n| |z|^{n-1} - |\sigma| \sum_{n=2}^{\infty} |b_n| |\phi_n| |z|^{n-1}$$

$$\geq |1 + \sigma b_1| - \sum_{n=2}^{\infty} n(2n-1) |a_n| - \sum_{n=2}^{\infty} n(2n-1) |b_n|$$

$$\geq 0$$

when
$$\sum_{n=2}^{\infty} n(2n-1)|a_n| + n(2n-1)|b_n| < 1 - |b_1|$$
.

References

- Al-Amiri, H. and Mocanu, P. T., Spirallike nonanalytic functions, Proc. Amer. Math. Soc. 82 (1), 61-65, (1981).
- Chuaqui, M., Duren, P. and Osgood, B., Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (1), 127-142, (2004).
- Clunie, J. and Sheil-Small, T., Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (2), 3-25, (1984).
- Duren, P. L., Harmonic Mappings in the Plane, Cambridge University Press, New York, (2004).
- 5. Goodman, A. W., On Uniformly Convex Functions, Ann. Polon. Math., 56, 87-92, (1991).
- Goodman, A. W., On Uniformly Starlike Functions, J. Math. Ana. & App. 155, 364-370, (1991).
- Mocanu, P. T., Starlikeness and convexity for nonanalytic functions in the unit disc, Mathematica (Cluj) 22 (45), 77-83, (1980).
- Nezhmetdinov, I. R., Classes of Uniformly Convex and Uniformly Starlike Functions as Dual Sets, J. Math. Anal. Appl. 216, 40-47, (1997).
- 9. Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, (1975).
- Ronning, F., A survey on uniformly convex and uniformly starlike functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 47 (13), 123-134, (1993).
- 11. Sheil-Small, T., Constants for Planar Harmonic Mappings, J. London Math. Soc. 2 (42), 237-248, (1990).

Shahpour Nosrati, Faculty of Mathematical Scienes, Shahrood University of Technology, Iran.

 $E ext{-}mail\ address: }$ shahpournosrati@yahoo.com

and

Ahmad Zireh, Faculty of Mathematical Scienes, Shahrood University of Technology, Iran.

 $E\text{-}mail\ address: \texttt{azireh@gmail.com}$