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Existence of Solution for Nonlinear Fourth-order Three-point

Boundary Value Problem

Zouaoui Bekri and Slimane Benaicha

abstract: In this paper, we study the existence of solution for the fourth-order
three-point boundary value problem having the following form

u(4)(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = αu(η), u
′

(0) = u
′′

(0) = 0, u(1) = βu(η),

where η ∈ (0, 1), α, β ∈ R, f ∈ C([0, 1] × R,R), and f(t, 0) 6= 0. We give sufficient
conditions that allow us to obtain the existence of solution. And by using the Leray-
Schauder nonlinear alternative we prove the existence of at least one solution of the
posed problem. As an application, we also given some examples to illustrate the
results obtained.
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1. Introduction

The study of fourth-order three-point boundary value problems (BVP) for or-
dinary differential equations arise in a variety of different areas of applied mathe-
matics and physics.

Many authors studied the existence of positive solutions for nth-order m-point
boundary value problems using different methods such that fixed point theorems
in cones, nonlinear alternative of Leray-Schauder, and Krasnoselskii’s fixed point
theorem, see ( [2,3,4,5]) and the references therein.

In 2003, by using the Leray-Schauder degree theory, Yuji Liu and Weigao Ge
( [6]) proved the existence of positive solutions for (n− 1, 1) three-point boundary
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value problems with coefficient that changes sign given as follows

u(n)(t) + λa(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = αu(η), u(1) = βu(η), u(i)(0) = 0 for i = 1, 2, ..., n− 2, and

u(n−2)(0) = αu(n−2)(η), u(n−2)(1) = βu(n−2)(η), u(i)(0) = 0 for i = 1, 2, .., n− 3,

where η ∈ (0, 1), α ≥ 0, β ≥ 0, and a : (0, 1) → R may change sign and R =
(−∞,∞), f(0) > 0, λ > 0 is a parameter.

In 2005, Paul W. Eloea and Bashir Ahmad ( [7]) studied the existence of pos-
itive solutions of the following nonlinear nth-order boundary value problem with
nonlocal conditions

u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u
′

(0) = 0, ..., u(n−2)(0) = 0, αu(η) = u(1),

where 0 < η < 1, 0 < αηn−1 < 1, a : [0, 1] → [0,∞) is continuous, and f is either
superlinear or sublinear. The methods used is based on the fixed point theorem in
cones due to Krasnoselkîı and Guo.

Then in the year 2009, Xie, Liu and Bai ( [8]) used fixed-point theory to study
the existence of positive solutions for a singular nth-order three-point boundary
value problem on time scales represented in the following figure

u(n)(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(a) = αu(η), u
′

(a) = 0, ..., u(n−2)(a) = 0, u(b) = βu(η),

where a < η < b, 0 ≤ α < 1, 0 < β(η − a)n−1 < (1 − α)(b − a)n−1 + α(η − a)n−1,
f ∈ C([a, b]× [0,∞), [0,∞)) and h ∈ C([a, b], [0,∞)) may be singular at t = a and
t = b.

In 2013, Yan Sun and Cun Zhu ( [9]), considered the singular fourth-order three
point boundary value problem

u(4)(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u
′

(0) = u
′′

(0) = 0, u
′′

(1)− αu
′′

(η) = λ,

where η ∈ (0, 1) and α ∈ [0, 1
η ) are constants and λ ∈ [0,∞) is a parameter, The

authors presented the existence of positive solutions by using the Krasnosel’skii
fixed point theorem.

For Some other results on fourth-order boundary value problem, we refer the
reader to the papers ( [10,11,12,13,14]).

Motivated by the above works, the aim of this paper is to establish some suffi-
cient conditions for the existence of solution for the fourth-order three-point bound-
ary value problem (BVP)

u(4)(t) + f(t, u(t)) = 0, 0 < t < 1. (1.1)

u(0) = αu(η), u
′

(0) = u
′′

(0) = 0, u(1) = βu(η), (1.2)
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where η ∈ (0, 1), α, β ∈ R, f ∈ C([0, 1]× R,R), f(t, 0) 6= 0, and R = (−∞,+∞).
This paper is organized as follows. In section 2, we present two lemmas that

will be used to prove the results. Then, in section 3, we present and prove our main
results which consists of existence theorems and corollary for nontrivial solution
of the BVP (1.1) − (1.2), and we establish some existence criteria of at least one
solution by using the Leray-Schauder nonlinear alternative. Finally, in section 4,
as an application, we give some examples to illustrate the results we obtained.

