

©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm

(3s.) **v. 38** 2 (2020): 41–50. ISSN-00378712 IN PRESS doi:10.5269/bspm.v38i2.35567

One Sided Generalized (σ, τ) -derivations on Rings

Evrim Guven

ABSTRACT: Let R be a prime ring with characteristic not 2 and $\sigma, \tau, \lambda, \mu, \alpha, \beta$ be automorphisms of R. Let h be a nonzero left (resp. right)-generalized (σ, τ) -derivation of R and I,J nonzero ideals of R and $a \in R$. The main object in this article is to study the situations. (1) $h(I)a \subset C_{\lambda,\mu}(J)$ and $ah(I) \subset C_{\lambda,\mu}(J)$, (2) $h(I) \subset C_{\lambda,\mu}(J)$, (3) $[h(I),a]_{\lambda,\mu}=0$, (4) $h(I,a)_{\lambda,\mu}=0$ (or $(h(I),a)_{\lambda,\mu}=0$), (5) $[h(x),x]_{\lambda,\tau}=0, \forall x \in I$, (6) $[h(x)a,x]_{\lambda,\tau}=0, \forall x \in I$.

Key Words: (σ, τ) -Lie ideal, Prime ring, Commutativity.

Contents

1 Introduction 41

2 Results 42

1. Introduction

Let R be an associative ring with center Z. Recall that R is prime if aRb=(0) implies that a=0 or b=0. For any $x,y\in R$ the symbol [x,y] represents commutator xy-yx and the Jordan product (x,y)=xy+xy. Let σ and τ be any two endomorphisms of R. For any $x,y\in R$ we set $[x,y]_{\sigma,\tau}=x\sigma(y)-\tau(y)x$ and $(x,y)_{\sigma,\tau}=x\sigma(y)+\tau(y)x$. Let h and d be additive mappings of R. If $d(xy)=d(x)y+xd(y), \forall x,y\in R$ then d is called a derivation of R. If there exists a derivation d such that $h(xy)=h(x)y+xd(y), \forall x,y\in R$ then h is called generalized derivation of R (see [3]). If $d(xy)=d(x)\sigma(y)+\tau(x)d(y), \forall x,y\in R$ then d is called a (σ,τ) -derivation of R. Obviously every derivation $d:R\to R$ is a (1,1)-derivation of R, where $1:R\to R$ is an identity mapping. If $h(xy)=d(x)\sigma(y)+\tau(x)h(y), \forall x,y\in R$ then h is said to be a left-generalized (σ,τ) -derivation with d and if $h(xy)=h(x)\sigma(y)+\tau(x)d(y), \forall x,y\in R$ then h is said to be a right-generalized (σ,τ) -derivation associated with (σ,τ) -derivation (σ,τ) -derivation (σ,τ) -derivation associated with (σ,τ) -derivati

The mapping defined by $h(r) = [r, a]_{\sigma,\tau}, \forall r \in R$ is a right-generalized derivation associated with derivation $d(r) = [r, \sigma(a)], \forall r \in R$ and left-generalized derivation associated with derivation $d_1(r) = [r, \tau(a)], \forall r \in R$. The mapping $h(r) = (a, r)_{\sigma,\tau}, \forall r \in R$ is a left-generalized (σ, τ) derivation associated with (σ, τ) derivation $d_2(r) = [a, r]_{\sigma,\tau}, \forall r \in R$ and right-generalized (σ, τ) derivation associated with (σ, τ) derivation d_2 .

2010 Mathematics Subject Classification: 16W25, 16U80. Submitted February 23, 2017. Published September 16, 2017 42 E. GUVEN

The following result is proved by Posner in (see [12]). Let R be a prime ring and $d \neq 0$ derivation of R such that $[d(x), x] = 0, \forall x \in R$. Then R is commutative. Ashraf and Rehman (see [1]) generalized Posner's result as follows. Let R be a 2-torsion free prime ring. Suppose there exists a (σ, τ) -derivation $d: R \to R$ such that $[d(x), x]_{\sigma, \tau} = 0, \forall x \in R$. Then either d = 0 or R is commutative. Taking an ideal of R instead of R, Marubayashi H.and Ashraf M.,Rehman N., Ali Shakir, generalized Rehman's result in (see [10]). On the other hand, Rehman (see [13]) gave another generalization of Posner's Theorem as follows. Let R be a prime ring. If R admits a nonzero generalized derivation h with d such that $[h(x), x] = 0, \forall x \in R$, and if $d \neq 0$, then R is commutative.

In this paper, using left-generalized (σ, τ) -derivation of R, we have given another generalization of Ashraf and Rehman's result (see [1]) as in Theorem 3. Also, we discuss the commutativity of prime rings admitting a left-generalized (σ, τ) -derivation $h: R \longrightarrow R$ satisfying several conditions on ideals.

