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A New Approach to the Study of Fixed Point Theorems for Simulation
Functions in G-Metric Spaces
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ABSTRACT: In this paper first of all, we introduce the mapping ¢ : [0, c0) X [0, c0) —
R, called the simulation function and the notion of Z-contraction with respect to
¢ which generalize several known types of contractions. Secondly, we prove certain
fixed point theorems using simulation functions in G-Metric spaces. An example is
also given to support our results.
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1. Introduction

Let (X, d) be a metric space and T : X — X be a mapping, then T is called a
contraction(Banach Contraction) on X if

d(Tz,Ty) < M\d(x,y)

for all z,y € X.
Where A is a real such that A € [0,1). A point € X is called a fixed point of T
if Tx = 2. The well-known Banach Contraction Principle[1] ensures the existence
and uniqueness of a fixed point of a contraction on a complete metric space. After
this principle, several authors generalized this principle by introducing the various
contractions on metric spaces|2, 3-9]. In this work, we introduce a mapping namely
simulation funtion and the notion of Z-contraction. Among all the generalized
metric spaces, the notion of G-Metric spaces was introduced by Mustafa and Sims
in[10], where in the authors discuss the topological properties of this space and
proved the analog of the Banach Contraction Principle in the context of G-Metric
spaces.

Definition 1.1. A G-Metric space (X, G) is said to be symmetric if G(z,y,y) =
G(y,x,z) for all 2,y € X.

Example 1.2. Let (X,d) be the usual metric space then the function G :
X x X x X — [0,00) defined by G(z,y,z) = maz{d(x,y),d(y, z),d(z,z)} for all
z,y,z € X is a G-Metric space.
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Definition 1.3. Let X be a nonempty set and G : X x X x X — [0,00) be a

function satisfying the following properties:

(G)G(zy,2) =0 itz =y = =

(G2)0 < G(z,x,y) for all z,y € X with = # y,

(G3)G(z,x y ) < G(z,y, z) for all z,y,z € X, with z # v,

(G4)G(z,y,2) = G(z, z,y) = Gy, z,2) = ... (symmetry in all three variables),
(G5)G(z,y, 2 ) < G(z,a,a) + G(a,y,z), for all z,y, z,a € X (rectangle inequlity).
Then, the function G is called a generalized metric, or, more specifically,a G-metric
on X, and the pair (X, G) is called a G-metric space.

Definition 1.4. Let (X,G),(X’,G’') be G-Metric spaces, then a function
f: X — X' is G-continuous at a point x € X if and only if it is G-sequentially con-
tinuous at x, that is, whenever {x,} is G-convergent to x, { f(x,)} is G'-convergent
to f(x).

Recently, Khojasteh et al. [11] introduced a new class of mappings called sim-
ulation functions. Later Argoubi et al. [12] slightly modified the definition of
simulation functions in the definition of simulation functions by withdrawing a
condition.

Let Z* be the set of simulation functions in the sense of Argoubi et al.[12].

Definition 1.5. A simulation function is a mapping ¢ : [0,00) X [0,00) — R
satisfying the following conditions:

(¢q) C(t,s) <s—tforallt,s>0
((y) if {t,,} and {s,} are sequences in (0, c0) such that

limp—oo{tn}t = limp—oo{sn} =1 € (0, 0),

then
limp— oo SUpC(tn, $n) < 0.

2. Main Results

In this section, we define the simulation function, give some examples and prove
a related fixed point result.

Definition 2.1. Let (X, G) be a G-Metric space, f: X — X a mapping and
¢ € Z. Then f is called a Z-contraction with respect to ( if the following condition
is satisfied

C(G(fz, fy, f2),G(x,y,2)) > 0 for all x,y,z € X. (2.1)

Lemma 2.2. Let (X,G) be a G-Metric space and f : X — X be a Z-
contraction with respect to ¢ € Z. Then, f is asymptotically regular at every
reX.

Proof: Let x € X be arbitrary. If for some p € N
we have fPx = fPtlz, that is fy = y, where y = fP~ 'z, that is fz = z, where
2= frlyg
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then, f"y = f" 1fy = f""ly=..= fy =y for all n € N. Now for sufficient large
n € N, we obtain

G(fra, [ e, friha) = GUfrPHL fr e, frop2 preiy, frore? iy

(froptly, fropt2y froptiy)
(v, 9,9) =0

G
G

Therefore, lim, oo G(f"x, f* o, frHlz) =0
Suppose, f"x # f*~tx for all n € N, then it follows from (1) that

0< C(GU™ ., e, f12), G(f ", £ e, 7))
= GG S e f 1 ), G f e, [ )
S G(f"x,f"_lsc,f"_lx) o G(]”H_lx,fnl', fnSC)

The above inequality show that {G(f"z, f*~tx, f*~'z)} is a monotonically de-
creasing sequence of non-negative reals and so it must be convergent.