2. Preliminaries

Let E = C([0, 1]) with the norm ‖y‖ = supt∈[0,1] |y(t)| for any y ∈ E. A solution
u(t) of the BVP (1.1) − (1.2) is called nontrivial solution if u(t) 6= 0. To get our
results, we need to provide the following lemma.

Lemma 2.1. Let y ∈ C([0, 1]), α 6= 1, βη3 6= 1, and ζ = (1− α) + η3(α− β) 6= 0,
then three-point BVP

u(4)(t) + y(t) = 0, 0 < t < 1,

u(0) = αu(η), u
′

(0) = u
′′

(0) = 0, u(1) = βu(η),

has a unique solution

u(t) = −1

6

∫ t

0

(t− s)3y(s)ds+
t3(1 − α) + αη3

6ζ

∫ 1

0

(1− s)3y(s)ds+

t3(α− β)− α

6ζ

∫ η

0

(η − s)3y(s)ds.

Proof. Rewriting the differential equation as u(4)(t) = −y(t), and integrating four
times from 0 to t, we obtain

u(t) = −1

6

∫ t

0

(t− s)3y(s)ds+
t3

6
c0 +

t2

2
c1 + tc2 + c3. (2.1)

By the boundary conditions (1.2), we have u′(0) = u′′(0) = 0, i.e. c1 = c2 = 0,
and u(0) = αu(η), implies

c3 = − α

6(1− α)

∫ η

0

(η − s)3y(s)ds+
αη3

6(1− α)
c0, (2.2)

also u(1) = βu(η), we find

c0 =
1

(1 − βη3)

∫ 1

0

(1−s)3y(s)ds− β

(1− βη3)

∫ η

0

(η−s)3y(s)ds+
6(β − 1)

(1− βη3)
c3. (2.3)

Injecting equation (2.2) in (2.3), we obtain

c0 =
(1− α)

(1− α) + η3(α− β)

∫ 1

0

(1−s)3y(s)ds+
(α − β)

(1− α) + η3(α − β)

∫ η

0

(η−s)3y(s)ds,
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and c3 =

αη3

6((1− α) + η3(α− β))

∫ 1

0

(1−s)3y(s)ds− α

6((1− α) + η3(α− β))

∫ η

0

(η−s)3y(s)ds.

Substituting c0 and c3 by their values in (2.1), we obtain the solution in the state-
ment of the lemma. this completes the proof. ✷

Define the integral operator T : E −→ E, by

Tu(t) = −1

6

∫ t

0

(t− s)3f(s, u(s))ds+
t3(1 − α) + αη3

6ζ

∫ 1

0

(1− s)3f(s, u(s))ds+

t3(α− β)− α

6ζ

∫ η

0

(η − s)3f(s, u(s))ds. (2.4)

By Lemma 2.1, the BVP (1.1) − (1.2) has a solution if and only if the operator
T has a fixed point in E. So we only need to seek a fixed point of T in E. By
Ascoli-Arzela theorem, we can prove that T is a completely continuous operator.
Now we cite the Leray-Schauder nonlinear alternative.

Lemma 2.2. ([1, 15]). Let E be a Banach space and Ω be a bounded open subset

of E, 0 ∈ Ω. T : Ω → E be a completely continuous operator. Then, either

(i) there exists u ∈ ∂Ω and λ > 1 such that T (u) = λu, or
(ii) there exists a fixed point u∗ ∈ Ω of T .

3. Existence of solution

In this section, we prove the existence of a nontrivial solution for the BVP
(1.1)− (1.2). Suppose that f ∈ C([0, 1]× R,R).

Theorem 3.1. Suppose that f(t, 0) 6= 0, ζ 6= 0, and there exist nonnegative func-

tions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R,

(
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1 − s)3k(s)ds+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3k(s)ds < 1.

Then the BVP (1.1)− (1.2) has at least one nontrivial solution u∗ ∈ C([0, 1]).

Proof. Let

M = (
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1− s)3k(s)ds+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3k(s)ds,

N = (
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1− s)3h(s)ds+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3h(s)ds.
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Then M < 1. Since f(t, 0) 6= 0, there exists an interval [a, b] ⊂ [0, 1] such that
mina≤t≤b |f(t, 0)| > 0. And as h(t) ≥ |f(t, 0)|, a.e. t ∈ [0, 1], we know that N > 0.

