
Bol. Soc. Paran. Mat. (3s.) v. 38 2 (2020): 177–189.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i2.34832

Existence of Three Solutions to the Discrete Fourth-order Boundary

Value Problem with Four Parameters

Mohamed Ousbika and Zakaria El Allali

abstract: In this work, we will prove the existence of three solutions for the
discrete nonlinear fourth order boundary value problems with four parameters. The
methods used here are based on the critical point theory.
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1. Introduction

Let T > 2 be a positive integer and [2, T ]Z be the discrete interval given by
{2, 3, 4....., T }. In this paper, we will examine a discrete nonlinear fourth order
boundary value problems (BVP) with four parameters with intention of proving
the existence of three solutions.The problem to be studied can be viewed as a
discrete version of the generalized beam equation. Consider the fourth BVP :

∆4u(k − 2)− α∆2u(k − 1) + βu(k) = λf(k, u(k)) + µg(k, u(k)), k ∈ [2, T ]Z

u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0
(1.1)

where ∆ denotes the forward difference operator defined by ∆u(k) = u(k + 1) −
u(k), ∆i+1u(k) = ∆(∆iu(k)), f, g : [2, T ]Z × R −→ R are two continuous
functions, and α, β, λ, µ are real parameters and satisfy : λ > 0, µ > 0 and

1 + (T − 1).Tα− + T.(T − 1)3.β− > 0, (1.2)

where : α− = min(α, 0) and β− = min(β, 0).

The theory of nonlinear difference equations has been widely used to study
the discrete models in many fields such as computer science, economics, neural
network, ecology, cybernetics, etc. In recent years, a great deal of work has been
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done in the study of the existence and multiplicity of solutions for discrete boundary
value problem. For the background and recent results, we refer the reader to the
monographs [1-13] and the references therein. In this work , we will examine some
applications of the variational methods to study the BVP (1).
Depending on the values of the parameters α, β, λ and µ, BVP (1.1) covers many
problems . If λ = 1 and µ = 0 the BVP (1) becomes

∆4u(k − 2)− α∆2u(k − 1) + βu(k) = f(k, u(k)), k ∈ [2, T ]Z

∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T − 1) = 0,

has been recently investigated in [17], and existence results of sign-changing solu-
tions are obtained using a topological degree theory and fixed point index theory.
Also, If λ > 0 and µ = 0 this problem has been studed by M.Ousbika and Z.El
allali in [18], using the critical point theory and the direct method of calculus vari-
ational. Here, we will wish the existence of three solutions for BVP (1) by using
some basic theorems in critical point theory and variational methods under some
conditions imposed on the nonlinear functions f and g .
In this paper, we introduce in section 2 some preliminary theorems, the corre-
sponding variational framwork of BVP (1) and we present some lemmas to prove
our main results , in section 3 we obtain the existence of three solutions for BVP
(1).

2. Preliminaries

Let us collect some theorems and lemmas that will be used below. One can
refer to [14,19,20] for more details.

Proposition 2.1. [see 14] Let E be a real reflexive Banach space and E∗ be the
dual space of E. Suppose that T : E → E∗ is a continuous operator and there exists
ω > 0 such that

(Tu− Tv, u− v) ≥ ω‖u− v‖2;u, v ∈ E.

Then T : E → E∗ is a homeomorphism between E and E∗

Theorem 2.2. [see ,20,theorem 1] Let E be a real reflexive Banach space, E∗

be the dual space of E , φ : E → R be a continuously Gâteaux differentiable and
sequentially weakly lower semicontinuous functional that is bounded on subsets of E
and whose Gâteaux derivative admits a continuous inverse on E∗. ψ : E → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact
such that φ(0) = ψ(0) = 0.
Assume that there exist r > 0 and ū ∈ E with r < φ(ū) such that

(i)

sup
u∈φ−1(−∞,r]

ψ(u)

r
<
ψ(ū)

φ(ū)
.