Let limy, oo G(f"x, "o, fitlz) = r > 0. If r > 0 then since f is Z-
contraction with respect to ¢ € Z therefore, we have

This, contradiction shows that r = 0, that is, lim, .G(f"z, "z, frtiz) = 0.
Thus, f is an asymptotically regular mapping at x.

Lemma 2.3. Let (X,G) be a G-Metric space and f : X — X be a Z-
contraction with respect to (. Then the Picard sequence {z,} generated by f
with initial value zy € X is a bounded sequence, where z,, = fz,_1 for all n € N.

Proof: Let xg € X be arbitrary and {,} be the Picard sequence, that is,
Zp = fan—1 for all n € N. On the contrary, assume that {z,} is not bounded.
Without loss of generality we can assume that x4, # x, for all n,p € N. Since
{z,} is not bounded, there exists a subsequence {x,} such that n; = 1 and each
k € N, ng4; is the minimum integer such that

G(Tr(k)+1> Tn(k)s Tnk)) > 1

and

for ni, <m < ny41 — 1. Therefore, by the triangular inequality, we have

1 <G($n(k)+la :L'n(k)a :L'n(k))
SG(xn(k)+1’xn(k)+1 - 1?‘Tn(k)+1 - 1) + G(-Tn(k)+1 — 1’,’L'n(k)’[1]n(k))
SG(xn(k)-l-lvxn(k)—i-l - 1,$n(k)+1 — 1) + 1.

Letting £ — oo and using Lemma 2.2 we get

limk—)ooG(xn(k)—i-l y Tn (k) zn(k)) =1
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By (1), we get G(Zp k)11, Tn(k)» Tn(k)) < G(Tnk)y+1 — L, Tr(k)—1, Tn(k)—1), therefore
using the triangular inequality we obtain

1 < G(@nk)y+1> Tnk) Tnk)) < G(Tny+1 — L Tnk) =15 Tn(k)—1)
S G(Tpys1 — L Tokys Tury) + G(Tnk) Tr(k)—15 Tnk)—1)
<1+ G(Tphy, Tn(k)—15 Tn(k)—1)

Letting £ — oo and using Lemma 2.2, we obtain
limy— o0 G(Tnk)y+1 — 1 Tnk)—1, Tn(ky—1) = 1

Now, since f is a Z-contraction with respect to ( € Z therefore, we have

0 < limp—soosupl(G(fTnry+1 — L fTnr)—15 fTnii)—1))
= 1iMg—s00 SUPC (G (T (k) 115 Tr(k) s Tr(k) ) G(Tnky+1 — L5 Tn(k)—15 Tn(r)-1)) <0

This contradiction proves result.

Theorem 2.4. Let (X, G) be a complete G-Metric space and f: X — X be a
Z-contraction with respect to . Then, f has a unique fixed point u in X and for
every xo € X the Picard sequence {x,,} where x,, = fx, 1 for all n € N converges
to the fixed point of f.

Proof: Let zp € X be arbitrary and {z,} be the Picard sequence, that is,
Ty = fx,—1 for all n € N. We shall show that this sequence is a Cauchy sequence.
For this, let

Cn = SUP{G(ZCZ',ZEJ‘,.’L']‘) N n}

Note that the sequence {z,} is a monotonically decreasing sequence of positive
reals and by Lemma 2.3 the sequence {x,} is bounded, threrefore C,, < oo for all
n € N. Thus, {C),} is monotonic bounded sequence, therefore convergent, that is,
there exists C' > 0 such that lim,—-C, = C. We shall show that C =0. If C' > 0
then by the definition C),, for every k € N there exists my > ni > k and

Cy — % < G(Trm() > T(k)s Tnk)) < Ck
Hence,
1m0 G(Tm (k) Tn(k)s Tn(k)) < Ck (2.2)
Using (1) and the triangular inequality, we obtain

G(Zm(k)s Tr(k) Tnik)y) <G(Tmk)—15 Tn(k)—1s Tn(k)—1)
SG(Tm(k) =15 Tmk)> Tm(k)) T G( Ty Tr(k) s Tn(k))
+ G(Trk) > Tn(k)—15 Tr(k)—1)
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Using Lemma 2.2, (2) and letting & — oo in the above inequality we get
limp—s00 G(Zm (k) =1, T(k)—15 Tn(k)—1) = C. (2.3)

Since T is a Z-contraction with respect to ¢ € Z therefore using (1), (2), (3) and
(Ca), we get