Throughout the paper, R will be a prime ring with characteristic not 2 and $\sigma, \tau, \lambda, \mu, \alpha, \beta$ be automorphisms of R. Let J be an ideal of R. We write $C_{\sigma,\tau}(J) = \{r \in R \mid r\sigma(x) = \tau(x)r, \forall x \in J\}$ and will make extensive use of the following basic commutator identities.

```
\begin{split} [xy,z]_{\sigma,\tau} &= x[y,z]_{\sigma,\tau} + [x,\tau(z)]y = x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y \\ [x,yz]_{\sigma,\tau} &= \tau(y)[x,z]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z) \\ (x,yz)_{\sigma,\tau} &= \tau(y)(x,z)_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z) = -\tau(y)[x,z]_{\sigma,\tau} + (x,y)_{\sigma,\tau}\sigma(z) \\ (xy,z)_{\sigma,\tau} &= x(y,z)_{\sigma,\tau} - [x,\tau(z)]y = x[y,\sigma(z)] + (x,z)_{\sigma,\tau}y.. \end{split}
```

2. Results

We begin with the following known results which will be used to prove our theorems.

Lemma 2.1. [2, Lemma1] Let R be a prime ring and $d: R \longrightarrow R$ be a (σ, τ) -derivation. If U is a nonzero right ideal of R and d(U) = 0 then d = 0.

Lemma 2.2. [11, Lemma 3] If a prime ring contains a nonzero commutative right ideal then it is commutative.

Lemma 2.3. [6, Lemma 5] Let I be a nonzero ideal of R and $a, b \in R$. If $[a, I]_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ or $(a, I)_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ then $a \in C_{\alpha,\beta}(R)$ or R is commutative.

Lemma 2.4. [5, Corollary 1] If I is a nonzero ideal of R and $a \in R$ such that $[I, a]_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$, then $a \in Z$.

Lemma 2.5. [7, Lemma 2.16] Let R be a prime ring and $h: R \longrightarrow R$ be a nonzero left-generalized (σ, τ) — derivation associated with a nonzero (σ, τ) —derivation d. If I is a nonzero ideal of R and $a \in R$ such that $(h(I), a)_{\lambda,\mu} = 0$ then $a \in Z$ or $d\tau^{-1}\mu(a) = 0$.

Lemma 2.6. [7, Theorem 2.7] Let $h: R \to R$ be a nonzero right-generalized (σ, τ) -derivation associated with (σ, τ) -derivation d and I, J be nonzero ideals of R. If $a \in R$ such that $ah(I) \subset C_{\lambda,\mu}(J)$ then $a \in Z$ or d = 0.

Lemma 2.7. Let I be a nonzero ideal of R and $a,b \in R$. If $h:R \to R$ is a nonzero left-generalized (σ,τ) -derivation associated with (σ,τ) -derivation d such that $[h(I)a,b]_{\lambda,\mu}=0$ then $a[a,\lambda(b)]=0$ or $d(\tau^{-1}\mu(b))=0$.

Proof. Using hypothesis we have,

$$\begin{split} 0 &= [h(\tau^{-1}\mu(b)x)a,b]_{\lambda,\mu} = [d(\tau^{-1}\mu(b))\sigma(x)a + \mu(b)h(x)a,b]_{\lambda,\mu} \\ &= d(\tau^{-1}\mu(b))[\sigma(x)a,\lambda(b)] + [d(\tau^{-1}\mu(b)),b]_{\lambda,\mu}\sigma(x)a \\ &+ \mu(b)[h(x)a,b]_{\lambda,\mu} + [\mu(b),\mu(b)]h(x)a \\ &= d(\tau^{-1}\mu(b))[\sigma(x)a,\lambda(b)] + [d(\tau^{-1}\mu(b)),b]_{\lambda,\mu}\sigma(x)a, \forall x \in I \end{split}$$

That is,

$$k[\sigma(x)a, \lambda(b)] + [k, b]_{\lambda,\mu}\sigma(x)a = 0, \forall x \in I \text{ where } k = d(\tau^{-1}\mu(b)).$$
 (2.1)

Replacing x by $x\sigma^{-1}(a)y$ in (1) and using (1) we get,

$$0 = k[\sigma(x)a\sigma(y)a, \lambda(b)] + [k, b]_{\lambda,\mu}\sigma(x)a\sigma(y)a$$

= $k\sigma(x)a[\sigma(y)a, \lambda(b)] + k[\sigma(x)a, \lambda(b)]\sigma(y)a + [k, b]_{\lambda,\mu}\sigma(x)a\sigma(y)a$
= $k\sigma(x)a[\sigma(y)a, \lambda(b)], \forall x, y \in I.$

