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On Fully-Convex Harmonic Functions and their Extension

Shahpour Nosrati and Ahmad Zireh

ABSTRACT: Uniformly convex univalent functions that introduced by Goodman,
maps every circular arc contained in the open unit disk with center in it into a convex
curve. On the other hand, a fully-convex harmonic function, maps each subdisk
|z] = r < 1 onto a convex curve. Here we synthesis these two ideas and introduce a
family of univalent harmonic functions which are fully-convex and uniformly convex
also. In the following we will mention some examples of this subclass and obtain a
necessary and sufficient conditions and finally a coefficient condition is given as an
aplication of some convolution results.
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1. Introduction and Preliminaries

Let D = {z € C: |z| < 1} be the open unit disk in complex plane. Let A be
the familier class of all analytic functions of the form

f(z) :erZanz" (1.1)

in the open unit disk D. Let 8 denotes the family of all functions f(z) of the form
(1.1) that are univalent in I and normalized with f(0) = 0 and f’(0) = 1.

A conformal function f(z) is said to be starlike if every point of its range can
be connected to the origin by a radial line that lies entirely in that region. The
class of all starlike functions in 8 is shown by 8* [9] and f(z) € 8" if and only if

!/
Ro (L0
f(z
so if f(z) € 8, and if f maps D onto a domain that is starlike with respect to the
origin, then the image of every subdisk |z| < r < 1 is also starlike with respect to
the origin.

} > 0. Starlikeness is a hereditary property for conformal mappings,
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An analytic function f(z) is said to be convex if its range f(ID) is a convex set.
It has shown that every convex function f in 8 satisfy following analytic property

f"(2)
f'(z)
The class of all convex functions in 8 is denoted by X [9].

The subclass of uniformly starlike functions, UST introduced by Goodman [6]
and studied in analytic and geometric view.

Definition 1.1. [6] A function f(z) € 8 is said to be uniformly starlike in D if
it has the property that for every circular arc v contained in I, with center { € D,
the arc f(7y) be starlike with respect to f(¢). We denote the family of all uniformly
starlike functions by UST and we have,

(z=9f'(2)
f(z) = 1)

It’s clear that UST C 8* and every function in UST maps each subdisk {|z—(| <
p} C D onto a domain starlike with respect to f(¢). Goodman [5] also defined the
subclass of convex functions with this property that map each disk {|z—(¢| < p} C D
onto a convex domain and called it uniformly convex function and denoted the set
of all these functions by UCV:

Re{l+z }>0

us:r:{f(z)es:Re >0, (z,C)EID)Q} (1.2)

Definition 1.2. [5] A function f(z) € K is said to be uniformly convex in D if it
has the property that for every circular arc v contained in D, with center { € D,
the arc f(v) be a conver arc. We have,

f"(z)
f'(z)

A summary of early works on uniformly starlike and uniformly convex functions
can be found in [10].

The complex-valued function f(z,y) = u(x,y)+iv(z,y) is complex-valued har-
monic function in D if f is continuous and u and v are real harmonic in D. We
denote H the family of continuous complex-valued functions which are harmonic
in the open unit disk D. In simply-connected domain D, f € H has a canonical
representation f = h + g, where h and g are analytic in I [3,4]. Then, g and h

o0 o0

UGV:{f(z)GS:Re(lJr(zfg) )20, (Z,C)EDQ} (1.3)

have expansions in Taylor series as h(z) = g anz"™ and ¢(z) = g bpz", so we
n=0 n=0

may represent f by a power series of the form

f(z) =h(z) +g(z) = Z anz" + Z bp 2" (1.4)
n=0 n=0

The Jacobian of a function f = u+ivis Jp(z) = = |W(2)]?—|¢'(2)|?, and

Vg Uy
f(2) = h(2)+g(z) is sense-preserving if J;(z) > 0. In 1984, Clunie and Sheil-Small
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[3] investigated the class Sy, consisting of sense-preserving univalent harmonic
functions f(z) = h(z) + g(z) in simply-connected domain D which normalized by
f(0) =0 and f,(0) = 1 with the form,

f(2)=h(z)+g(z) =z + Z anz" + Z by 2™ (1.5)