(ii) for each λ ∈ Λ =]
φ(ū)

ψ(ū)
,

r

sup
u∈φ−1(−∞,r]

ψ(u)
[, φ− λψ is coercive.
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Then , for each compact interval [a, b] ⊂ Λ , there exists γ > 0 with the following
property : for each λ ∈ [a, b] and every C1 functional Γ : E → R with compact
derivative, there exists ζ > 0 such that , for each µ ∈ (0, ζ], the functional φ−λψ−
µΓ has at least three distinct critical points in E whose norms are less than γ.

Theorem 2.3. [see ,19,theorem 2] Let E be a real reflexive Banach space with the
norm ‖.‖E, E∗ be the dual space of E . Let φ : E → R be a coercive, continuously
Gâteaux differentiable and sequentially weakly lower semicontinuous functional that
is bounded on subsets of E and whose Gâteaux derivative admits a continuous
inverse on E∗ and ψ : E → R be a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact. Assume that φ has a strict local minimum
u0 with φ(u0) = ψ(u0) = 0. Let

δ = max{0, lim sup
‖u‖E→∞

ψ(u)

φ(u)
, lim sup
‖u‖E→0

ψ(u)

φ(u)
},

and

η = sup
u∈φ−1(0,∞)

ψ(u)

φ(u)
,

and assume that δ < η. Then , for each compact interval [a, b] ⊂ ( 1
η
, 1
δ
) , there exists

K > 0 with the following property : for each µ ∈ [a, b] and every C1 functional
Γ : E → R with compact derivative, there exists ζ > 0 such that, for each λ ∈ (0, ζ],
the functional φ − λψ − µΓ has at least three distinct critical points in E whose
norms are less than K.

We define the real vector space E

E = {u : [0, T+2]Z → R , u(1) = ∆u(0) = ∆u(T ) = ∆3u(0) = ∆3u(T−1) = 0},
which is a (T-1)-dimentional Hilbert space , see [17] with the inner product

(u, v) =

k=T
∑

k=2

u(k)v(k).

The associated norm is defined by

‖u‖ = (

k=T
∑

k=2

|u(k)|2) 1

2 .

Definition 2.4. We say that u ∈ E is a weak solution of problem (1) if for any
v ∈ E, we have

λ

T∑

k=2

f(k, u(k))v(k) + µ

T∑

k=2

g(k, u(k))v(k) =
T∑

k=2

∆4
u(k − 2)v(k)

− α

T∑

k=2

∆2
u(k − 1)v(k)

+ β

T∑

k=2

u(k)v(k).
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Lemma 2.5. For any u, v ∈ E, we have

k=T
∑

k=2

∆4u(k − 2)v(k) =

k=T+1
∑

k=2

∆2u(k − 2)∆2v(k − 2) (2.1)

k=T
∑

k=2

∆u(k − 1)∆v(k − 1) = −
k=T
∑

k=2

∆2u(k − 1)v(k) (2.2)

Proof: We first prove (2.1). For any u, v ∈ E, by the summation by parts formula
and the fact that ∆v(0) = ∆v(T ) = 0 , it follows that

T+1
∑

k=2

∆2u(k − 2)∆2v(k − 2) = ∆2u(T )∆v(T )−∆2u(0)∆v(0)

−
T+1
∑

k=2

∆3u(k − 2)∆v(k − 1)

= −
T+1
∑

k=2

∆3u(k − 2)∆v(k − 1)

= −
T
∑

k=2

∆3u(k − 2)∆v(k − 1),

in other hand , by the summation by parts formula and the fact that ∆3u(0) =
∆3u(T − 1) = 0, we have

T
∑

k=2

∆3u(k − 2)∆v(k − 1) = ∆3u(T − 1)v(T )−∆3u(0)v(1)−
T
∑

k=2

∆4u(k − 2)v(k),

so
T
∑

k=2

∆4u(k − 2)v(k) =

T+1
∑

k=2

∆2u(k − 2)∆2v(k − 2),

i.e.,(2.1) holds.
Next, we show (2.2). Again, by the summation by parts formula and the fact that
∆u(T ) = 0 and v(1) = 0, we have

T
∑

k=2

∆u(k − 1)∆v(k − 1) = ∆u(T )v(T )−∆u(1)v(1)−
T
∑

k=2

∆2u(k − 1)v(k)

= −
T
∑

k=2

∆2u(k − 1)v(k).