Let A = N(1 −M)−1 and Ω = {u ∈ E : ‖u‖ < A}. Assume that u ∈ ∂Ω and
λ > 1 such that Tu = λu, then

λA = λ‖u‖ =‖Tu‖ = max
0≤t≤1

|(Tu)(t)|

≤1

6
max
0≤t≤1

∫ t

0

(t− s)3|f(s, u(s))|ds

+ max
0≤t≤1

| t
3(1− α) + αη3

6ζ
|
∫ 1

0

(1 − s)3|f(s, u(s))|ds

+ max
0≤t≤1

| t
3(α− β)− α

6ζ
|
∫ η

0

(η − s)3|f(s, u(s))|ds

≤(
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1 − s)3|f(s, u(s))|ds

+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3|f(s, u(s))|ds

≤[(
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1 − s)3k(s)|u(s)|ds

+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3k(s)|u(s)|ds]

+

[

(
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1− s)3h(s)ds

+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3h(s)ds

]

=M‖u‖+N.

Therefore,

λ ≤ M +
N

A
= M +

N

N(1−M)−1
= M + (1−M) = 1.

This contradicts λ > 1. By Lemma 2.3, T has a fixed point u∗ ∈ Ω. In view of
f(t, 0) 6= 0, the BVP (1.1)− (1.2) has a nontrivial solution u∗ ∈ E.

This completes the proof. ✷

Theorem 3.2. Suppose that f(t, 0) 6= 0, ζ > 0, and there exist nonnegative func-

tions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions is fulfilled
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(1) There exists a constant p > 1 such that

∫ 1

0

kp(s)ds < [
6ζ(1 + 3q)1/q

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η(1+3q)/q
]p, (

1

p
+

1

q
= 1).

(2) There exists a constant µ > −1 such that

k(s) ≤ ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1+ |α|(1 + η3) + (|β|+ 2|α|)η4+µ
sµ, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ
sµ} > 0.

(3) There exists a constant µ > −4 such that

k(s) ≤ 6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| (1− s)µ, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| (1 − s)µ} > 0.

(4) k(s) satisfies

k(s) ≤ 24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 , a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 } > 0.

(5) f(t, x) satisfies

Q = lim sup
|x|→∞

max
t∈[0,1]

|f(t, x)
x

| < 24ζ

ζ + 1+ |α|(1 + η3) + (|β|+ 2|α|)η4 .

Then the BVP (1.1)− (1.2) has at least one nontrivial solution u∗ ∈ E.

Proof. Let M be defined as in the proof of Theorem 3.1. To prove Theorem 3.2,
we only need to prove that M < 1. Since ζ > 0, we have

M =
ζ + 1 + |α|(1 + η3)

6ζ

∫ 1

0

(1− s)3k(s)ds+
|β|+ 2|α|

6ζ

∫ η

0

(η − s)3k(s)ds.

(1) Using the Hölder inequality, we have

M ≤ [

∫ 1

0

kp(s)ds]1/p{ζ + 1 + |α|((1 + η3)

6ζ
[

∫ 1

0

(1−s)3qds]1/q+
|β|+ 2|α|

6ζ
×

[

∫ η

0

(η − s)3qds]1/q}
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M ≤ [

∫ 1

0

kp(s)ds]1/p[
ζ + 1 + |α|(1 + η3)

6ζ
(

1

1 + 3q
)1/q+

|β|+ 2|α|
6ζ

(
η1+3q

1 + 3q
)1/q]

<
6ζ(1 + 3q)1/q

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η(1+3q)/q
×

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η(1+3q)/q

6ζ(1 + 3q)1/q
= 1

(2) In this case, we have

M <
ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ
[
ζ + 1 + |α|(1 + η3)

6ζ

∫ 1

0

(1− s)3sµds+

|β|+ 2|α|
6ζ

∫ η

0

(η − s)3sµds]

≤ ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ
[
ζ + 1 + |α|(1 + η3)

ζ
×

1

(1 + µ)(2 + µ)(3 + µ)(4 + µ)
+

|β|+ 2|α|
ζ

η4+µ

(1 + µ)(2 + µ)(3 + µ)(4 + µ)
] =

ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ
.
ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ

ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)
= 1.

(3) In this case, we have

M <
6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| [
ζ + 1 + |α|(1 + η3)

6ζ

∫ 1

0

(1− s)3+µds+
|β|+ 2|α|

6ζ
×

∫ η

0

(η − s)3(1− s)µds]

≤ 6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| [
ζ + 1 + |α|(1 + η3)

6ζ

∫ 1

0

(1 − s)3+µds+
|β|+ 2|α|

6ζ
×

∫ 1

0

(1 − s)3+µds]

=
6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| [
ζ + 1 + |α|(1 + η3)

6ζ
.