That is $k\sigma(I)a[\sigma(I)a,\lambda(b)]=0$. Since $\sigma(I)$ is a nonzero ideal of R then we have

$$d(\tau^{-1}\mu(b) = 0 \text{ or } a[\sigma(I)a, \lambda(b)] = 0.$$
 (2.2)

If $a[\sigma(I)a, \lambda(b)] = 0$ in (2) then we get,

$$0 = a[\sigma(\sigma^{-1}(a)x)a, \lambda(b)] = a[a\sigma(x)a, \lambda(b)]$$

= $aa[\sigma(x)a, \lambda(b)] + a[a, \lambda(b)]\sigma(x)a = a[a, \lambda(b)]\sigma(x)a, \forall x \in I.$

From the last relation we obtain that $a[a, \lambda(b)] = 0$ for two case.

Remark 2.8. Let J be a nonzero ideal of R. If $b \in C_{\lambda,\mu}(J)$ then $b \in C_{\lambda,\mu}(R)$.

Proof. If $b \in C_{\lambda,\mu}(J)$ then we have $0 = [b,xr]_{\lambda,\mu} = \mu(x)[b,r]_{\lambda,\mu} + [b,x]_{\lambda,\mu}\lambda(r) = \mu(x)[b,r]_{\lambda,\mu}, \forall x \in J, r \in R$. That is $\mu(J)[b,R]_{\lambda,\mu} = 0$. This gives that $b \in C_{\lambda,\mu}(R)$.

Theorem 2.9. Let $h: R \longrightarrow R$ be a nonzero left-generalized (σ, τ) -derivation associated with nonzero (σ, τ) -derivation d and $a, b \in R$. Let I, J be nonzero ideals of R.

- (i) If $h(I)a \subset C_{\lambda,\mu}(J)$ then $a \in Z$.
- (ii) If $ah(I) \subset C_{\lambda,\mu}(J)$ then $a \in Z$ or $ad\tau^{-1}(a) = 0$.

Proof. (i) If $h(I)a \subset C_{\lambda,\mu}(J)$ then we have $[h(I)a,x]_{\lambda,\mu} = 0, \forall x \in J$. Using this relation and Lemma 7 we get, for any $x \in J$,

$$a[a, \lambda(x)] = 0 \text{ or } d\tau^{-1}\mu(x) = 0$$

Let $K = \{x \in J \mid a[a, \lambda(x)] = 0\}$ and $L = \{x \in J \mid d\tau^{-1}\mu(x) = 0\}$. Then K and L are subgroups of J and $J = K \cup L$. A group can not write the union of its proper subgroups. Hence we have K = J or L = J. That is,

$$a[a, \lambda(J)] = 0 \text{ or } d(\tau^{-1}\mu(J)) = 0$$

Since $d \neq 0$ then $d(\tau^{-1}\mu(J)) \neq 0$ by Lemma 1. If $a[a, \lambda(J)] = 0$ then we get

$$0 = a[a, \lambda(xr)] = a\lambda(x)[a, \lambda(r)] + a[a, \lambda(x)]\lambda(r)$$

= $a\lambda(x)[a, \lambda(r)], \forall x \in J, r \in R$

and so $a\lambda(J)[a,R]=0$. From this relation we obtain that $a\in Z$.

(ii) If $ah(I) \subset C_{\lambda,\mu}(J)$ then we have $ah(I) \subset C_{\lambda,\mu}(R)$ by Remark 1. Using this relation we get

$$0 = [ah(\tau^{-1}(a)y), \mu^{-1}(a)]_{\lambda,\mu} = [ad(\tau^{-1}(a))\sigma(y) + aah(y), \mu^{-1}(a)]_{\lambda,\mu}$$

$$= ad(\tau^{-1}(a))[\sigma(y), \lambda\mu^{-1}(a)] + [ad(\tau^{-1}(a)), \mu^{-1}(a)]_{\lambda,\mu}\sigma(y)$$

$$+ a[ah(y), \mu^{-1}(a)]_{\lambda,\mu} + [a, a]ah(y)$$

$$= ad(\tau^{-1}(a))[\sigma(y), \lambda\mu^{-1}(a)] + [ad(\tau^{-1}(a)), \mu^{-1}(a)]_{\lambda,\mu}\sigma(y), \forall y \in I,$$

and so

$$k[\sigma(y), p] + [k, \mu^{-1}(a)]_{\lambda,\mu}\sigma(y) = 0, \forall y \in I, \text{ where } k = ad(\tau^{-1}(a)) \text{ and } p = \lambda \mu^{-1}(a).$$
 (2.3)

Replacing y by yx, $x \in I$ in (3) we obtain that

$$0 = k\sigma(y)[\sigma(x), p] + k[\sigma(y), p]\sigma(x) + [k, \mu^{-1}(a)]_{\lambda,\mu}\sigma(y)\sigma(x)$$
$$= k\sigma(y)[\sigma(x), p], \forall x, y \in I.$$

That is,

$$k\sigma(I)[\sigma(I), p] = 0 \tag{2.4}$$

Since $\sigma(I)$ is a nonzero ideal of R then k=0 or $[\sigma(I),p]=0$ is obtained by the (4). This gives that $ad(\tau^{-1}(a))=0$ or $a\in Z$.

