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One Sided Generalized (o, 7)-derivations on Rings

Evrim Guven

ABSTRACT: Let R be a prime ring with characteristic not 2 and o, 7, A, i1, o, 8 be au-
tomorphisms of R. Let h be a nonzero left (resp. right)-generalized (o, 7)—derivation
of R and I,J nonzero ideals of R and a € R. The main object in this arti-
cle is to study the situations. (1) h(l)a C Cy ,(J) and ah(I) C Cx ,(J), (2)
h(I) C C/\,H(J)v (3) [h‘(I)va]k,u =0, (4) h‘(lva)/\,u =0 ( or (h‘(I)va)/\,u = 0)7 (5)
[h(l’),{[’])\ﬂ. =0,vz € I, (6) [h(m)a, ‘T])\,‘r =0,vz € I.
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1. Introduction

Let R be an associative ring with center Z. Recall that R is prime if aRb = (0)
implies that @ = 0 or b = 0. For any z,y € R the symbol [z,y] represents com-
mutator xy — yx and the Jordan product (z,y) = zy + xy. Let o and 7 be any
two endomorphisms of R. For any z,y € R we set [2,y]or = zo(y) — 7(y)z
and (z,y)o,r = 2zo(y) + 7(y)x. Let h and d be additive mappings of R. If
d(zy) = d(x)y + zd(y),Vx,y € R then d is called a derivation of R. If there
exists a derivation d such that h(zy) = h(x)y + xzd(y),Vz,y € R then h is called
generalized derivation of R (see [3]). If d(xy) = d(x)o(y) + 7(x)d(y),Ya,y € R
then d is called a (o, 7)—derivation of R. Obviously every derivation d : R —
R is a (1,1)—derivation of R, where 1 : R — R is an identity mapping. If
h(zy) = d(x)o(y) + 7(x)h(y),Vz,y € R then h is said to be a left-generalized
(0, 7)—derivation with d and if h(xy) = h(z)o(y) + 7(x)d(y),Vz,y € R then h is
said to be a right-generalized (o, 7)—derivation associated with (o, 7)—derivation d,
(see [4]). Every (o, 7)—derivation associated with d is a right (and left)-generalized
(0, 7)—derivation associated with d.

The mapping defined by h(r) = [r,als-,Vr € R is a right-generalized deriva-
tion associated with derivation d(r) = [r,o(a)],Vr € R and left-generalized deriva-
tion associated with derivation di(r) = [r,7(a)],Vr € R. The mapping h(r) =
(a,7)o,7,Vr € R is a left-generalized (o, 7)— derivation associated with (o, 7)—
derivation da(r) = [a,7]s,r, V7 € R and right-generalized (o, 7)—derivation associ-
ated with (o, 7)—derivation ds.
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The following result is proved by Posner in (see [12]). Let R be a prime ring
and d # 0 derivation of R such that [d(z),z] = 0,Vx € R. Then R is commutative.
Ashraf and Rehman (see [1]) generalized Posner’s result as follows. Let R be a
2—torsion free prime ring. Suppose there exists a (o, 7)—derivation d : R — R
such that [d(z),z],» = 0,V € R. Then either d = 0 or R is commutative.
Taking an ideal of R instead of R, Marubayashi H.and Ashraf M.,Rehman N., Ali
Shakir, generalized Rehman’s result in (see [10]). On the other hand, Rehman
(see [13]) gave another generalization of Posner’s Theorem as follows. Let R be
a prime ring. If R admits a nonzero generalized derivation h with d such that
[h(z),z] = 0,Vx € R, and if d # 0, then R is commutative.

In this paper, using left-generalized (o, 7)—derivation of R, we have given an-
other generalization of Ashraf and Rehman’s result (see [1]) as in Theorem 3.
Also, we discuss the commutativity of prime rings admitting a left-generalized
(o, 7)—derivation h : R — R satisfying several conditions on ideals.