This completes the proof of the lemma. ✷
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We consider the functional as follows:

Φ(u) =
1

2
(

T+1
∑

k=2

|∆2u(k − 2)|2 + α

T
∑

k=2

|∆u(k − 1)|2 + β

T
∑

k=2

|u(k)|2), (2.3)

and
ρ = (1 + (T − 1).Tα− + T.(T − 1)3.β−)T

−1(T − 1)−3 (2.4)

Lemma 2.6. For any u ∈ E, we have

Φ(u) ≥ 0 and Φ(u) ≥ 1

2
ρ‖u‖2.

Proof: Let u ∈ E and k ∈ [2, T ]Z , note that

∆u(k − 1) = ∆u(0) +

k
∑

i=2

∆2u(i− 2)

in fact that ∆u(0) = 0, then by Hölder’s inequality, we have

|∆u(k − 1)| ≤
k

∑

i=2

|∆2u(i− 2)| ≤
T+1
∑

i=2

|∆2u(i− 2)|

≤
√
T (

T+1
∑

i=2

|∆2u(i− 2)|2) 1

2 ,

so
T
∑

k=2

|∆u(k − 1)|2 ≤ T (T − 1)
T+1
∑

k=2

|∆2u(k − 2)|2.

Similarly, for any u ∈ E and k ∈ [2, T ]Z , note that

u(k) = u(1) +
k

∑

i=2

∆u(i− 1),

in fact that u(1) = 0, then by Hölder’s inequality, we have

|u(k)| ≤
k

∑

i=2

|∆u(i− 1)| ≤
T
∑

i=2

|∆u(i− 1)|

≤
√
T − 1(

T
∑

i=2

|∆u(i− 1)|2)
1

2 ,

then
T
∑

k=2

|u(k)|2 ≤ (T − 1)2
T
∑

k=2

|∆u(k − 1)|2,
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so
T
∑

k=2

|u(k)|2 ≤ T (T − 1)3
T+1
∑

k=2

|∆2u(k − 2)|2,

therefore, from (2.3) and by summation the parts inequalities, we deduce that

Φ(u) ≥ 1

2
(1 + T (T − 1)α− + T (T − 1)3β−)

T+1
∑

k=2

|∆2u(k − 2)|2

≥ 1

2
(1 + T (T − 1)α− + T (T − 1)3β−)T

−1(T − 1)−3
T
∑

k=2

|u(k)|2

≥ 1

2
(1 + T (T − 1)α− + T (T − 1)3β−)T

−1(T − 1)−3‖u‖2,

then by (2.1), we deduce that

Φ(u) ≥ 0 and Φ(u) ≥ 1

2
ρ‖u‖2

the proof of lemma is completed. ✷

Note that , for u ∈ E,

Ψ1(u) =

T
∑

k=2

F (k, u(k)), (2.5)

and

Ψ2(u) =

T
∑

k=2

G(k, u(k)), (2.6)

where

F (k, x) =

∫ x

0

f(k, t)dt and G(k, x) =

∫ x

0

g(k, t)dt , k ∈ [2, T ]Z.