1

4 + µ
+

|β|+ 2|α|
6ζ

.
1

4 + µ
]

=
6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| .
ζ + 1 + |α|(3 + η3) + |β|

6ζ(4 + µ)
= 1.

(4) In this case, we have

M <
24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 [
ζ + 1 + |α|(1 + η3)

6ζ

∫ 1

0

(1− s)3ds+
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|β|+ 2|α|
6ζ

∫ η

0

(η − s)3ds]

=
24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 [
ζ + 1 + |α|(1 + η3)

24ζ
+
(|β|+ 2|α|)η4

24ζ
] = 1.

(5) Let ǫ = 1
2 [

24ζ
ζ+1+|α|(1+η3)+(|β|+2|α|)η4 −Q], then there exists c > 0 such that

|f(t, x)| ≤ [
24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 − ǫ]|x|, (t, x) ∈ [0, 1]× R \ (−c, c).

Set A = max{|f(t, x)| : (t, x) ∈ [0, 1]× [−c, c]}, then

|f(t, x)| ≤ [
24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 − ǫ]|x|+A, (t, x) ∈ [0, 1]× R.

Set k(s) = 24ζ
ζ+1+|α|(1+η3)+(|β|+2|α|)η4 − ǫ, h(s) = A, then (4) holds.

This completes the proof. ✷

Corollary 3.3. Suppose f(t, 0) 6= 0, ζ > 0, and there exist nonnegative functions

k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of following conditions is holds

(1) There exists a constant p > 1 such that

∫ 1

0

kp(s)ds < [
6ζ(1 + 3q)1/q

ζ + 1 + 4|α|+ |β| ]
p, (

1

p
+

1

q
= 1).

(2) There exists a constant µ > −1 such that

k(s) ≤ ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + 4|α|+ |β| sµ, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + 4|α|+ |β| sµ} > 0.

(3) k(s) satisfies

k(s) ≤ 24ζ

ζ + 1 + 4|α|+ |β| , a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
24ζ

ζ + 1 + 4|α|+ |β| } > 0.

(4) f(t, x) satisfies

Q = lim sup
|x|→∞

max
t∈[0,1]

|f(t, x)
x

| < 24ζ

ζ + 1+ 4|α|+ |β| .

Then the BVP (1.1)− (1.2) has at least one nontrivial solution u∗ ∈ E.
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Proof. In this case, we have

M =
ζ + 1 + |α|(1 + η3)

6ζ

∫ 1

0

(1 − s)3k(s)ds+
|β|+ 2|α|

6ζ

∫ η

0

(η − s)3k(s)ds

≤ ζ + 1 + 2|α|
6ζ

∫ 1

0

(1 − s)3k(s)ds+
|β|+ 2|α|

6ζ

∫ 1

0

(1− s)3k(s)ds

=
ζ + 1 + 4|α|+ |β|

6ζ

∫ 1

0

(1 − s)3k(s)ds.

Proof of this Corollary 3.3 is the same method in the proof Theorem 3.2. ✷

Theorem 3.4. Suppose f(t, 0) 6= 0, α > 0, β > 0, ζ < 0, and there exist nonneg-

ative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions is fulfilled

(1) There exists a constant p > 1 such that

∫ 1

0

kp(s)ds < [
−6ζ(1 + 3q)1/q

2α+ βη3 + (β + 2α)η(1+3q)/q
]p, (

1

p
+

1

q
= 1).

(2) There exists a constant µ > −1 such that

k(s) ≤ −ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

2α+ βη3 + (β + 2α)η4+µ
sµ, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
−ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

2α+ βη3 + (β + 2α)η4+µ
sµ} > 0.

(3) There exists a constant µ > −4 such that

k(s) ≤ −6ζ(4 + µ)

4α+ β(1 + η3)
(1 − s)µ, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
−6ζ(4 + µ)

4α+ β(1 + η3)
(1 − s)µ} > 0.

(4) k(s) satisfies

k(s) ≤ −24ζ

2α+ βη3 + (β + 2α)η4
, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
−24ζ

2α+ βη3 + (β + 2α)η4
} > 0.

(5) f(t, x) satisfies

Q = lim sup
|x|→∞

max
t∈[0,1]

|f(t, x)
x

| < −24ζ

2α+ βη3 + (β + 2α)η4
.