Throughout the paper, R will be a prime ring with characteristic not 2 and
0,7, \ 4, o, § be automorphisms of R. Let J be an ideal of R We write Cyy -(J) =
{r € R|ro(x) =7(x)r, V2 € J} and will make extensive use of the following basic
commutator identities.

[2y, 2]o,r = 2y, 2lor + [2,7(2)]y = 2y, 0(2)] + [, 2]0,7y

[:C yz]a‘r = T(y)[SC Z]O‘T [:C,y] 70 Z)
(z, yZ)m =7 (%, 2)0,r + [2,Ylor0(2) = —T(Y)[z, 2|07 + (2, Y)0,r0(2)
(:Cya o,T :‘T(y’ ) - [:C)T(Z ] = [y ( ] (‘T Z)U Y.

2. Results

We begin with the following known results which will be used to prove our
theorems.

Lemma 2.1. [2, Lemmal] Let R be a prime ring and d : R — R be a (o,7)—
derivation. If U is a nonzero right ideal of R and d(U) =0 then d = 0.

Lemma 2.2. [11, Lemma3] If a prime ring contains a nonzero commutative right
ideal then it is commutative.

Lemma 2.3. [6, Lemma5] Let I be a nonzero ideal of R and a,b € R. If [a,I]o,p C
Cxau(R) or (a,1)a,p C Cxu(R) then a € Cy g(R) or R is commutative.

Lemma 2.4. [5, Corollary 1] If I is a nonzero ideal of R and a € R such that
[I,ala,3 C Cxru(R), then a € Z.

Lemma 2.5. [7, Lemma 2.16] Let R be a prime ring and h : R — R be a nonzero
left-generalized (o, 7)— derivation associated with a nonzero (o, T)—derivation d. If
I is a nonzero ideal of R and a € R such that (h(I),a)x, = 0 then a € Z or
dr~u(a) = 0.

Lemma 2.6. [7, Theorem 2.7] Let h : R — R be a nonzero right-generalized
(o, 7)—derivation associated with (o, 7)—deriwation d and I,J be nonzero ideals of
R. If a € R such that ah(I) C Cx u(J) then a € Z or d = 0.
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Lemma 2.7. Let I be a nonzero ideal of R and a,b € R. If h : R — R is a

nonzero left-generalized (o, T)—derivation associated with (o, T)—derivation d such
that [h(I)a,b]x, = 0 then ala, A\(b)] = 0 or d(t~ (b)) = 0.

Proof. Using hypothesis we have,

0= [h(r ). b, = [l ulBolo)a+ pO)h(a)as b
d(r=" u(®))[o(2)a, AB)] + [~ 1(5)), bla .o (@)

# HOBE) i+ ) 1O )
d(r= u(®)) o (2)a, AB)] + [~ (b)), bla o (@)a, Ve € T

That is,
klo(z)a, A\(b)] + [k, b]x uo(x)a = 0,Yx € I where k = d(7~u(b)). (2.1)

Replacing = by xo~*(a)y in (1) and using (1) we get,

0 = ko(@)ao (y)a, AB)] + [k, bla .o (@)ac (y)a
— ko(2)alo(y)a, A(B)] + Klo(2)a, AB)lo(y)a + [k, b uo(@)ac (y)a
— ko(z)alo(y)a, \B)], Va, y € 1.

That is ko (I)alo(I)a, A(b)] = 0. Since o(I) is a nonzero ideal of R then we have
d(t7 p(b) = 0 or alo(I)a, \(b)] = 0. (2.2)
If alo(I)a, A\(b)] = 0 in (2) then we get,

0 = alo(oc(a)z)a, \(b)] = alac(x)a, A\(b)]
aalo(z)a, \(b)] + ala, A(b)]o(x)a = ala, A\(b)]o(x)a,Vx € I.

From the last relation we obtain that afa, A(b)] = 0 for two case. O

Remark 2.8. Let J be a nonzero ideal of R. If b € C ,(J) then b € C ,(R).