The functional corresponding of BVP(1) is given by

I := Φ− λΨ1 − µΨ2. (2.7)

With any fixed λ > 0 and µ > 0 , the functionals Φ,Ψ1 , Ψ2 and I is of class
C1(E,R), and for u, v ∈ E, we have

(Φ′(u), v) =
T+1
∑

k=2

∆2u(k−2)∆2v(k−2)+α
T
∑

k=2

∆u(k−1)∆v(k−1)+β
T
∑

k=2

u(k)v(k),

(2.8)
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(Ψ′
1(u), v) =

T
∑

k=2

f(k, u(k))v(k), (2.9)

(Ψ′
2(u), v) =

T
∑

k=2

g(k, u(k))v(k) (2.10)

and

(I ′(u), v) = (Φ′(u), v)− λ(Ψ′
1(u), v)− µ(Ψ′

2(u), v). (2.11)

The search of solutions of BVP (1) reduce to finding critical points u ∈ E of
the functional I by the following,

Lemma 2.7. If u ∈ E is a critical point of the functional I then u is a solution
of BVP (1).

Proof: Let u ∈ E is a critical point of the functional I then

(I ′(u), v) = 0, ∀v ∈ E,

so from (2.7)− (2.10) and lemma 2.5 , we deduce that

0 =
T
∑

k=2

(∆4u(k − 2)− α

T
∑

k=2

∆2u(k − 1) + β

T
∑

k=2

u(k))v(k)

−λ
T
∑

k=2

(f(k, u(k)) + g(k, u(k)))v(k), forall v ∈ E,

thus by the arbitrarieness of v ∈ E, we have

∆4u(k − 2)− α∆2u(k − 1) + βu(k) = λf(k, u(k)) + µg(k, u(k)),

then u ∈ E is a solution of BVP (1).This completes the proof. ✷

3. Main results

Theorem 3.1. Assume that the following conditions holds :

(H1) There exists c > 0 and d > 0 such that c < d
√
T − 1.

(H2) There exists δ > 0 and 0 < s < 2 such that for all x ∈ R and k ∈ [2, T ]Z:
F (k, x) ≤ δ(1 + |x|s).

(H3)
T
∑

k=2

F (k, d) > 0.
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(H4)
ρc2

d2γ

∑T
k=2 F (k, d) > (T − 1) max

(k,x)∈[2,T ]Z×[−c,c]
F (k, x) ,

where : γ := 10 + 3α+ + (T − 1)β+.

Then for each compact interval

[a, b] ⊂ Λ =]
γd2

2

T
∑

k=2

F (k, d)

,
ρc2

2(T − 1) max
(k,x)∈[2,T ]Z×[−c,c]

F (k, x)
[,

there exist ζ > 0 such that , for each λ ∈ [a, b] there exist η > 0 such that , for
each µ ∈ (0, η], the BVP(1) has at least three distinct solutions in E whose norms
are less than ζ.

Proof: To prove the theorem 3.1, we will apply theorem 2.2 with ψ = Ψ1 and
Γ = Ψ2.
Firsty, we show that the functionals Φ , Ψ1 and Ψ2 satisfy the regularity assump-
tions of theorem 2.2. By lemma 2.6, we prove that Φ is coercive, sequentielly
weakly lower semicontinuous and is bounded on each bounded subset of E. From
(2.3) and (2.8), we have

∀u ∈ E : (Φ′(u), u) = 2Φ(u),

then

∀u, v ∈ E : (Φ′(u)− Φ′(v), u − v) = 2Φ(u− v) ≥ ρ‖u− v‖2.

Hence by proposition 2.1, (Φ′)−1 : E∗ → E exist and is continuous.
Secondly, we show that Ψ′

1 and Ψ′
2are compacts. Suppose that un → u ∈ E then

since f and g are continuous and from (2.9), (2.10), we deduce that Ψ′
1(un) → Ψ′

1(u)
and Ψ′

2(un) → Ψ′
2(u) , thus Ψ

′
1 and Ψ′

2 are compacts, also Φ(0) = Ψ1(0) = 0.