The subclass 8% of 8y includes all functions f € 8y with fz(0) =0, s0 8 C 8% C
8p. Clunie and Sheil-Small also considered convex functions in Sy, denoted by
K. The hereditary property of convexity for conformal maps does not generalize
to univalent harmonic mappings. If f is a univalent harmonic map of D onto
a convex domain, then the image of the disk |z| < r is convex for each radius
r < /2 — 1, but not necessarily for any radius in the interval V2 —1 < r < 1. In
fact, the function

z . z
z— %z2 —%EQ

(=2 + i-27 € Ku

is a harmonic mapping of the disk D onto the half-plane Rew > —%, but the image
of the disk |z| < r fails to be convex for every r in the interval /2 — 1 < r < 1
[4]. Thus we need a property to explain convexity of a map in a hereditary form
in whole disk. We have following definition.

Definition 1.3. [2] A harmonic mapping f with f(0) =0 of the unit disk is said
to be fully-convez if it maps every circle |z| = r < 1 in a one-to-one manner onto
a convex curve.

For f € 8y, the family of fully-convex harmonic functions denotes by FKg. In
1980 Mocanu gave a relation between fully-starlikeness and a differential operator
of a non-analytic function [7]. Let

Df =2f. —%f. (1.7)

be the differential operator and
D*f = D(Df) = 22f.. + Z2fz= + 2f- + 2f= (1.8)
Lemma 1.4. [7] Let f € CY(D) is a complez-valued function such that f(0) = 0,

f(z) # 0 for all z € D — {0}, and J¢(z) > 0 in D and Re ij(:z(j) > 0 then f is

univalent and fully-starlike in 1.
Lemma 1.5. Let f € C*(D) is a compler-valued function such that f(0) = 0,

: D?f(z)
f(2) # 0 for all z € D — {0}, and J¢(z) > 0 in D and Re DI (o)

> 0 then f is

univalent and fully-convex in D.
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Since for a sense-preserving complex-valued function f(z), Df # 0,If f(z) € 8y

Df(2) D*f(z)
> 0 or Re > (0 forall z € D—{0},
7() D) o
then f maps every circle 0 < |z| = r < 1 onto a simple closed curve [7]. However, a
fully-starlike mapping need not be univalent [2], we restrict our discussion to 8g.

and satisfies condition such as Re

2. Definition and Examples

For a harmonic function f(z) = h(z) + g(2) € Sy, and ¢ € D we define the
operator

Df(z,0) = (z=0f:(2) = (2= O f=(2)
= (=W (z) = (z=Qg'(2) (2.1)

is harmonic also. For ¢ = 0 the operator Df(2,0) = zf, —Zfs = zh/ — zg' = D f(2)
is previous operator (1.7). Differentiating of the operator D f(z, () gives us

D*f(2,¢) = D(Df(2,))
= D((z= QN (2) — (= g'(2))
= (2= OW"(2) + (2 = 029" (2) + (2 = ON'(2)
+(z = Q)9g'(2) (2.2)
For ¢ = 0 the operator D?f(z,0) = 22h/(2) + 229" (2) + 21 (2) + z¢'(z) = D%f(z)
has described by Al-Amiri and Mocanu [1]. Similar to definition (1.1) we say that

for an arbitrary function:

Definition 2.1. A function f € Sy is said to be uniformly fully-convexr harmonic
function in D if it has the property that for every circular arc v contained in D,
with center ¢ € D, the arc f(v) is convex in f(D).