Proof. If b € C ,(J) then we have 0 = [b,ar]x, = ()b, 7]x,, + [b, )5, A (1) =
w(z)[b, v, Vo € J,r € R. That is u(J)[b, R]x,, = 0. This gives that b € C ,(R).
|

Theorem 2.9. Let h : R — R be a nonzero left-generalized (o, 7T)—derivation
associated with nonzero (o, 7)—deriwation d and a,b € R. Let I, J be nonzero ideals
of R.

(1) If h(I)a C Cx u(J) thena € Z .

(ii) If ah(I) C Cx ,(J) then a € Z or adr=*(a) = 0.
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Proof. (i) If h(I)a C C\ ,(J) then we have [h(])a,z]|x, = 0,Vz € J. Using this
relation and Lemma 7 we get, for any = € J,

ala, \(z)] = 0 or dr*p(x) =0
Let K = {z € J|afa,A\(z)] =0} and L = {z € J |dr 'p(z) =0} .Then K

and L are subgroups of J and J = K U L. A group can not write the union of its
proper subgroups. Hence we have K = J or L = J. That is,

ala, \(J)] =0 or d(7pu(J) =0
Since d # 0 then d(77!pu(J)) # 0 by Lemma 1. If afa, A\(J)] = 0 then we get

0 = ala, A(zr)] = aX(x)]a, A(1)] + ala, A(z)|A(r)
= aX(z)a, \(r)],Vz € J,r € R

and so aA(J)[a, R] = 0. From this relation we obtain that a € Z.
(ii) If ah(I) C Ch,u (J) then we have ah(I) C Cy ,(R) by Remark 1. Using this
relation we get

0 = [ah(r™ (a)y), u 1( )]m— [ad(r™ (a))o(y) + aah(y), n™" (@)]x.
= ad(r™(a)[o(y), ™" (@)] + ad(r™ (), 1™ (@)]x o (y)
+alah(y),n™ (a )]w+[a,a]ah( )

= ad(r7'(a)[o(y), A" (a)] + [ad(77 (@), p = (@)]x, 0 (y), Yy € I,
and so
k:[a(y),p]—f—[k,ufl(a)])\wo(y) =0,Vy € I, where k = ad(t"*(a)) and p = )\uz(a)j
2.3
Replacing y by yx, € I in (3) we obtain that
0 = ko(ylo(x),pl+ klo(y),plo(x) + [k, n~ " ()]s uo(y)o(z)
= ko(y)lo(x),pl,Va,y € I.
That is,
ko(I)[o(I),p] =0 (2.4)

Since o(I) is a nonzero ideal of R then k = 0 or [o(I),p] = 0 is obtained by the
(4). This gives that ad(7~!(a)) =0ora € Z. O

Corollary 2.10. Let I,J be nonzero ideals of R and a,b € R.
(1) If [I,b]5,ra C Cx p(J) thena € Z orbe Z.
(11) If b, I]5.ra C Cx p(J) thena € Z orb e Cy - (R).
(iii) If a(b,I)y,r C Cxpu(J) then a € Z orb € Cy - (R) or alb,7"(a)]s,r = 0.
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Proof. (i) Let h(r) = [r,b]s -, Vr € R and d(r) = [r, 7(b)],Vr € R. Since,
h(rs) = [rs,bls.r = r[s,blo,r + [r,7(b)]s = d(r)s + rh(s),Vr,s € R, (2.5)

then h is a left-generalized derivation associated with derivation d. If h = 0
then d =0 (‘and so b € Z ) is obtained by the relation (5).

If [1,b]5,ra C Cy u(J) then we can write h(I)a C Cx, (J). If h# 0 and d # 0
then we have a € Z by Theorem 1(i).

(ii) The mapping defined by dy(r) = [b,7]s 7, Vr € R is a (o, 7)—derivation and
so, left (and right)-generalized (o, 7)—derivation with dy. If d; = 0 then we have
beCy-(R).