Next, put: r =
1

2
ρc2 and pick ū ∈ E defined as for k ∈ [2, T ]Z : ū(k) = d.

using lemma 2.6 with u = ū and c < d
√
T − 1 , we have

Φ(ū) ≥ 1

2
ρ‖ū‖2 =

1

2
ρ(T − 1)d2 >

1

2
ρc2 = r.

Taking into the fact that , for any k ∈ [2, T ]Z

|u(k)| ≤ ‖u‖ ≤
√

2.Φ(u)

ρ
,

we have

Φ−1((−∞, r]) ⊆ {u ∈ E : |u(k)| ≤ c, k ∈ [2, T ]Z},
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then

sup
u∈Φ−1((−∞,r])

Ψ1(u) = sup
u∈Φ−1((−∞,r])

T
∑

k=2

F (k, u(k))

≤ (T − 1) max
(k,x)∈[2,T ]Z×[−c,c]

F (k, x),

therefore, it follows from (H4) that

sup
u∈Φ−1((−∞,r])

Ψ1(u) <

ρc2
T
∑

k=2

F (k, d)

d2γ
= r

2Ψ(ū)

γd2
.

It is easy to verify that

Φ(ū) =
1

2
(10 + 3α+ (T − 1)β)d2 ≤ 1

2
γd2

then
sup

u∈Φ−1((−∞,r])

Ψ1(u)

r
<

Ψ1(ū)

Φ(ū)
,

this imply that the assumption (i) of Theorem 2.2 is verified.
From (H2) and by lemma 2.6, we deduce that for u ∈ E, we obtain

I(u) ≥ 1

2
ρ‖u‖2 − λ

T
∑

k=2

δ(1 + |u(k)|s) ≥ 1

2
ρ‖u‖2 − λδ(T − 1)− λδ(T − 1)‖u‖s,

sinse s < 2, then I is coercive, this imply that the assumption (ii) of Theorem 2.2 is
verified, therfore according to theorem 2.2, the proof of theorem 3.1 is completed.

✷

Theorem 3.2. Assume that the following conditions holds :

(H5) There exists C > 0 such that max(g0; g∞) < C , where

g0 = max
k∈[2,T ]Z

lim sup
|x|→0

g(k, x)

x
and g∞ = max

k∈[2,T ]Z
lim sup
|x|→∞

g(k, x)

x

(H6) There exists d > 0 such that

T
∑

k=2

G(k, d) > 0 and

2ρ
T
∑

k=2

G(k, d) > Cd2γ, where : γ := 10 + 3α+ + (T − 1)β+
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Then for each compact interval [a, b] ⊂ Λ =]
γd2

2
T
∑

k=2

F (k, d)

,
ρ

C
[, there exist ζ > 0

such that, for each µ ∈ [a, b], there exists η > 0 such that for each λ ∈ (0, η], the
BVP(1) has at least three distinct solutions in E whose norms are less than ζ.

Proof: As in proof of theorem 3.1, we see that Φ,Ψ1 and Ψ2 satisfy the regularity
assumptions of theorem 2.3. By lemma 2.6 , for u0 = 0 , Φ has a strict local
minimum and it is clearly that Φ(0) = Ψ2(0) = 0.
From (H6), there exists r > 0 and R > 0 with r < R, such that

g(k, x)

x
≤ C ∀ |(x| < r or |x| > R),

then for k ∈ [2, T ]Z, we have

g(k, x) ≤ Cx : ∀x ∈ [0, r)∪(R,+∞) and g(k, x) ≥ Cx : ∀x ∈ (−∞,−R)∪(−r, 0].

Since g is continuous, x 7→ g(k, x)− Cx

x2
, is continuous on [−R, r]∪ [r, R],then there

exists C′ > 0 such that

g(k, x) ≤ Cx+ C′x2 : ∀x ∈ [0,+∞) and g(k, x) ≥ Cx− C′x2 : ∀x ∈ (−∞, 0].

