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abstract: In this paper first of all, we introduce the mapping ζ : [0,∞)×[0,∞) →
R, called the simulation function and the notion of Z-contraction with respect to
ζ which generalize several known types of contractions. Secondly, we prove certain
fixed point theorems using simulation functions in G-Metric spaces. An example is
also given to support our results.
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1. Introduction

Let (X, d) be a metric space and T : X → X be a mapping, then T is called a
contraction(Banach Contraction) on X if

d(Tx, T y) ≤ λd(x, y)

for all x, y ∈ X .
Where λ is a real such that λ ∈ [0, 1). A point x ∈ X is called a fixed point of T
if Tx = x. The well-known Banach Contraction Principle[1] ensures the existence
and uniqueness of a fixed point of a contraction on a complete metric space. After
this principle, several authors generalized this principle by introducing the various
contractions on metric spaces[2, 3-9]. In this work, we introduce a mapping namely
simulation funtion and the notion of Z-contraction. Among all the generalized
metric spaces, the notion of G-Metric spaces was introduced by Mustafa and Sims
in[10], where in the authors discuss the topological properties of this space and
proved the analog of the Banach Contraction Principle in the context of G-Metric
spaces.

Definition 1.1. A G-Metric space (X,G) is said to be symmetric if G(x, y, y) =
G(y, x, x) for all x, y ∈ X .

Example 1.2. Let (X, d) be the usual metric space then the function G :
X ×X × X → [0,∞) defined by G(x, y, z) = max{d(x, y), d(y, z), d(z, x)} for all
x, y, z ∈ X is a G-Metric space.
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Definition 1.3. Let X be a nonempty set and G : X ×X ×X → [0,∞) be a
function satisfying the following properties:
(G1)G(x, y, z) = 0 if x = y = z,
(G2)0 < G(x, x, y) for all x, y ∈ X with x 6= y,
(G3)G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X , with z 6= y,
(G4)G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables),
(G5)G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequlity).
Then, the function G is called a generalized metric, or, more specifically,a G-metric
on X , and the pair (X,G) is called a G-metric space.

Definition 1.4. Let (X,G), (X ′, G′) be G-Metric spaces, then a function
f : X → X ′ is G-continuous at a point x ∈ X if and only if it is G-sequentially con-
tinuous at x, that is, whenever {xn} is G-convergent to x, {f(xn)} is G′-convergent
to f(x).

Recently, Khojasteh et al. [11] introduced a new class of mappings called sim-
ulation functions. Later Argoubi et al. [12] slightly modified the definition of
simulation functions in the definition of simulation functions by withdrawing a
condition.

Let Z∗ be the set of simulation functions in the sense of Argoubi et al.[12].

Definition 1.5. A simulation function is a mapping ζ : [0,∞) × [0,∞) → R

satisfying the following conditions:
(ζ1) ζ(t, s) < s− t for all t, s > 0
(ζ2) if {tn} and {sn} are sequences in (0,∞) such that

limn→∞{tn} = limn→∞{sn} = l ∈ (0,∞),

then

limn→∞supζ(tn, sn) < 0.

2. Main Results

In this section, we define the simulation function, give some examples and prove
a related fixed point result.

Definition 2.1. Let (X,G) be a G-Metric space, f : X → X a mapping and
ζ ∈ Z. Then f is called a Z-contraction with respect to ζ if the following condition
is satisfied

ζ(G(fx, fy, fz), G(x, y, z)) ≥ 0 for all x, y, z ∈ X. (2.1)

Lemma 2.2. Let (X,G) be a G-Metric space and f : X → X be a Z-
contraction with respect to ζ ∈ Z. Then, f is asymptotically regular at every
x ∈ X .

Proof: Let x ∈ X be arbitrary. If for some p ∈ N

we have fpx = fp+1x, that is fy = y, where y = fp−1x, that is fz = z, where
z = fp−1x
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then, fny = fn−1fy = fn−1y = ... = fy = y for all n ∈ N. Now for sufficient large
n ∈ N, we obtain

G(fnx, fn+1x, fn+1x) = G(fn−p+1fp−1x, fn−p+2fp−1x, fn−p+2fp−1x)

= G(fn−p+1y, fn−p+2y, fn−p+2y)

= G(y, y, y) = 0

Therefore, limn→∞G(fnx, fn+1x, fn+1x) = 0
Suppose, fnx 6= fn−1x for all n ∈ N, then it follows from (1) that

0 ≤ ζ(G(fn+1x, fnx, fnx), G(fnx, fn−1x, fn−1x))

= ζ(G(ffnx, ffn−1x, ffn−1x), G(fnx, fn−1x, fn−1x))

≤ G(fnx, fn−1x, fn−1x)−G(fn+1x, fnx, fnx)

The above inequality show that {G(fnx, fn−1x, fn−1x)} is a monotonically de-
creasing sequence of non-negative reals and so it must be convergent.