Corollary 2.10. Let I, J be nonzero ideals of R and $a, b \in R$.

- (i) If $[I, b]_{\sigma, \tau} a \subset C_{\lambda, \mu}(J)$ then $a \in Z$ or $b \in Z$.
- (ii) If $[b, I]_{\sigma, \tau} a \subset C_{\lambda, \mu}(J)$ then $a \in Z$ or $b \in C_{\sigma, \tau}(R)$.
- (iii) If $a(b,I)_{\sigma,\tau} \subset C_{\lambda,\mu}(J)$ then $a \in Z$ or $b \in C_{\sigma,\tau}(R)$ or $a[b,\tau^{-1}(a)]_{\sigma,\tau} = 0$.

Proof. (i) Let $h(r) = [r, b]_{\sigma, \tau}, \forall r \in R \text{ and } d(r) = [r, \tau(b)], \forall r \in R.$ Since,

$$h(rs) = [rs, b]_{\sigma, \tau} = r[s, b]_{\sigma, \tau} + [r, \tau(b)]s = d(r)s + rh(s), \forall r, s \in R,$$
 (2.5)

then h is a left-generalized derivation associated with derivation d. If h=0 then d=0 (and so $b\in Z$) is obtained by the relation (5).

If $[I,b]_{\sigma,\tau}a\subset C_{\lambda,\mu}(J)$ then we can write $h(I)a\subset C_{\lambda,\mu}(J)$. If $h\neq 0$ and $d\neq 0$ then we have $a\in Z$ by Theorem 1(i).

(ii) The mapping defined by $d_1(r) = [b, r]_{\sigma, \tau}, \forall r \in R$ is a (σ, τ) -derivation and so, left (and right)-generalized (σ, τ) -derivation with d_1 . If $d_1 = 0$ then we have $b \in C_{\sigma, \tau}(R)$.

Let $d_1 \neq 0$. If $[b, I]_{\sigma,\tau} a \subset C_{\lambda,\mu}(J)$ then we can write $d_1(I)a \subset C_{\lambda,\mu}(J)$. This gives that $a \in Z$ by Theorem 1(i). Finally we obtain that $a \in Z$ or $b \in C_{\sigma,\tau}(R)$.

(iii) The mapping defined by $g(r)=(b,r)_{\sigma,\tau}, \forall r\in R$ is a left-generalized (σ,τ) -derivation associated with (σ,τ) -derivation $d_1(r)=[b,r]_{\sigma,\tau}, \forall r\in R$. If g=0 then $d_1=0$ and so $b\in C_{\sigma,\tau}(R)$ is obtained. Let $g\neq 0$ and $d_1\neq 0$. If $a(b,I)_{\sigma,\tau}\subset C_{\lambda,\mu}(J)$ then we have $ag(I)\subset C_{\lambda,\mu}(J)$. This implies that $a\in Z$ or $ad_1\tau^{-1}(a)=0$ by Theorem 1(ii). That is $a\in Z$ or $a[b,\tau^{-1}(a)]_{\sigma,\tau}=0$.

Lemma 2.11. Let I be a nonzero ideal of R and $h: R \longrightarrow R$ be a nonzero left-generalized (σ, τ) -derivation associated with a nonzero (σ, τ) -derivation d. If $a \in R$ such that $[h(I), a]_{\lambda,\mu} = 0$ then $a \in Z$ or $d(\tau^{-1}\mu(a)) = 0$.

Proof. Using hypothesis we get,

$$\begin{aligned} 0 &=& [h(\tau^{-1}\mu(a)x), a]_{\lambda,\mu} = [d(\tau^{-1}\mu(a))\sigma(x) + \mu(a)h(x), a]_{\lambda,\mu} \\ &=& d(\tau^{-1}\mu(a))[\sigma(x), \lambda(a)] + [d(\tau^{-1}\mu(a)), a]_{\lambda,\mu}\sigma(x) \\ &+& \mu(a)[h(x), a]_{\lambda,\mu} + [\mu(a), \mu(a)]h(x) \\ &=& d(\tau^{-1}\mu(a))[\sigma(x), \lambda(a)] + [d(\tau^{-1}\mu(a)), a]_{\lambda,\mu}\sigma(x), \forall x \in I. \end{aligned}$$