Let dy # 0. If [b,I]5ra C Cy ,(J) then we can write dy(f)a C Cy , (J). This
gives that a € Z by Theorem 1(i). Finally we obtain that a € Z or b € Cy, - (R).

(iii) The mapping defined by ¢(r) = (b,7)s,r,Vr € R is a left-generalized
(0, 7)—derivation associated with (o, 7)—derivation di(r) = [b,7]s -, Vr € R. If
g = 0 then dy = 0 and so b € C, -(R) is obtained. Let g # 0 and d; # 0. If
a(b,I)s,r C Cxpu(J) then we have ag(l) C Cy u(J). This implies that a € Z or
adi77!(a) = 0 by Theorem 1(ii). That is a € Z or alb,7"*(a)],.» = 0. O

Lemma 2.11. Let I be a nonzero ideal of R and h : R — R be a nonzero
left-generalized (o, T)—derivation associated with a nonzero (o, T)—derivation d. If
a € R such that [h(I),alx,, =0 then a € Z or d(t~'pu(a)) = 0.

Proof. Using hypothesis we get,
0 = [A(r ' u(a)z), alru =
= d(T’lu(a))[U(z),A(a)l +[dr
+u(a)[h(z), alxu + [u(a), pla)h(z)
= d(r™ (a)[o(x), Ma)] + [d(7™ pu(a), alauo (@), Vo € 1.

That is,
klo(z),Ma)] + [k, alx uo(x) = 0,Yz € I, where k = d(17~ ' ju(a)). (2.6)
Replacing « by xr,r € R in (6) and using (6) we get

0 = ko(x)lo(r), Ma)] + k[o(z), Ma)lo(r) + [k, alx,uo(z)o(r)
o(z)[o(r), A(a)],Yz € I,r € R.

o~

and so ko(I)[R, A(a)] = 0. Since o(I) # 0 is an ideal and R is prime then we
have a € Z or d(t~'pu(a)) = 0. O

Theorem 2.12. Let h be a nonzero left-generalized (o, T) derivation associated
with (o, 7)— derivation 0 # d and I, J be nonzero ideals of R.
(1) If h(I) C Cx .(J) then R is commutative.
(i) If [M(I), J]a,p C Cru(R) or (R(I),J)a,s C Cx u(R) then R is commutative.
(111) If [J,h(I)]a,p C Cx,u(R) then R is commutative.



46 E. GUVEN

Proof. (i) If h(I) C Ch,,(J) then we have [h(I),z] , = 0,Vz € J. This means that,
for any = € J,
r€Z ord(t  u(z)) =0 (2.7)

by Lemma 8. Using (7), let us consider the following sets, K = {x € J |z € Z}
and L = {z € J | dr~'u(z) = 0}. Considering as in the proof of Theorem 1 we
obtain that J C Z or d(7~*u(J)) = 0. Since d # 0 then we have d(7~*u(J)) # 0
by Lemma 1. Hence, we obtain that K = J and so J C Z. This means that R is
commutative by Lemma 2.

(ii) If [R(I), J]a,s C Cxu(R) or (h(I),J)a,ps C Cx u(R) then we have h(I) C
Cop(R) or R is commutative by Lemma 3. On the other hand h(I) C C, 3(R)
means that R is commutative by (i).

(iii) If [J, h(I)]a,s C Cxu(R) then we have h(I) C Z by Lemma 4 and so R is
commutative by (i). O

Corollary 2.13. /8, Lemma 2] Let U be a nonzero ideal of R. If d : R — R is
a nonzero (o, T)—derivation such that d(U) C Cy ,(R). Then R is commutative.

Theorem 2.14. Let h : R — R be a nonzero left-generalized (o, T)—derivation
associated with a nonzero (o, 7)—derivation d. If I # 0 is an ideal of R such that
[h(x),z]xr = 0,Vx € I then R is commutative.