Then the BVP (1.1)− (1.2) has at least one nontrivial solution u∗ ∈ E.
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Proof. Let M be given as in the proof of Theorem 3.1. To prove Theorem 3.4, we
only need to prove that M < 1. Since α > 0, β > 0, and ζ < 0, we have

M =
2α+ βη3

−6ζ

∫ 1

0

(1− s)3k(s)ds+
β + 2α

−6ζ

∫ η

0

(η − s)3k(s)ds.

Proof of this Theorem 3.4 is the same method in the proof Theorem 3.2. ✷

Corollary 3.5. Suppose f(t, 0) 6= 0, α > 0, β > 0, ζ < 0, and there exist nonneg-

ative functions k, h ∈ L1[0, 1] such that

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

If one of the following conditions is holds

(1) There exists a constant p > 1 such that

∫ 1

0

kp(s)ds < [
−3ζ(1 + 3q)1/q

2α+ β
]p, (

1

p
+

1

q
= 1).

(2) There exists a constant µ > −1 such that

k(s) ≤ −ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

2(2α+ β)
sµ, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
−ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

2(2α+ β)
sµ} > 0.

(3) k(s) satisfies

k(s) ≤ −12ζ

2α+ β
, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
−12ζ

2α+ β
} > 0.

(4) f(t, x) satisfies

Q = lim sup
|x|→∞

max
t∈[0,1]

|f(t, x)
x

| < −12ζ

2α+ β
.

Then the BVP (1.1)− (1.2) has at least one nontrivial solution u∗ ∈ E.

Proof. In this case, we have

M =
2α+ βη3

−6ζ

∫ 1

0

(1 − s)3k(s)ds+
β + 2α

−6ζ

∫ η

0

(η − s)3k(s)ds

≤ 2α+ β

−6ζ

∫ 1

0

(1− s)3k(s)ds+
β + 2α

−6ζ

∫ 1

0

(1− s)3k(s)ds

=
2α+ β

−3ζ

∫ 1

0

(1 − s)3k(s)ds.

The rest procedure is the same as for Theorem 3.4. ✷
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4. Examples

In order to illustrate the above results, we consider some examples.

Example 4.1. Consider the following problem

u(4) + t
5 |u| cos 3

√
u+ 2t+ 1 = 0, 0 < t < 1,

u(0) = 2u(1/2), u
′

(0) = u
′′

(0) = 0, u(1) = −14u(1/2).

(4.1)

Set η = 1
2 , α = 2, β = −14, and

f(t, x) =
t

5
|x| cos 3

√
x+ 2t+ 1,

k(t) =
t

2
, h(t) = 2t+ 1,

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R,

and

ζ = (1− α) + η3(α− β) = 1 6= 0.

Moreover, we have

M = (
1

6
+

1 + |α|(1 + η3)

6|ζ| )

∫ 1

0

(1− s)3k(s)ds+
|β|+ 2|α|

6|ζ|

∫ η

0

(η − s)3k(s)ds

M =
17

24

∫ 1

0

(1 − s)3.
s

2
ds+ 3

∫ 1/2

0

(
1

2
− s)3.

s

2
ds =

17

960
+

3

1280
= 0.019 < 1.

Hence, by Theorem 3.1, the BVP (4.1) has at least one nontrivial solution u∗ in E.

Example 4.2. Consider the following problem

u(4) + 2/3 3
√
7+tu

1+u5 sinu2 − et − 3 = 0, 0 < t < 1,

u(0) = 1/2u(1/2), u
′

(0) = u
′′

(0) = 0, u(1) = 1/4u(1/2).

(4.2)

Set η = 1/2, α = 1/2, β = 1/4, and

f(t, x) =
2/3 3

√
7 + tx

1 + x5
sinx2 − et − 3,

k(t) =
2

3
3
√
7 + t, h(t) = et + 3.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.
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and

ζ = (1− α) + η3(α− β) =
17

32
> 0.

Let p = 3, q = 3
2 , such that 1

p + 1
q = 1, then

∫ 1

0

kp(s)ds =

∫ 1

0

8

27
(7 + s)ds =

60

27
.

Moreover, we have

[
6ζ(1 + 3q)1/q

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η(1+3q)/q
]p = 23.788.

Therefore,

∫ 1

0

kp(s)ds < [
6ζ(1 + 3q)1/q

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η(1+3q)/q
]p.

Hence, by Theorem 3.2 (1), the BVP (4.2) has at least one nontrivial solution u∗

in E.