That is,

$$k[\sigma(x), \lambda(a)] + [k, a]_{\lambda, \mu} \sigma(x) = 0, \forall x \in I, \text{ where } k = d(\tau^{-1}\mu(a)). \tag{2.6}$$

Replacing x by $xr, r \in R$ in (6) and using (6) we get

$$0 = k\sigma(x)[\sigma(r), \lambda(a)] + k[\sigma(x), \lambda(a)]\sigma(r) + [k, a]_{\lambda,\mu}\sigma(x)\sigma(r)$$
$$= k\sigma(x)[\sigma(r), \lambda(a)], \forall x \in I, r \in R.$$

and so $k\sigma(I)[R,\lambda(a)]=0$. Since $\sigma(I)\neq 0$ is an ideal and R is prime then we have $a\in Z$ or $d(\tau^{-1}\mu(a))=0$.

Theorem 2.12. Let h be a nonzero left-generalized (σ, τ) derivation associated with (σ, τ) – derivation $0 \neq d$ and I, J be nonzero ideals of R.

- (i) If $h(I) \subset C_{\lambda,\mu}(J)$ then R is commutative.
- (ii) If $[h(I), J]_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ or $(h(I), J)_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ then R is commutative.
- (iii) If $[J, h(I)]_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ then R is commutative.

Proof. (i) If $h(I) \subset C_{\lambda,\mu}(J)$ then we have $[h(I),x]_{\lambda,\mu} = 0, \forall x \in J$. This means that, for any $x \in J$,

$$x \in Z \text{ or } d(\tau^{-1}\mu(x)) = 0$$
 (2.7)

by Lemma 8. Using (7), let us consider the following sets, $K = \{x \in J \mid x \in Z\}$ and $L = \{x \in J \mid d\tau^{-1}\mu(x) = 0\}$. Considering as in the proof of Theorem 1 we obtain that $J \subset Z$ or $d(\tau^{-1}\mu(J)) = 0$. Since $d \neq 0$ then we have $d(\tau^{-1}\mu(J)) \neq 0$ by Lemma 1. Hence, we obtain that K = J and so $J \subset Z$. This means that K = J is commutative by Lemma 2.

- (ii) If $[h(I), J]_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ or $(h(I), J)_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ then we have $h(I) \subset C_{\alpha,\beta}(R)$ or R is commutative by Lemma 3. On the other hand $h(I) \subset C_{\alpha,\beta}(R)$ means that R is commutative by (i).
- (iii) If $[J, h(I)]_{\alpha,\beta} \subset C_{\lambda,\mu}(R)$ then we have $h(I) \subset Z$ by Lemma 4 and so R is commutative by (i).

Corollary 2.13. [8, Lemma 2] Let U be a nonzero ideal of R. If $d: R \longrightarrow R$ is a nonzero (σ, τ) -derivation such that $d(U) \subset C_{\lambda,\mu}(R)$. Then R is commutative.

Theorem 2.14. Let $h: R \longrightarrow R$ be a nonzero left-generalized (σ, τ) -derivation associated with a nonzero (σ, τ) -derivation d. If $I \neq 0$ is an ideal of R such that $[h(x), x]_{\lambda, \tau} = 0, \forall x \in I$ then R is commutative.

Proof. Linearizing the hypothesis, we get

$$[h(x), y]_{\lambda, \tau} + [h(y), x]_{\lambda, \tau} = 0, \forall x, y \in I.$$

$$(2.8)$$

Replacing x by yx in (8) and using (8) we have

$$\begin{split} 0 &= [h(yx), y]_{\lambda,\tau} + [h(y), yx]_{\lambda,\tau} \\ &= [d(y)\sigma(x) + \tau(y)h(x), y]_{\lambda,\tau} + [h(y), yx]_{\lambda,\tau} \\ &= d(y)[\sigma(x), \lambda(y)] + [d(y), y]_{\lambda,\tau}\sigma(x) + \boldsymbol{\tau}(\mathbf{y})[h(\mathbf{x}), \mathbf{y}]_{\lambda,\tau} \\ &+ [\boldsymbol{\tau}(\mathbf{y}), \boldsymbol{\tau}(\mathbf{y})]h(x) + \tau(y)[\mathbf{h}(\mathbf{y}), x]_{\lambda,\tau} + [h(y), \mathbf{y}]_{\lambda,\tau}\boldsymbol{\lambda}(\mathbf{x}) \\ &= d(y)[\sigma(x), \lambda(y)] + [d(y), y]_{\lambda,\tau}\sigma(x), \forall x, y \in I. \end{split}$$