Let limn→∞G(fnx, fn+1x, fn+1x) = r ≥ 0. If r > 0 then since f is Z-
contraction with respect to ζ ∈ Z therefore, we have

0 ≤ limn→∞supζ(G(fn+1x, fnx, fnx), G(fnx, fn−1x, fn−1x)) < 0.

This, contradiction shows that r = 0, that is, limn→∞G(fnx, fn+1x, fn+1x) = 0.
Thus, f is an asymptotically regular mapping at x.

Lemma 2.3. Let (X,G) be a G-Metric space and f : X → X be a Z-
contraction with respect to ζ. Then the Picard sequence {xn} generated by f

with initial value x0 ∈ X is a bounded sequence, where xn = fxn−1 for all n ∈ N.
Proof: Let x0 ∈ X be arbitrary and {xn} be the Picard sequence, that is,

xn = fxn−1 for all n ∈ N. On the contrary, assume that {xn} is not bounded.
Without loss of generality we can assume that xn+p 6= xn for all n, p ∈ N. Since
{xn} is not bounded, there exists a subsequence {xn} such that n1 = 1 and each
k ∈ N, nk+1 is the minimum integer such that

G(xn(k)+1, xn(k), xn(k)) > 1

and
G(xm, xn(k), xn(k)) ≤ 1

for nk ≤ m ≤ n(k)+1 − 1. Therefore, by the triangular inequality, we have

1 <G(xn(k)+1, xn(k), xn(k))

≤G(xn(k)+1, xn(k)+1 − 1, xn(k)+1 − 1) +G(xn(k)+1 − 1, xn(k), xn(k))

≤G(xn(k)+1, xn(k)+1 − 1, xn(k)+1 − 1) + 1.

Letting k → ∞ and using Lemma 2.2 we get

limk→∞G(xn(k)+1, xn(k), xn(k)) = 1
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By (1), we get G(xn(k)+1, xn(k), xn(k)) ≤ G(xn(k)+1− 1, xn(k)−1, xn(k)−1), therefore
using the triangular inequality we obtain

1 < G(xn(k)+1, xn(k), xn(k)) ≤ G(xn(k)+1 − 1, xn(k)−1, xn(k)−1)

≤ G(xn(k)+1 − 1, xn(k), xn(k)) +G(xn(k), xn(k)−1, xn(k)−1)

≤ 1 +G(xn(k), xn(k)−1, xn(k)−1)

Letting k → ∞ and using Lemma 2.2, we obtain

limk→∞G(xn(k)+1 − 1, xn(k)−1, xn(k)−1) = 1

Now, since f is a Z-contraction with respect to ζ ∈ Z therefore, we have

0 ≤ limk→∞supζ(G(fxn(k)+1 − 1, fxn(k)−1, fxn(k)−1))

= limk→∞supζ(G(xn(k)+1, xn(k), xn(k)), G(xn(k)+1 − 1, xn(k)−1, xn(k)−1)) < 0

This contradiction proves result.
Theorem 2.4. Let (X,G) be a complete G-Metric space and f : X → X be a

Z-contraction with respect to ζ. Then, f has a unique fixed point u in X and for
every x0 ∈ X the Picard sequence {xn} where xn = fxn−1 for all n ∈ N converges
to the fixed point of f .

Proof: Let x0 ∈ X be arbitrary and {xn} be the Picard sequence, that is,
xn = fxn−1 for all n ∈ N. We shall show that this sequence is a Cauchy sequence.
For this, let

Cn = sup{G(xi, xj , xj) : i, j ≥ n}

Note that the sequence {xn} is a monotonically decreasing sequence of positive
reals and by Lemma 2.3 the sequence {xn} is bounded, threrefore Cn < ∞ for all
n ∈ N. Thus, {Cn} is monotonic bounded sequence, therefore convergent, that is,
there exists C ≥ 0 such that limn→∞Cn = C. We shall show that C = 0. If C > 0
then by the definition Cn, for every k ∈ N there exists mk > nk ≥ k and

Ck −
1

k
< G(xm(k), xn(k), xn(k)) ≤ Ck

Hence,

limk→∞G(xm(k), xn(k), xn(k)) ≤ Ck (2.2)

Using (1) and the triangular inequality, we obtain

G(xm(k), xn(k), xn(k)) ≤G(xm(k)−1, xn(k)−1, xn(k)−1)

≤G(xm(k)−1, xm(k), xm(k)) +G(xm(k), xn(k), xn(k))

+G(xn(k), xn(k)−1, xn(k)−1)
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Using Lemma 2.2, (2) and letting k → ∞ in the above inequality we get

limk→∞G(xm(k)−1, xn(k)−1, xn(k)−1) = C. (2.3)

Since T is a Z-contraction with respect to ζ ∈ Z therefore using (1), (2), (3) and
(ζ2), we get

0 ≤ limk→∞supζ(G(xm(k)−1, xn(k)−1, xn(k)−1), G(xm(k), xn(k), xn(k))) < 0

This contradiction proves that C = 0 and so {xn} is a Cauchy sequence. Since X is
a complete G-Metric space, there exists u ∈ X such that limn→∞xn = u. We shall
show that the point u is a fixed point of f . Suppose fu 6= u then G(u, fu, fu) > 0.
Again, using (1), ζ1, ζ2, we have

0 ≤ limn→∞supζ(G(fxn, fu, fu), G(xn, u, u))

≤ limn→∞supζ[G(xn, u, u)−G(xn=1, fu, fu)]

= −G(u, fu, fu)

This contradiction shows that G(u, fu, fu) = 0, that is, fu = u. Thus, u is a fixed
point of f .