Example 4.3. Consider the following problem

u(4) + u3

(9+2u2) 3
√
t
e− sinu2 −

√
t− 1 = 0, 0 < t < 1,

u(0) = 2u(1/3), u
′

(0) = u
′′

(0) = 0, u(1) = −79u(1/3).

(4.3)

Set η = 1/3, α = 2, β = −79, and

f(t, x) =
x3

(9 + 2x2) 3
√
t
e− sin x2 −

√
t− 1,

k(t) =
1

9 3
√
t
, h(t) =

√
t+ 1.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

and

ζ = (1− α) + η3(α− β) = 2 > 0.

Let µ = − 1
3 > −1, then

ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ
= 3.35.

Therefore,

k(s) =
1

9 3
√
s
=

1

9
s−

1

3 < 3.35.s−
1

3 ,
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meas{s ∈ [0, 1] : k(s) <
ζ(1 + µ)(2 + µ)(3 + µ)(4 + µ)

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4+µ
sµ} > 0.

Hence, by Theorem 3.2 (2), the BVP (4.3) has at least one nontrivial solution u∗

in E.

Example 4.4. Consider the following problem

u(4) + u

7(3+u2) 5
√

(1−t)2
e−2t cosu+ t3 − 2 = 0, 0 < t < 1,

u(0) = 1/3u(1/2), u
′

(0) = u
′′

(0) = 0, u(1) = 1/4u(1/2).

(4.4)

Set η = 1/2, α = 1/3, β = 1/4, and

f(t, x) =
x

7(3 + x2) 5

√

(1 − t)2
e−2t cosx+ t3 − 2,

k(t) =
1

6 5

√

(1− t)2
, h(t) = t3 + 2.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

and

ζ = (1− α) + η3(α− β) =
65

96
> 0.

Let µ = − 2
5 > −4, then

6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| =
1404

285
.

Therefore,

k(s) =
1

6 5

√

(1− s)2
=

1

6
(1 − s)−

2

5 <
1404

285
(1− s)−

2

5 ,

meas{s ∈ [0, 1] : k(s) <
6ζ(4 + µ)

ζ + 1 + |α|(3 + η3) + |β| (1 − s)µ} > 0.

Hence, by Theorem 3.2 (3), the BVP (4.4) has at least one nontrivial solution u∗

in E.

Example 4.5. Consider the following problem

u(4) + tu5

8(1+u2) − e4t − 1 = 0, 0 < t < 1,

u(0) = −3u(1/5), u
′

(0) = u
′′

(0) = 0, u(1) = −2u(1/5).

(4.5)
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Set η = 1/5, α = −3, β = −2, and

f(t, x) =
tx5

8(1 + x2)
− e4t − 1,

k(t) =
t

5
, h(t) = e4t + 1.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

and

ζ = (1 − α) + η3(α− β) =
499

125
> 0.

Moreover, we have

24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 =
29940

2509
.

Therefore,

k(s) =
s

5
<

29940

2509
, s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) <
24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 } > 0.

Hence, by Theorem 3.2 (4), the BVP (4.5) has at least one nontrivial solution u∗

in E.

Example 4.6. Consider the following problem

u(4) + 7t2u
3(1+et)2 − t+ 1 = 0, 0 < t < 1,

u(0) = −u(1/2), u
′

(0) = u
′′

(0) = 0, u(1) = −3u(1/2).

(4.6)

Set η = 1/2, α = −1, β = −3, and

f(t, x) =
7t2x

3(1 + et)2
− t+ 1,

k(t) = 7t2, h(t) = t+ 1.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, x)| ≤ k(t)|x| + h(t), a.e. (t, x) ∈ [0, 1]× R.

and

ζ = (1− α) + η3(α− β) =
9

4
> 0.
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Moreover, we have

24ζ

ζ + 1 + |α|(1 + η3) + (|β|+ 2|α|)η4 =
864

75
,

and

Q = lim sup
|x|→∞

max
t∈[0,1]

|f(t, x)
x

| = lim sup
|x|→∞

(
7

3(1 + e)2
+

2

|x| ) = 0.17.

Therefore,

Q = lim sup
|x|→∞

max
t∈[0,1]

|f(t, x)
x

| < 24ζ

ζ + 1+ |α|(1 + η3) + (|β|+ 2|α|)η4 .

Hence, by Theorem 3.2 (5), the BVP (4.6) has at least one nontrivial solution u∗

in E.

Remark: We can give examples similar in relation to the Corollary 3.3, The-
orem 3.4, and Corollary 3.5.
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