That is

$$d(y)[\sigma(x), \lambda(y)] + [d(y), y]_{\lambda, \tau} \sigma(x) = 0, \forall x, y \in I.$$
(2.9)

Taking $xr, r \in R$ instead of x in (9) and using (9) then we arrive

$$0 = d(y)\sigma(x)[\sigma(r), \lambda(y)] + d(y)[\sigma(x), \lambda(y)]\sigma(r) + [d(y), y]_{\lambda, \tau}\sigma(x)\sigma(r)$$

= $d(y)\sigma(x)[\sigma(r), \lambda(y)], \forall x, y \in I, r \in R$

which leads to

$$d(y)\sigma(I)[R,\lambda(y)] = 0, \forall y \in I. \tag{2.10}$$

Since $\sigma(I) \neq 0$ an ideal then, for any $y \in I$, we have $[R, \lambda(y)] = 0$ or d(y) = 0 by (10) and so $y \in Z$ or d(y) = 0.

Let $K = \{y \in I \mid y \in Z\}$ and $L = \{y \in I \mid d(y) = 0\}$. Considering as in the proof of Theorem 1 we have, $I \subset Z$ or d(I) = 0. Since $I \neq 0$ an ideal and $d \neq 0$ then we obtain that K = I by Lemma 1 and so $I \subset Z$. This means that R is commutative by Lemma 2.

Corollary 2.15. [1, Theorem 1] Let R be a prime ring and I be a nonzero ideal of R. If R admits a nonzero (α, β) -derivation d such that $[d(x), x]_{\alpha, \beta} = 0, \forall x \in I$, then R is commutative.

Theorem 2.16. Let R be a prime ring and $0 \neq a \in R$. If $h: R \longrightarrow R$ is a nonzero left-generalized (σ, τ) -derivation associated with a nonzero (σ, τ) -derivation d and $I \neq 0$ an ideal of R such that $[h(x)a, x]_{\lambda, \tau} = 0, \forall x \in I$ then R is commutative.

Proof. Replacing x by x + y in hypothesis we have

$$[h(x)a, y]_{\lambda, \tau} + [h(y)a, x]_{\lambda, \tau} = 0, \forall x, y \in I.$$
 (2.11)

If we take yx instead of x in (11) and using (11) we get

$$\begin{split} 0 &= [h(yx)a,y]_{\lambda,\tau} + [h(y)a,yx]_{\lambda,\tau} \\ &= [d(y)\sigma(x)a + \tau(y)h(x)a,y]_{\lambda,\tau} + [h(y)a,yx]_{\lambda,\tau} \\ &= d(y)[\sigma(x)a,\lambda(y)] + [d(y),y]_{\lambda,\tau}\sigma(x)a + \boldsymbol{\tau}(\mathbf{y})[h(x)a,\mathbf{y}]_{\lambda,\tau} \\ &+ [\boldsymbol{\tau}(\mathbf{y}),\boldsymbol{\tau}(\mathbf{y})]h(x)a + \tau(y)[\mathbf{h}(\mathbf{y})a,x]_{\lambda,\tau} + [h(y)a,y]_{\lambda,\tau}\lambda(x), \forall x,y \in I. \end{split}$$

That is

$$d(y)[\sigma(x)a, \lambda(y)] + [d(y), y]_{\lambda, \tau} \sigma(x)a = 0, \forall x, y \in I.$$
(2.12)

Replacing x by $x\sigma^{-1}(a)$ in (12) and using (12) we have

$$\begin{split} 0 &= d(y)[\sigma(x)aa,\lambda(y)] + [d(y),y]_{\lambda,\tau}\sigma(x)aa \\ &= d(y)\sigma(x)a[a,\lambda(y)] + d(y)[\sigma(x)a,\lambda(y)]a + [d(y),y]_{\lambda,\tau}\sigma(x)aa \\ &= d(y)\sigma(x)a[a,\lambda(y)], \forall x,y \in I. \end{split}$$

That is

$$d(y)\sigma(I)a[a,\lambda(y)] = 0, \forall y \in I. \tag{2.13}$$

Since $\sigma(I)$ a nonzero ideal of R then, for any $y \in I$, we obtain that

$$a[a, \lambda(y)] = 0$$
 or $d(y) = 0$

by (13). Hence, the additive group I is a union of subgroups $K = \{y \in I \mid a[a,\lambda(y)] = 0\}$ and $L = \{y \in I \mid d(y) = 0\}$. Considering as in the proof of the Theorem 1, we obtain that K = I and so $a[a,\lambda(I)] = 0$. Using this result we get,

$$0 = a[a, \lambda(yr)] = a\lambda(y)[a, \lambda(r)] + a[a, \lambda(y)]\lambda(r)$$