Example 2.5. Let X = [0, 1] and G : X ×X → R be defined by G(x, y, z) =
max{|x− y|, |y− z|, |z− x|}. Then, (X,G) is a complete G-Metric space. Define a
mapping f : X → X as fx = x

x+1 for all x ∈ X . f is a continuous function but it
is not a Banach contraction. But it is a Z-contraction with respect to ζ ∈ Z, where

ζ(t, s) =
s

s+ 1
− t for all t, s ∈ [0,∞).

Indeed, if x, y ∈ X , then by a simple calculation it can be shown that

ζ(G(fx, fy, fy), G(x, y, y)) ≥ 0.

Clearly, 0 is the fixed point of f .
Corollary 2.6. Let (X,G) be a complete G-Metric space and f : X → X be

a mapping satisfying the following condition: G(fx, fy, fy) ≤ λG(x, y, y) for all
x, y, y ∈ X , where λ ∈ [0, 1]. Then, f has a unique fixed point in X .

Proof: Define ζB : [0,∞)×[0,∞) → R by ζB(t, s, s) = λs−t for all s, t ∈ [0,∞).
Note that, the mapping f is a Z-contraction with respect to ζB ∈ Z. Therefore,
the result follows by taking ζ = ζB in Theorem 2.4.

Corollary 2.7. Let (X,G) be a complete G-Metric space and f : X → X

be a mapping satisfying the following condition: G(fx, fy, fy) ≤ G(x, y, y) −
ϕ(G(x, y, y)) for all x, y, y ∈ X , where ϕ : [0,∞) → [0,∞) is lower semi continuous
function and ϕ−1(0) = {0}. Then, f has a unique fixed point in X .

Proof: Define ζR : [0,∞) × [0,∞) → R by ζR(t, s, s) = s − ϕ(s) − t for all
s, t ∈ [0,∞). Note that, the mapping f is a Z-contraction with respect to ζR ∈ Z.
Therefore, the result follows by taking ζ = ζR in Theorem 2.4.

Corollary 2.8. Let Let (X,G) be a complete G-Metric space and f : X → X

be a mapping satisfying the following condition: G(fx, fy, fy) ≤ ϕ(G(x, y, y))×
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×G(x, y, y) for all x, y, y ∈ X , where ϕ : [0,+∞) → [0, 1) be a mapping such that
limsupt→r+ϕ(t) < 1, for all r > 0. Then, f has a unique fixed point.

Proof: Define ζR : [0,∞) × [0,∞) → R by ζR(t, s, s) = sϕ(s) − t for all
s, t ∈ [0,∞). Note that, the mapping f is a Z-contraction with respect to ζR ∈ Z.
Therefore, the result follows by taking ζ = ζR in Theorem 2.4.

Corollary 2.9. Let Let (X,G) be a complete G-Metric space and f : X → X

be a mapping satisfying the following condition: G(fx, fy, fy) ≤ η(G(x, y, y)) for
all x, y, y ∈ X , where η : [0,+∞) → [0,+∞) be an upper semi continuous mapping
such that η(t) < t for all t > 0 and η(0) = 0. Then, f has a unique fixed point.

Proof: Define ζBW : [0,∞) × [0,∞) → R by ζBW (t, s, s) = sη(s) − t for all
s, t ∈ [0,∞). Note that, the mapping f is a Z-contraction with respect to ζBW ∈ Z.
Therefore, the result follows by taking ζ = ζBW in Theorem 2.4.

Corollary 2.10. Let Let (X,G) be a complete G-Metric space and f : X → X

be a mapping satisfying the following condition:
∫ (

G(fx,fy,fy
0

)

φ(t)dt ≤ G(x, y, y)

for all x, y ∈ X , where φ : [0,∞) → [0,∞) is a function such that
∫ (

t
0

)

φ(t)dt exists

and
∫ (

c
0

)

φ(t)dt > ǫ, for each ǫ > 0. Then, f has a unique fixed point.

Proof: Define ζK : [0,∞) × [0,∞) → R by ζK(t, s, s) = s −
∫ (

t
0

)

φ(u)du for
all s, t ∈ [0,∞). Then, ζK ∈ Z. Therefore, the result follows by taking ζ = ζK in
Theorem 2.4.
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