Therfore, for any k ∈ [2, T ]Z , we have

G(k, x) ≤ 1

2
Cx2 +

1

3
C′|x|3 : ∀x ∈ R,

so, for u ∈ E, we have

G(k, u(k)) ≤ 1

2
C‖u‖2 + 1

3
C′(T − 1)‖u‖3.

Then from (2.7) and by lemma 2.6 , we deduce that for u ∈ E

Ψ2(u)

Φ(u)
≤ C

ρ
+

2

3ρ
C′(T − 1)‖u‖,

then

lim sup
‖u‖→0

Ψ2(u)

Φ(u)
≤ C

ρ
. (3.1)

By definition of g∞, there exists A > 0 such that

g(k, x)

x
≤ C , ∀ |x| > A.

then

g(k, x) ≤ Cx : ∀x ∈ (R,+∞) and g(k, x) ≥ Cx, ∀x ∈ (−∞,−R).
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Since g is continuous then there exists C′′ > 0 such that

g(k, x) ≤ Cx+ C′′ : ∀x ∈ [0,+∞) and g(k, x) ≥ Cx − C′′, ∀x ∈ (−∞, 0].

Therfor, for any k ∈ [2, T ]Z , we have

G(k, x) ≤ 1

2
Cx2 + C′′|x|, ∀x ∈ R.

So, for u ∈ E, we have

G(k, u(k)) ≤ 1

2
C‖u‖2 + C′′(T − 1)‖u‖.

Then from (2.7) and by lemma 2.6 , we deduce that for u ∈ E

lim sup
‖u‖→∞

Ψ2(u)

Φ(u)
≤ C

ρ
. (3.2)

Hence, from (3.1) and (3.2), we see that

δ = max{0; lim sup
‖u‖→∞

Ψ2(u)

Φ(u)
; lim sup

‖u‖→0

Ψ2(u)

Φ(u)
} ≤ C

ρ
.

Next, for d > 0, we pick ū ∈ E defined as for k ∈ [2, T ]Z : ū(k) = d, then by
lemma 2.6, we have

Φ(ū) ≥ ρ(T − 1)d2

2
> 0, so ū ∈ Φ−1(0,+∞).

Then

η = sup
u∈Φ−1(0,+∞)

Ψ2(u)

Φ(u)
≥ Ψ2(ū)

Φ(ū)
=

2

T
∑

k=2

G(k, d)

(10 + 3α+ (T − 1)β)d2
≥

2

T
∑

k=2

G(k, d)

γd2
,

where γ := 10 + 3α+ + (T − 1)β+.
Then from (H6), we infer that, δ < η. Hence , all the assumptions of Theorem 2.3
are satisfied. This completes the proof of the theorem.✷ ✷

We conclude this work with the example as follows to illustrate our results.

Example 3.1. .
We consider the BVP (1) with α = 1 , β = 1 and T = 5.
Then ρ = 25

8 10−3 and γ = 17.
For k ∈ [2, 5]Z and x ∈ R , let f : [2, 5]Z × R −→ R, and

g(k, x) =

{

k si |x| > 1
kx2 si |x| ≤ 1
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It is clear that, g0 = 0 and g∞ = 0.
Then (H5) holds for any C > 0, (for example C = 10−5).
It is easy to see that

G(k, x) =

∫ x

0

g(k, t)dt =







k(x− 2
3 ) si x > 1

1
3kx

3 si |x| ≤ 1
k(x+ 2

3 ) si x < −1

we choose d = 1, then we have
5

∑

k=2

G(k, 1) =
14

3
> 0 , Cd2γ = 17.10−5 and 2ρ

5
∑

k=2

G(k, 1) =
175

6
10−3

therfore H(6) is satisfied.
We deduce that for each compact interval [a, b] satisfying [a, b] ⊂] 5128 ,

25
8 102[, there

exist ζ > 0 such that, for each µ ∈ [a, b], there exists η > 0 such that for each
λ ∈ (0, η], the BVP(1) has at least three distinct solutions in E whose norms are
less than ζ.
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