= $a\lambda(y)[a, \lambda(r)], \forall r \in R, y \in I.$

That is $a\lambda(I)[a,R]=0$. This means that $a\in Z$. On the other hand, considering that $a\in Z$ and hypothesis, we get

$$0 = [h(x)a, x]_{\lambda, \tau} = h(x)[a, \lambda(x)] + [h(x), x]_{\lambda, \tau}a$$
$$= [h(x), x]_{\lambda, \tau}a \text{ for all } x \in I.$$

That is $[h(x), x]_{\lambda, \tau} a = 0, \forall x \in I$. Since $a \in Z$ and $a \neq 0$ we have $[h(x), x]_{\lambda, \tau} = 0$ for all $x \in I$. This gives that R is commutative by Theorem 3.

Remark 2.17. Let I be a nonzero ideal of R and $a, b \in R$. If $(I, a)_{\lambda,\mu}b = 0$ or $b(I, a)_{\lambda,\mu} = 0$ then $a \in Z$ or b = 0.

Proof. If $(I, a)_{\lambda,\mu}b = 0$ then we have

 $0 = (rx, a)_{\lambda,\mu}b = r(x, a)_{\lambda,\mu}b - [r, \mu(a)]xb = -[r, \mu(a)]xb, \forall r \in R, x \in I$. That is $[R, \mu(a)]Ib = 0$. This gives that $a \in Z$ or b = 0.

Let $b(I,a)_{\lambda,\mu}=0$. Then $0=b(xr,a)_{\lambda,\mu}=bx[r,\lambda(a)]+b(x,a)_{\lambda,\mu}r=bx[r,\lambda(a)], \forall r\in R,\,x\in I.$

This gives that $bI[R, \lambda(a)] = 0$ and so $a \in Z$ or b = 0.

Lemma 2.18. Let I be a nonzero ideal of R and a be a noncentral element of R. Let $h: R \longrightarrow R$ be a nonzero right-generalized derivation associated with d. If $h(I, a)_{\lambda,\mu} = 0$ or $(h(I), a)_{\lambda,\mu} = 0$ then $d\lambda(a) = 0$.

Proof. If $h(I,a)_{\lambda,\mu}=0$ then using that h is a right generalized derivation we get

$$0 = h(x\lambda(a), a)_{\lambda,\mu} = h\{x[\lambda(a), \lambda(a)] + (x, a)_{\lambda,\mu}\lambda(a)\} = h\{(x, a)_{\lambda,\mu}\lambda(a)\}$$

$$= h(x, a)_{\lambda,\mu}\lambda(a) + (x, a)_{\lambda,\mu}d\lambda(a) = (x, a)_{\lambda,\mu}d\lambda(a), \forall x \in I,$$

which leads to

$$(I,a)_{\lambda,\mu}d\lambda(a) = 0. (2.14)$$

Using Remark 2 and (14) we have $a \in Z$ or $d\lambda(a) = 0$. Since a be a noncentral then $d\lambda(a) = 0$ is obtained.

If $(h(I), a)_{\lambda,\mu} = 0$ then we have

$$\begin{aligned} 0 &= & (h(x\lambda(a)), a)_{\lambda,\mu} = (h(x)\lambda(a) + xd\lambda(a), a)_{\lambda,\mu} \\ &= & h(x)[\boldsymbol{\lambda}(\mathbf{a}), \lambda(a)] + (h(x), a)_{\lambda,\mu}\lambda(a) + x(d\lambda(a), a)_{\lambda,\mu} - [x, \mu(a)]d\lambda(a) \\ &= & x(d\lambda(a), a)_{\lambda,\mu} - [x, \mu(a)]d\lambda(a), \forall x \in I. \end{aligned}$$

That is,

$$x(d\lambda(a), a)_{\lambda,\mu} - [x, \mu(a)]d\lambda(a) = 0, \forall x \in I.$$
(2.15)

Replacing x by $xy, y \in I$ in (15) and using (15) we get

$$0 = xy(d\lambda(a), a)_{\lambda,\mu} - x[y, \mu(a)]d\lambda(a) - [x, \mu(a)]yd\lambda(a)$$
$$= -[x, \mu(a)]yd\lambda(a), \forall x, y \in I.$$

and so $[I, \mu(a)]Id\lambda(a) = 0$. Since R is prime and a be a noncentral element then we obtain that $d\lambda(a) = 0$.

Lemma 2.19. Let I be a nonzero ideal of R and a is a noncentral element of R. Let $h: R \longrightarrow R$ be a nonzero left generalized derivation associated with derivation $d_1: R \longrightarrow R$. If $h((I, a)_{\lambda, \mu}) = 0$ or $(h(I), a)_{\lambda, \mu} = 0$ then $d_1\mu(a) = 0$.