Proof. Linearizing the hypothesis, we get

[h(2), ylnr + [1(y), 2]xr = 0,V y € 1. (2.8)

Replacing a by yx in (8) and using (8) we have

That is
d(y)lo (), \(y)] + [d(y), yIr-o(x) = 0,Va,y € . (2.9)

Taking a7, € R instead of x in (9) and using (9) then we arrive
0= d(y)o(@)[o(r), Ay)] + d(y)lo (), A(w)lo(r) + [d(y), ylrro(z)o(r)
= d(y)o(x)lo(r), Ay)l,Ve,y € I,r € R
which leads to
d(y)o ()[R, A(y)] = 0,Vy € I. (2.10)

Since o(I) # 0 an ideal then, for any y € I, we have [R,\(y)] =0 or d(y) =0
by (10) and so y € Z or d(y) = 0.
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Let K ={yel|yeZ}and L ={y e I]|d(y) =0}. Considering as in the
proof of Theorem 1 we have, I C Z or d(I) = 0. Since I # 0 an ideal and d # 0
then we obtain that K = I by Lemma 1 and so I C Z. This means that R is
commutative by Lemma 2. O

Corollary 2.15. [1, Theorem 1] Let R be a prime ring and I be a nonzero ideal
of R. If R admits a nonzero («, 3)—derivation d such that [d(x), z]q.3 = 0,Vz € I,
then R is commutative.

Theorem 2.16. Let R be a prime ring and 0 # a € R. If h: R — R is a nonzero
left-generalized (o, 7)—derivation associated with a nonzero (o, T)—derivation d and
I # 0 an ideal of R such that [h(x)a, x|y, = 0,Yx € I then R is commutative.

Proof. Replacing = by = + y in hypothesis we have
[h’(x)av y]A,T + [h(y)av x])\,‘f' = O,VSC, Y € I (211)
If we take yz instead of 2 in (11) and using (11) we get

(h(yz)a, ylxr + [M(y)a, yz]x -

= [d(y)o(z)a + T(y)h(z)a,y|x,- + [h(y)a, yz]s,
= d(y)[o(z)a, AM(y)] + [d(
+[7(y), T(y)|h(z)a + 7(y

That is

) AT
y); ])\ TU( )a+T(Y)[h(‘T)a”y])\,'r
)[h( a, x]/\,r + [h(y)aa y])\,r)‘(x)avwa Yy e I

d(y)lo(z)a, AW)] + [d(y), ylrro(x)a =0,Va,y € 1. (2.12)
Replacing = by zo~!(a) in (12) and using (12) we have

ala, AM(y)] + d(y)lo(x)a, Ay)la + [d(y), y]x -0 (x)aa

That is
d(y)o(I)ala, \(y)] = 0,Vy € I. (2.13)

Since o(I) a nonzero ideal of R then, for any y € I, we obtain that
ala, A(y)] = 0 or d(y) =

by (13). Hence, the additive group I is a union of subgroups K = {y € I |
ala, \(y)] = 0} and L = {y € I | d(y) = 0}. Considering as in the proof of the
Theorem 1, we obtain that K = I and so ala, A(I)] = 0. Using this result we get,

0 = afa, A(yr)] = aX(y)la, A(r)] + ala, A(y)]A(r)
= aX(y)[a, \(r)],Vr € R,y € I.
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That is aA(I)[a, R] = 0. This means that a € Z. On the other hand, considering
that a € Z and hypothesis, we get

0 = [h(z)a, z]x,» = h(x)]a, A(z)] + [h(z), 2] ra
= [h(x), ] ra for all z € I.

That is [h(x), z]x,ra = 0,Vx € I. Since a € Z and a # 0 we have [h(z),2]x - =0
for all x € I.This gives that R is commutative by Theorem 3. O

Remark 2.17. Let I be a nonzero ideal of R and a,b € R. If (I,a)x b =0 or
b(I,a)x, =0 thena € Z orb=0.

Proof. If (I,a)x,,b =0 then we have

0= (rez,a)xu b =r(x, a)x,b— [r, pla)zb = —[r, p(a)]zb,Vr € R,z € I. That is
[R, u(a)]Ib = 0. This gives that a € Z or b = 0.