We denote the set of all uniformly fully-convex harmonic functions in D by
UFK . The following theorem gives analytic equivalency for above definition:

Theorem 2.2. Let f € Sy. f € UFKy if and only if

D2f(Z,C) P 2
Rein(Z,O >0, (2,0) €D (2.3)

Proof: Let v : ( + re’ with §; < 6 < 65 be a circular arc centered at ¢ and
contained in D, then the image of v under f is convex if the argument of the
tangent to the image be a non-decreasing function of 6, that is,

o (are s (7(2) = 7(O}) 20

Hence

tm 2 (1og 25 7(2) ~ 7(Q)}) > 0
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, 0
But for a circular arc~y, set z = (+re', then 50° = 1(z—() and a brief computation

will give us

DG~ 1O =i~ O1-() - T 0s(2)} = iDS,0

then

9 1ogiDf(2,¢)

% logi{(z — QW (2) - m}

00
1% — R
RUCECEL QPR
ORI ers
iDf(z,¢)
_ DGO
Df(z,¢)
Therefore, we must have
o . B D*f(2,¢)
Im% lOgZDf(Z,C) = Rem 20
as we want. O
It should be noted that %(0, 0) =1, and
2
UFKH:{f(z)ESH:Re%>O, (Z,C)€D2} (24)

It’s simple that one checks the rotations, e = f(e!®z) for some real o, are preserve

the class UFKy and the transformation — f(tz) preserves this class also, where

0 <t < 1. On the other hand, the class UFKy includes all fully-convex functions
and uniformly convex functions. With ¢ = 0 in (2.3), the analytic function f(z) €
UFK g by (2.1) and (2.2) satisfies condition

D2 (2.0 _ g (2= OPH'(2) + (2~ OW(:)
Repio & - On()

where (z,¢) € D?. Then

— Re (1 F(z—0) Zl/((j))) >0

Corollary 2.3. If f € UCV be an analytic function, then f € UFKy. So, UCV C

UFKy € Kg. Goodman [5] shows the analytic function f(z) = 7 ZA € UCV if
— Az

¢ UTKy.

z

1
and only if |A] < 3’ thus the convex function f(z) = .
—z
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Example 2.1. For || < 1 the affine mappings f(z) = z + 8z € UFKy, since

(z=9+(E=-908

Re -
(z=¢ (=08

>0

is equivalent to

Re((: -0+ :-08)(G-0-(:-¢8) =0
that is (1 —[8]%)|]z — ¢|*> > 0.

Corollary 2.4. For ( = 0 in (2.3), the harmonic function f € UFKy will be
univalent and fully-convex in D by Lemma 1.5. Thus it’s clear any non fully-convex

+

harmonic function is not in UFKy. The harmonic function f(z) = Re T
—z

ilmﬁ isn’t fully-convex ([4], p.46), then [ ¢ UFKy.

In the following we will give a necessary and sufficient condition for that f €

UTFK . This condition is a generalization form of a theorem about fully-convex
functions mentioned by Chuaqui et al. in [2], p139.

Theorem 2.5. Let f(2) € Sy, f € UFKy if and only if
(2 = QW (2)PRe Qn > (2.5)
(2~ g ()*Re @y + Re{ (= — O (W(2)9/(2) ~ W (2)g"(2)) )

h//(z) B L gll(z
h'(2) and Qg =1+ (== 0) g'(2)

~—

where Qp =14 (2 — ()

for (z,¢) in polydisk D?.

D’f(z,¢)
Df(z.¢)
for (z,¢) € D?, if and only if Re{DQf(z,()Df(z,Q} > 0 for (z,¢) € D?, then a

simple calculation gives us (2.5). O

Proof: According to the definition, f € UFKy if and only if Re >0

Lemma 2.6. f = h+ fh € UFKy if and only if h € UCY, where |[] < 1.

Proof: Let f =h+g € 8y and g = Sh with || < 1, then f € UFKy if and only
if (2.5) holds. Since in this case, h and g satisfy equality @, = Q4 so (2.5) holds if
and only if |(z — {)h/(2)|*Re Qn(1 — |B3]?) > 0, or Re Q;, > 0 that shows h € UCY.

a

1
Example 2.2. The analytic function h = z + A2? is in UCV if and only if |A| < 6

[5]. By Lemma 2.6 we get f(z) = 2z + A2%2 + Bz + fA22 € UFKy with |8] < 1 and
1 1 ) 1 ) )

|A] < 6 For example, let A = 1 8= —% then f = z+ 6z2—%z — ézQ € UFKy.