0 < limg— 00 SUPC(G (T (k) =15 Tn(k)=1> Tn(k)—=1)> G(Tm(k)s Tn(k)s Tnk))) < 0

This contradiction proves that C' = 0 and so {x,,} is a Cauchy sequence. Since X is
a complete G-Metric space, there exists u € X such that lim,, .oz, = u. We shall
show that the point u is a fixed point of f. Suppose fu # u then G(u, fu, fu) > 0.
Again, using (1), ¢y, (5, we have

0 < i soesupC(C(f s fu, fs), Clarn, u,u))
< limnﬁoosupéh[G(xna u, u) - G($n:1, fu, fu)]
= 7G(’LL, fuv fu)

This contradiction shows that G(u, fu, fu) = 0, that is, fu = u. Thus, u is a fixed
point of f.

Example 2.5. Let X =[0,1] and G : X x X — R be defined by G(z,y,z) =
max{|z —y|, |y — 2|, |z — z|}. Then, (X,G) is a complete G-Metric space. Define a
mapping f: X — X as fo = #_1 for all x € X. f is a continuous function but it
is not a Banach contraction. But it is a Z-contraction with respect to { € Z, where

C(ta S) -

SS - —tforall t,s € [0,00).

Indeed, if z,y € X, then by a simple calculation it can be shown that

C(G(fz, fy, fy),G(x,y,y)) > 0.

Clearly, 0 is the fixed point of f.

Corollary 2.6. Let (X,G) be a complete G-Metric space and f : X — X be
a mapping satisfying the following condition: G(fz, fy, fy) < AG(z,y,y) for all
x,y,y € X, where A € [0,1]. Then, f has a unique fixed point in X.

Proof: Define (5 : [0,00)x[0,00) — Rby (5(t, s,s) = As—t forall s,t € [0, 00).
Note that, the mapping f is a Z-contraction with respect to (5 € Z. Therefore,
the result follows by taking ¢ = (5 in Theorem 2.4.

Corollary 2.7. Let (X,G) be a complete G-Metric space and f : X — X
be a mapping satisfying the following condition: G(fz, fy, fy) < G(x,y,y) —
o(G(z,y,y)) for all z,y,y € X, where ¢ : [0,00) — [0, 00) is lower semi continuous
function and »~1(0) = {0}. Then, f has a unique fixed point in X.

Proof: Define ¢ : [0,00) x [0,00) — R by Cx(t,s,s) = s — ¢(s) —t for all
s,t € [0,00). Note that, the mapping f is a Z-contraction with respect to (5 € Z.
Therefore, the result follows by taking ( = (p in Theorem 2.4.

Corollary 2.8. Let Let (X, G) be a complete G-Metric space and f: X — X
be a mapping satisfying the following condition: G(fz, fy, fy) < o(G(x,y,y))x
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xG(z,y,y) for all x,y,y € X, where ¢ : [0,+00) — [0,1) be a mapping such that
limsup;_,,+¢(t) < 1, for all r > 0. Then, f has a unique fixed point.

Proof: Define (5 : [0,00) x [0,00) — R by (r(t,s,s) = sp(s) —t for all
s,t € [0,00). Note that, the mapping f is a Z-contraction with respect to (5 € Z.
Therefore, the result follows by taking ¢ = (; in Theorem 2.4.

Corollary 2.9. Let Let (X, G) be a complete G-Metric space and f: X — X
be a mapping satisfying the following condition: G(fz, fy, fy) < n(G(x,y,y)) for
all z,y,y € X, where ) : [0, +00) — [0, 400) be an upper semi continuous mapping
such that n(t) < ¢ for all ¢ > 0 and 7(0) = 0. Then, f has a unique fixed point.

Proof: Define (zW : [0,00) x [0,00) = R by (zW(t,s,s) = sn(s) —t for all
s,t € [0,00). Note that, the mapping f is a Z-contraction with respect to {zW € Z.
Therefore, the result follows by taking ( = (W in Theorem 2.4.

Corollary 2.10. Let Let (X, G) be a complete G-Metric space and f: X — X
be a mapping satisfying the following condition: | (G(fmbfy’fy)gb(t)dt < G(z,y,y)
for all z,y € X, where ¢ : [0,00) — [0,00) is a function such that [ (é)(b(t)dt exists
and [ (5)¢(t)dt > e, for each € > 0. Then, f has a unique fixed point.

Proof: Define (j : [0,00) x [0,00) = R by ((t,s,s) = s — [ (5)p(u)du for

all s,t € [0,00). Then, (, € Z. Therefore, the result follows by taking ¢ = (f in
Theorem 2.4.
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