Proof. If $h(I,a)_{\lambda,\mu}=0$ then using that h is a left-generalized derivation we get

$$\begin{array}{ll} 0 & = & h(\mu(a)x,a)_{\lambda,\mu} = h\left\{\mu(a)(x,a)_{\lambda,\mu} - [\mu(a),\mu(a)]x\right\} \\ & = & h\left\{\mu(a)(x,a)_{\lambda,\mu}\right\} = d_1(\mu(a))(x,a)_{\lambda,\mu} + \mu(a)h((x,a)_{\lambda,\mu}) \\ & = & d_1(\mu(a))(x,a)_{\lambda,\mu}, \forall x \in I. \end{array}$$

That is,

$$d_1(\mu(a))(I,a)_{\lambda,\mu} = 0. (2.16)$$

Since a be noncentral then using Remark 2 and (16) we obtain that $d_1(\mu(a)) = 0$. On the other hand, If $(h(I), a)_{\lambda,\mu} = 0$ then we have $d_1(\mu(a)) = 0$ by Lemma 5.

Theorem 2.20. Let I be a nonzero ideal of R and a is a noncentral element of R. Let $h: R \longrightarrow R$ be a nonzero right-generalized derivation associated with d and left-generalized derivation associated with d_1 . Then $h((I, a)_{\lambda, \mu}) = 0$ if and only if $(h(I), a)_{\lambda, \mu} = 0$.

Proof. If $h((I,a)_{\lambda,\mu}) = 0$ or $(h(I),a)_{\lambda,\mu} = 0$ then $d(\lambda(a)) = 0$ and $d_1(\mu(a)) = 0$ are obtained by Lemma 9 and Lemma 10.

Using these results we get

$$\begin{array}{lll} h((I,a)_{\lambda,\mu}) & = & 0 \Longleftrightarrow h(x\lambda(a) + \mu(a)x) = 0, \forall x \in I. \\ & \iff & h(x)\lambda(a) + xd(\lambda(a)) + d_1(\mu(a))x + \mu(a)h(x) = 0, \forall x \in I. \\ & \iff & h(x)\lambda(a) + \mu(a)h(x) = 0, \forall x \in I. \\ & \iff & (h(I),a)_{\lambda,\mu} = 0. \end{array}$$

Corollary 2.21. [9, Theorem 7] Let R be a prime ring of characteristic different from two, $d: R \longrightarrow R$ be a nonzero derivation and $a \in R$. Then (d(R), a) = 0 if and only if d(R, a) = 0.

References

- 1. Ashraf, M. and Rehman, N., $On~(\sigma,\tau)$ -derivations in prime rings, Archivum Mathematicum, (BRNO), Tomus 38, 259-264, (2002).
- 2. Aydın, N. and Kaya, K., Some Generalizations in Prime Rings with (σ, τ) -Derivation, Doğa-Tr. J. of Math. 16, (1992).
- Bresar, M., On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33, 80-93, (1991).
- 4. Chang, J. C., On the identity h(x) = af(x) + g(x)b, Taiwanese J. Math., 7(1), 103-113, (2003).

- 5. Güven, E., Kaya, K. and Soytürk, M., Some Results on (σ, τ) -Lie Ideals, Math. J. Okayama Univ. 49, (2007).
- 6. Güven, E ,Some Results on Generalized (σ,τ) -derivations in Prime Rings, Beitrage zur Algebra and Geometry, 54, ISSN 0138-4821, (2013).
- 7. Güven, E., One Sided (σ, τ) -Lie Ideals and Generalized Derivations in Prime Rings, Palestine Journal of Mathematics, (2018 to appear).
- 8. Güven, E. and Soytürk, M., On (σ, τ) -derivations in Prime Rings, Int, J. Contemp Math. Sci. (2008).
- 9. Kaya, K., Gölbaşı,Ö., Aydın, N., Some Results for Generalized Lie Ideals in Prime Rings with Derivation II, Applied Mathematics E-Notes, 1, (2001).
- 10. Marubayashi H. and Ashraf M., Rehman N., Ali Shakir., On Generalized (α, β) -Derivations in Prime Rings , Algebra Colloquium 17 (Spec 1), 865-874, (2010).
- 11. Mayne, J. H., Centralizing Mappings of Prime Rings, Canad. Math. Bull, 27, 122-126, (1984).
- 12. Posner, E. C., Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, (1957).
- 13. Rehman, N., On Commutativity of Rings with Generalized Derivations, Math. J. Okayama Univ. Volume 44, Issue 1, (2002).

Evrim Guven, Kocaeli University, Department of Mathematics, Faculty of Science and Art, TURKEY.

 $E ext{-}mail\ address: evrim@kocaeli.edu.tr}$