In Figure 1, the disk |z — 0.7] < 0.3 is mapped under this uniformly fully-convex

harmonic function to a convex elliptical shape with center f(¢) = (0.78,0.39).
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e

Figure 1: The image of [z — 0.7 < 0.3 under f =z + $2?—%z — 1522 € UFKp.

3. Convolution and a sufficient condition

The convolution or Hadamard product of two harmonic functions f(z) and F(z)
with canonical representations

FE) =) +g() =2+ anz"+ ) baz" (3.1)
and
F(z):H(z)—i-G(z):z—i—ZAnz"—i-Z_nE" (3.2)

is defined as

(f#F)(z) = (hxH)(2) +g*G(z) =2+ _anAnz"+ > b,Bz"  (3.3)

The right half-plane mapping ¢(z) = . i
-z

acts as the convolution identity and the

Koebe map k(z) = acts as derivative operation over functions convolution.

2
(1—-2)?
We have some properties for convolution over analytic functions f and g:
frg=g*f , a(fxg)=af*yg
frt=Ff , 2f'(z) = fxk(z)

where o € C. For a given subset V C A, its dual set V* is defined by

V*:{gGA:Lg(Z)#O,VfGV,VZGD} (3.4)

z
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Nezhmetdinov (1997) proved that class UCV is dual set for certain family of
functions from A. He proved ( [§], Theorem 2, p.43) that the class UCV is the dual
set of a subset of A consisting of functions ¢ : D — C given by

z [ 4z

p(z) = [ l—2z— CEE (3.5)

where a € R. He determined the uniform estimate |a, ()| < n(2n—1) for the n-th
Taylor coefficient of ¢(z):

Lemma 3.1. [8] Let G is all function ¢ € A of the form (3.5), then UCY = G*
and |a,(©)] < n2n—1) for alln > 2.

For obtaining a sufficient condition in class UFK, we define the dual set of
a harmonic function. Let Ag be the class of complex-valued harmonic functions
f(2) = h(2) + g(2) in simply connected domain D of the form (1.5) which are not
necessarily sense-preserving univalent on D. We define the dual set of a subset of
.AHZ

Definition 3.2. For a given subset Vi C Ay, the dual set Vi, is

hx H G
* Jrg*

V’;,:{F:H+EGAH: £0,Vf=h+5€Vy, vzeD} (3.6)

z

Theorem 3.3. Let a € R, |w| =1 and

Gy = {w—aazw@>=( (1),

then UFKy = G3;. Furthermore If Z n(2n—1)|an|+n(2n —1)|b,| < 1—|b1| then
n=2

It’s clear that the analytic function ¢ is the same (3.5), but o with |o] = 1 isn’t
an arbitrary number and depend on both w and « in ¢.

Proof: Let f =h+ g € UFKy, that is
(z = Q*1"(2) + (2 = O)?9"(2) + (= = QN'(2) + (2 — )¢’ (2)

Re —_— >0, (3.7)
(z = QN (z) = (2 = Q)g'(2)
2
(2,¢) € D% For ¢ =0 and then z = 0 we have % = 1, hence the condition

(3.7) may be write as
ia((z= QW) -G=0g@) # (=) + G-
(2= QW)+~ Og)
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where @ € R. By the minimum principle for harmonic functions, it is sufficient

to verify this condition for |z| = |¢| and so, we may assume that { = wz with

|lw| = 1, then from the definition of the dual set for harmonic functions (3.6),
*

99y = 0, so the first

z

h x
with straightforward calculation we conclude that nre +o
z

assertion follows.
For obtaining coefficients condition, let f(z) = h(z) + g(2) is of the form (3.1),

o0
and p(z) = z + Z ¢,,2" be the series expansion of analytic function ¢(z), then
n=2

|6,,] <n(2n—1) for all n > 2, by Lemma 3.1. From previous part we see that

hZSD +UT’ = ’1 +Tian¢nz”_l + (b1 +T§;ME"_1)‘
> (Lt obil = Y fanllgnllz" o] bl
n=2 n=2
> |[1+obi| - in(Qn —1)|an| — in@n —1)|by|
> 0 " i
when in(Qn—1)|an|+n(2n71)|bn| <1—1|by]. O
n=2
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