Let b(I,a)x,, = 0. Then 0 = b(ar, a)x,, = bz[r, A(a)]+b(x, a)x,,r = bxlr, \(a)],Vr €
R,z el

This gives that bI[R, A(a)] =0 and so a € Z or b = 0. O

Lemma 2.18. Let I be a nonzero ideal of R and a be a moncentral element of
R. Let h: R — R be a nonzero right-generalized derivation associated with d. If
h(I,a)x, =0 or (h(I),a)x,, =0 then d\(a) = 0.

Proof. If h(I,a)x,, = 0 then using that h is a right generalized derivation we get
0 = hzXa),a)xu = h{z[Aa), A(a)] + (z,a)x uA(a)} = h{(z,a)r uA(a)}
= h(z,a)rpAa) + (z,a)x,udN(a) = (z,a)r,,dN(a),Vz € I,
which leads to
(I,a)x pdN(a) = 0. (2.14)

Using Remark 2 and (14) we have a € Z or dA(a) = 0. Since a be a noncentral
then dA(a) = 0 is obtained.
If (h(I),a)x,, = 0 then we have

0 = (h(=zA(a)),a)ru = (R(x)A(a) + zdX(a), a)x,u

= W@)[A@), Aa)] + (h(x), a)x uMa) + 2(dA(a), a)x = [z, p(a)ldA(a)
= z(dX(a),a)x, — [z, p(a)]ld\(a),Vz € I.
That is,
z(dX(a),a)ru — [z, u(a)ldA(a) = 0,Vz € 1. (2.15)
Replacing x by zy,y € I in (15) and using (15) we get
0 = ay(dA(a),a)ru — xly, p(a)ldA(a) — [z, p(a)lydA(a)

= —z,ula)]yd\(a),Yx,y € I.

and so [I, p(a)]IdA(a) = 0. Since R is prime and a be a noncentral element then
we obtain that d\(a) = 0. O
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Lemma 2.19. Let I be a nonzero ideal of R and a is a noncentral element of R.
Let h : R — R be a nonzero left generalized derivation associated with derivation
di:R— R. If h((I,a)r,,) =0 or (h(I),a)r,, =0 then dip(a) = 0.

Proof. If h(I,a)x,, = 0 then using that h is a left-generaized derivation we get

0 = h(pla)r,a)x, = h{ipla)(z,a)xu — [u(a), pla))z}
= h{p(a)(z,a)xu} = di(p(a))(, a)x .+ pla)h((z,a)x )
= di(p(a))(x,a)r,, Ve € l.

That is,
di(p(a))(I,a)x,u = 0. (2.16)

Since a be noncentral then using Remark 2 and (16) we obtain thatd; (u(a)) = 0.
On the other hand, If (h(I),a)x,, = 0 then we have d;(¢(a)) = 0 by Lemma 5.
O

Theorem 2.20. Let I be a nonzero ideal of R and a is a moncentral element of
R. Let h: R — R be a nonzero right-generalized derivation associated with d and
left-generalized derivation associated with di . Then h((I,a)x,,.) = 0 if and only if

(h(I),a)x,. = 0.

Proof. If h((I,a)x,,) = 0or (h(I),a)x,, = 0 then d(A(a)) = 0 and di(u(a)) = 0 are
obtained by Lemma 9 and Lemma 10.
Using these results we get

h((I,a)xu) 0 < h(zA(a) + p(a)x) =0,z € I.

h(x)A(a) + zd(A(a)) + di(p(a))x + p(a)h(z) = 0,Vx € 1.
h(z)\(a) + p(a)h(z) = 0,Vx € I.
(h(I),a)r,. = 0.

IIM”

d

Corollary 2.21. [9, Theorem 7] Let R be a prime ring of characteristic different
from two, d : R — R be a nonzero derivation and a € R. Then (d(R),a) = 0 if
and only if d(R,a) = 0.
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